1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
30 // generator).
31 //
32 // There are several improvements that could be made:
33 //
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately precedes the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52
53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/Analysis/GlobalsModRef.h"
59 #include "llvm/Analysis/CFG.h"
60 #include "llvm/Analysis/CaptureTracking.h"
61 #include "llvm/Analysis/InlineCost.h"
62 #include "llvm/Analysis/InstructionSimplify.h"
63 #include "llvm/Analysis/Loads.h"
64 #include "llvm/Analysis/TargetTransformInfo.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/Instructions.h"
73 #include "llvm/IR/IntrinsicInst.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 using namespace llvm;
82
83 #define DEBUG_TYPE "tailcallelim"
84
85 STATISTIC(NumEliminated, "Number of tail calls removed");
86 STATISTIC(NumRetDuped, "Number of return duplicated");
87 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
88
89 /// \brief Scan the specified function for alloca instructions.
90 /// If it contains any dynamic allocas, returns false.
canTRE(Function & F)91 static bool canTRE(Function &F) {
92 // Because of PR962, we don't TRE dynamic allocas.
93 for (auto &BB : F) {
94 for (auto &I : BB) {
95 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
96 if (!AI->isStaticAlloca())
97 return false;
98 }
99 }
100 }
101
102 return true;
103 }
104
105 namespace {
106 struct AllocaDerivedValueTracker {
107 // Start at a root value and walk its use-def chain to mark calls that use the
108 // value or a derived value in AllocaUsers, and places where it may escape in
109 // EscapePoints.
walk__anon9a737bdd0111::AllocaDerivedValueTracker110 void walk(Value *Root) {
111 SmallVector<Use *, 32> Worklist;
112 SmallPtrSet<Use *, 32> Visited;
113
114 auto AddUsesToWorklist = [&](Value *V) {
115 for (auto &U : V->uses()) {
116 if (!Visited.insert(&U).second)
117 continue;
118 Worklist.push_back(&U);
119 }
120 };
121
122 AddUsesToWorklist(Root);
123
124 while (!Worklist.empty()) {
125 Use *U = Worklist.pop_back_val();
126 Instruction *I = cast<Instruction>(U->getUser());
127
128 switch (I->getOpcode()) {
129 case Instruction::Call:
130 case Instruction::Invoke: {
131 CallSite CS(I);
132 bool IsNocapture =
133 CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
134 callUsesLocalStack(CS, IsNocapture);
135 if (IsNocapture) {
136 // If the alloca-derived argument is passed in as nocapture, then it
137 // can't propagate to the call's return. That would be capturing.
138 continue;
139 }
140 break;
141 }
142 case Instruction::Load: {
143 // The result of a load is not alloca-derived (unless an alloca has
144 // otherwise escaped, but this is a local analysis).
145 continue;
146 }
147 case Instruction::Store: {
148 if (U->getOperandNo() == 0)
149 EscapePoints.insert(I);
150 continue; // Stores have no users to analyze.
151 }
152 case Instruction::BitCast:
153 case Instruction::GetElementPtr:
154 case Instruction::PHI:
155 case Instruction::Select:
156 case Instruction::AddrSpaceCast:
157 break;
158 default:
159 EscapePoints.insert(I);
160 break;
161 }
162
163 AddUsesToWorklist(I);
164 }
165 }
166
callUsesLocalStack__anon9a737bdd0111::AllocaDerivedValueTracker167 void callUsesLocalStack(CallSite CS, bool IsNocapture) {
168 // Add it to the list of alloca users.
169 AllocaUsers.insert(CS.getInstruction());
170
171 // If it's nocapture then it can't capture this alloca.
172 if (IsNocapture)
173 return;
174
175 // If it can write to memory, it can leak the alloca value.
176 if (!CS.onlyReadsMemory())
177 EscapePoints.insert(CS.getInstruction());
178 }
179
180 SmallPtrSet<Instruction *, 32> AllocaUsers;
181 SmallPtrSet<Instruction *, 32> EscapePoints;
182 };
183 }
184
markTails(Function & F,bool & AllCallsAreTailCalls)185 static bool markTails(Function &F, bool &AllCallsAreTailCalls) {
186 if (F.callsFunctionThatReturnsTwice())
187 return false;
188 AllCallsAreTailCalls = true;
189
190 // The local stack holds all alloca instructions and all byval arguments.
191 AllocaDerivedValueTracker Tracker;
192 for (Argument &Arg : F.args()) {
193 if (Arg.hasByValAttr())
194 Tracker.walk(&Arg);
195 }
196 for (auto &BB : F) {
197 for (auto &I : BB)
198 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
199 Tracker.walk(AI);
200 }
201
202 bool Modified = false;
203
204 // Track whether a block is reachable after an alloca has escaped. Blocks that
205 // contain the escaping instruction will be marked as being visited without an
206 // escaped alloca, since that is how the block began.
207 enum VisitType {
208 UNVISITED,
209 UNESCAPED,
210 ESCAPED
211 };
212 DenseMap<BasicBlock *, VisitType> Visited;
213
214 // We propagate the fact that an alloca has escaped from block to successor.
215 // Visit the blocks that are propagating the escapedness first. To do this, we
216 // maintain two worklists.
217 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
218
219 // We may enter a block and visit it thinking that no alloca has escaped yet,
220 // then see an escape point and go back around a loop edge and come back to
221 // the same block twice. Because of this, we defer setting tail on calls when
222 // we first encounter them in a block. Every entry in this list does not
223 // statically use an alloca via use-def chain analysis, but may find an alloca
224 // through other means if the block turns out to be reachable after an escape
225 // point.
226 SmallVector<CallInst *, 32> DeferredTails;
227
228 BasicBlock *BB = &F.getEntryBlock();
229 VisitType Escaped = UNESCAPED;
230 do {
231 for (auto &I : *BB) {
232 if (Tracker.EscapePoints.count(&I))
233 Escaped = ESCAPED;
234
235 CallInst *CI = dyn_cast<CallInst>(&I);
236 if (!CI || CI->isTailCall())
237 continue;
238
239 bool IsNoTail = CI->isNoTailCall();
240
241 if (!IsNoTail && CI->doesNotAccessMemory()) {
242 // A call to a readnone function whose arguments are all things computed
243 // outside this function can be marked tail. Even if you stored the
244 // alloca address into a global, a readnone function can't load the
245 // global anyhow.
246 //
247 // Note that this runs whether we know an alloca has escaped or not. If
248 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
249 bool SafeToTail = true;
250 for (auto &Arg : CI->arg_operands()) {
251 if (isa<Constant>(Arg.getUser()))
252 continue;
253 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
254 if (!A->hasByValAttr())
255 continue;
256 SafeToTail = false;
257 break;
258 }
259 if (SafeToTail) {
260 emitOptimizationRemark(
261 F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
262 "marked this readnone call a tail call candidate");
263 CI->setTailCall();
264 Modified = true;
265 continue;
266 }
267 }
268
269 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
270 DeferredTails.push_back(CI);
271 } else {
272 AllCallsAreTailCalls = false;
273 }
274 }
275
276 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
277 auto &State = Visited[SuccBB];
278 if (State < Escaped) {
279 State = Escaped;
280 if (State == ESCAPED)
281 WorklistEscaped.push_back(SuccBB);
282 else
283 WorklistUnescaped.push_back(SuccBB);
284 }
285 }
286
287 if (!WorklistEscaped.empty()) {
288 BB = WorklistEscaped.pop_back_val();
289 Escaped = ESCAPED;
290 } else {
291 BB = nullptr;
292 while (!WorklistUnescaped.empty()) {
293 auto *NextBB = WorklistUnescaped.pop_back_val();
294 if (Visited[NextBB] == UNESCAPED) {
295 BB = NextBB;
296 Escaped = UNESCAPED;
297 break;
298 }
299 }
300 }
301 } while (BB);
302
303 for (CallInst *CI : DeferredTails) {
304 if (Visited[CI->getParent()] != ESCAPED) {
305 // If the escape point was part way through the block, calls after the
306 // escape point wouldn't have been put into DeferredTails.
307 emitOptimizationRemark(F.getContext(), "tailcallelim", F,
308 CI->getDebugLoc(),
309 "marked this call a tail call candidate");
310 CI->setTailCall();
311 Modified = true;
312 } else {
313 AllCallsAreTailCalls = false;
314 }
315 }
316
317 return Modified;
318 }
319
320 /// Return true if it is safe to move the specified
321 /// instruction from after the call to before the call, assuming that all
322 /// instructions between the call and this instruction are movable.
323 ///
canMoveAboveCall(Instruction * I,CallInst * CI)324 static bool canMoveAboveCall(Instruction *I, CallInst *CI) {
325 // FIXME: We can move load/store/call/free instructions above the call if the
326 // call does not mod/ref the memory location being processed.
327 if (I->mayHaveSideEffects()) // This also handles volatile loads.
328 return false;
329
330 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
331 // Loads may always be moved above calls without side effects.
332 if (CI->mayHaveSideEffects()) {
333 // Non-volatile loads may be moved above a call with side effects if it
334 // does not write to memory and the load provably won't trap.
335 // FIXME: Writes to memory only matter if they may alias the pointer
336 // being loaded from.
337 const DataLayout &DL = L->getModule()->getDataLayout();
338 if (CI->mayWriteToMemory() ||
339 !isSafeToLoadUnconditionally(L->getPointerOperand(),
340 L->getAlignment(), DL, L))
341 return false;
342 }
343 }
344
345 // Otherwise, if this is a side-effect free instruction, check to make sure
346 // that it does not use the return value of the call. If it doesn't use the
347 // return value of the call, it must only use things that are defined before
348 // the call, or movable instructions between the call and the instruction
349 // itself.
350 return std::find(I->op_begin(), I->op_end(), CI) == I->op_end();
351 }
352
353 /// Return true if the specified value is the same when the return would exit
354 /// as it was when the initial iteration of the recursive function was executed.
355 ///
356 /// We currently handle static constants and arguments that are not modified as
357 /// part of the recursion.
isDynamicConstant(Value * V,CallInst * CI,ReturnInst * RI)358 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
359 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
360
361 // Check to see if this is an immutable argument, if so, the value
362 // will be available to initialize the accumulator.
363 if (Argument *Arg = dyn_cast<Argument>(V)) {
364 // Figure out which argument number this is...
365 unsigned ArgNo = 0;
366 Function *F = CI->getParent()->getParent();
367 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
368 ++ArgNo;
369
370 // If we are passing this argument into call as the corresponding
371 // argument operand, then the argument is dynamically constant.
372 // Otherwise, we cannot transform this function safely.
373 if (CI->getArgOperand(ArgNo) == Arg)
374 return true;
375 }
376
377 // Switch cases are always constant integers. If the value is being switched
378 // on and the return is only reachable from one of its cases, it's
379 // effectively constant.
380 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
381 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
382 if (SI->getCondition() == V)
383 return SI->getDefaultDest() != RI->getParent();
384
385 // Not a constant or immutable argument, we can't safely transform.
386 return false;
387 }
388
389 /// Check to see if the function containing the specified tail call consistently
390 /// returns the same runtime-constant value at all exit points except for
391 /// IgnoreRI. If so, return the returned value.
getCommonReturnValue(ReturnInst * IgnoreRI,CallInst * CI)392 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
393 Function *F = CI->getParent()->getParent();
394 Value *ReturnedValue = nullptr;
395
396 for (BasicBlock &BBI : *F) {
397 ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
398 if (RI == nullptr || RI == IgnoreRI) continue;
399
400 // We can only perform this transformation if the value returned is
401 // evaluatable at the start of the initial invocation of the function,
402 // instead of at the end of the evaluation.
403 //
404 Value *RetOp = RI->getOperand(0);
405 if (!isDynamicConstant(RetOp, CI, RI))
406 return nullptr;
407
408 if (ReturnedValue && RetOp != ReturnedValue)
409 return nullptr; // Cannot transform if differing values are returned.
410 ReturnedValue = RetOp;
411 }
412 return ReturnedValue;
413 }
414
415 /// If the specified instruction can be transformed using accumulator recursion
416 /// elimination, return the constant which is the start of the accumulator
417 /// value. Otherwise return null.
canTransformAccumulatorRecursion(Instruction * I,CallInst * CI)418 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
419 if (!I->isAssociative() || !I->isCommutative()) return nullptr;
420 assert(I->getNumOperands() == 2 &&
421 "Associative/commutative operations should have 2 args!");
422
423 // Exactly one operand should be the result of the call instruction.
424 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
425 (I->getOperand(0) != CI && I->getOperand(1) != CI))
426 return nullptr;
427
428 // The only user of this instruction we allow is a single return instruction.
429 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
430 return nullptr;
431
432 // Ok, now we have to check all of the other return instructions in this
433 // function. If they return non-constants or differing values, then we cannot
434 // transform the function safely.
435 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
436 }
437
firstNonDbg(BasicBlock::iterator I)438 static Instruction *firstNonDbg(BasicBlock::iterator I) {
439 while (isa<DbgInfoIntrinsic>(I))
440 ++I;
441 return &*I;
442 }
443
findTRECandidate(Instruction * TI,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI)444 static CallInst *findTRECandidate(Instruction *TI,
445 bool CannotTailCallElimCallsMarkedTail,
446 const TargetTransformInfo *TTI) {
447 BasicBlock *BB = TI->getParent();
448 Function *F = BB->getParent();
449
450 if (&BB->front() == TI) // Make sure there is something before the terminator.
451 return nullptr;
452
453 // Scan backwards from the return, checking to see if there is a tail call in
454 // this block. If so, set CI to it.
455 CallInst *CI = nullptr;
456 BasicBlock::iterator BBI(TI);
457 while (true) {
458 CI = dyn_cast<CallInst>(BBI);
459 if (CI && CI->getCalledFunction() == F)
460 break;
461
462 if (BBI == BB->begin())
463 return nullptr; // Didn't find a potential tail call.
464 --BBI;
465 }
466
467 // If this call is marked as a tail call, and if there are dynamic allocas in
468 // the function, we cannot perform this optimization.
469 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
470 return nullptr;
471
472 // As a special case, detect code like this:
473 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
474 // and disable this xform in this case, because the code generator will
475 // lower the call to fabs into inline code.
476 if (BB == &F->getEntryBlock() &&
477 firstNonDbg(BB->front().getIterator()) == CI &&
478 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
479 !TTI->isLoweredToCall(CI->getCalledFunction())) {
480 // A single-block function with just a call and a return. Check that
481 // the arguments match.
482 CallSite::arg_iterator I = CallSite(CI).arg_begin(),
483 E = CallSite(CI).arg_end();
484 Function::arg_iterator FI = F->arg_begin(),
485 FE = F->arg_end();
486 for (; I != E && FI != FE; ++I, ++FI)
487 if (*I != &*FI) break;
488 if (I == E && FI == FE)
489 return nullptr;
490 }
491
492 return CI;
493 }
494
eliminateRecursiveTailCall(CallInst * CI,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail)495 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
496 BasicBlock *&OldEntry,
497 bool &TailCallsAreMarkedTail,
498 SmallVectorImpl<PHINode *> &ArgumentPHIs,
499 bool CannotTailCallElimCallsMarkedTail) {
500 // If we are introducing accumulator recursion to eliminate operations after
501 // the call instruction that are both associative and commutative, the initial
502 // value for the accumulator is placed in this variable. If this value is set
503 // then we actually perform accumulator recursion elimination instead of
504 // simple tail recursion elimination. If the operation is an LLVM instruction
505 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
506 // we are handling the case when the return instruction returns a constant C
507 // which is different to the constant returned by other return instructions
508 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
509 // special case of accumulator recursion, the operation being "return C".
510 Value *AccumulatorRecursionEliminationInitVal = nullptr;
511 Instruction *AccumulatorRecursionInstr = nullptr;
512
513 // Ok, we found a potential tail call. We can currently only transform the
514 // tail call if all of the instructions between the call and the return are
515 // movable to above the call itself, leaving the call next to the return.
516 // Check that this is the case now.
517 BasicBlock::iterator BBI(CI);
518 for (++BBI; &*BBI != Ret; ++BBI) {
519 if (canMoveAboveCall(&*BBI, CI)) continue;
520
521 // If we can't move the instruction above the call, it might be because it
522 // is an associative and commutative operation that could be transformed
523 // using accumulator recursion elimination. Check to see if this is the
524 // case, and if so, remember the initial accumulator value for later.
525 if ((AccumulatorRecursionEliminationInitVal =
526 canTransformAccumulatorRecursion(&*BBI, CI))) {
527 // Yes, this is accumulator recursion. Remember which instruction
528 // accumulates.
529 AccumulatorRecursionInstr = &*BBI;
530 } else {
531 return false; // Otherwise, we cannot eliminate the tail recursion!
532 }
533 }
534
535 // We can only transform call/return pairs that either ignore the return value
536 // of the call and return void, ignore the value of the call and return a
537 // constant, return the value returned by the tail call, or that are being
538 // accumulator recursion variable eliminated.
539 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
540 !isa<UndefValue>(Ret->getReturnValue()) &&
541 AccumulatorRecursionEliminationInitVal == nullptr &&
542 !getCommonReturnValue(nullptr, CI)) {
543 // One case remains that we are able to handle: the current return
544 // instruction returns a constant, and all other return instructions
545 // return a different constant.
546 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
547 return false; // Current return instruction does not return a constant.
548 // Check that all other return instructions return a common constant. If
549 // so, record it in AccumulatorRecursionEliminationInitVal.
550 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
551 if (!AccumulatorRecursionEliminationInitVal)
552 return false;
553 }
554
555 BasicBlock *BB = Ret->getParent();
556 Function *F = BB->getParent();
557
558 emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
559 "transforming tail recursion to loop");
560
561 // OK! We can transform this tail call. If this is the first one found,
562 // create the new entry block, allowing us to branch back to the old entry.
563 if (!OldEntry) {
564 OldEntry = &F->getEntryBlock();
565 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
566 NewEntry->takeName(OldEntry);
567 OldEntry->setName("tailrecurse");
568 BranchInst::Create(OldEntry, NewEntry);
569
570 // If this tail call is marked 'tail' and if there are any allocas in the
571 // entry block, move them up to the new entry block.
572 TailCallsAreMarkedTail = CI->isTailCall();
573 if (TailCallsAreMarkedTail)
574 // Move all fixed sized allocas from OldEntry to NewEntry.
575 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
576 NEBI = NewEntry->begin(); OEBI != E; )
577 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
578 if (isa<ConstantInt>(AI->getArraySize()))
579 AI->moveBefore(&*NEBI);
580
581 // Now that we have created a new block, which jumps to the entry
582 // block, insert a PHI node for each argument of the function.
583 // For now, we initialize each PHI to only have the real arguments
584 // which are passed in.
585 Instruction *InsertPos = &OldEntry->front();
586 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
587 I != E; ++I) {
588 PHINode *PN = PHINode::Create(I->getType(), 2,
589 I->getName() + ".tr", InsertPos);
590 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
591 PN->addIncoming(&*I, NewEntry);
592 ArgumentPHIs.push_back(PN);
593 }
594 }
595
596 // If this function has self recursive calls in the tail position where some
597 // are marked tail and some are not, only transform one flavor or another. We
598 // have to choose whether we move allocas in the entry block to the new entry
599 // block or not, so we can't make a good choice for both. NOTE: We could do
600 // slightly better here in the case that the function has no entry block
601 // allocas.
602 if (TailCallsAreMarkedTail && !CI->isTailCall())
603 return false;
604
605 // Ok, now that we know we have a pseudo-entry block WITH all of the
606 // required PHI nodes, add entries into the PHI node for the actual
607 // parameters passed into the tail-recursive call.
608 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
609 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
610
611 // If we are introducing an accumulator variable to eliminate the recursion,
612 // do so now. Note that we _know_ that no subsequent tail recursion
613 // eliminations will happen on this function because of the way the
614 // accumulator recursion predicate is set up.
615 //
616 if (AccumulatorRecursionEliminationInitVal) {
617 Instruction *AccRecInstr = AccumulatorRecursionInstr;
618 // Start by inserting a new PHI node for the accumulator.
619 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
620 PHINode *AccPN = PHINode::Create(
621 AccumulatorRecursionEliminationInitVal->getType(),
622 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
623
624 // Loop over all of the predecessors of the tail recursion block. For the
625 // real entry into the function we seed the PHI with the initial value,
626 // computed earlier. For any other existing branches to this block (due to
627 // other tail recursions eliminated) the accumulator is not modified.
628 // Because we haven't added the branch in the current block to OldEntry yet,
629 // it will not show up as a predecessor.
630 for (pred_iterator PI = PB; PI != PE; ++PI) {
631 BasicBlock *P = *PI;
632 if (P == &F->getEntryBlock())
633 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
634 else
635 AccPN->addIncoming(AccPN, P);
636 }
637
638 if (AccRecInstr) {
639 // Add an incoming argument for the current block, which is computed by
640 // our associative and commutative accumulator instruction.
641 AccPN->addIncoming(AccRecInstr, BB);
642
643 // Next, rewrite the accumulator recursion instruction so that it does not
644 // use the result of the call anymore, instead, use the PHI node we just
645 // inserted.
646 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
647 } else {
648 // Add an incoming argument for the current block, which is just the
649 // constant returned by the current return instruction.
650 AccPN->addIncoming(Ret->getReturnValue(), BB);
651 }
652
653 // Finally, rewrite any return instructions in the program to return the PHI
654 // node instead of the "initval" that they do currently. This loop will
655 // actually rewrite the return value we are destroying, but that's ok.
656 for (BasicBlock &BBI : *F)
657 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
658 RI->setOperand(0, AccPN);
659 ++NumAccumAdded;
660 }
661
662 // Now that all of the PHI nodes are in place, remove the call and
663 // ret instructions, replacing them with an unconditional branch.
664 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
665 NewBI->setDebugLoc(CI->getDebugLoc());
666
667 BB->getInstList().erase(Ret); // Remove return.
668 BB->getInstList().erase(CI); // Remove call.
669 ++NumEliminated;
670 return true;
671 }
672
foldReturnAndProcessPred(BasicBlock * BB,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI)673 static bool foldReturnAndProcessPred(BasicBlock *BB, ReturnInst *Ret,
674 BasicBlock *&OldEntry,
675 bool &TailCallsAreMarkedTail,
676 SmallVectorImpl<PHINode *> &ArgumentPHIs,
677 bool CannotTailCallElimCallsMarkedTail,
678 const TargetTransformInfo *TTI) {
679 bool Change = false;
680
681 // If the return block contains nothing but the return and PHI's,
682 // there might be an opportunity to duplicate the return in its
683 // predecessors and perform TRC there. Look for predecessors that end
684 // in unconditional branch and recursive call(s).
685 SmallVector<BranchInst*, 8> UncondBranchPreds;
686 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
687 BasicBlock *Pred = *PI;
688 TerminatorInst *PTI = Pred->getTerminator();
689 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
690 if (BI->isUnconditional())
691 UncondBranchPreds.push_back(BI);
692 }
693
694 while (!UncondBranchPreds.empty()) {
695 BranchInst *BI = UncondBranchPreds.pop_back_val();
696 BasicBlock *Pred = BI->getParent();
697 if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
698 DEBUG(dbgs() << "FOLDING: " << *BB
699 << "INTO UNCOND BRANCH PRED: " << *Pred);
700 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
701
702 // Cleanup: if all predecessors of BB have been eliminated by
703 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
704 // because the ret instruction in there is still using a value which
705 // eliminateRecursiveTailCall will attempt to remove.
706 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
707 BB->eraseFromParent();
708
709 eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
710 ArgumentPHIs,
711 CannotTailCallElimCallsMarkedTail);
712 ++NumRetDuped;
713 Change = true;
714 }
715 }
716
717 return Change;
718 }
719
processReturningBlock(ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI)720 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
721 bool &TailCallsAreMarkedTail,
722 SmallVectorImpl<PHINode *> &ArgumentPHIs,
723 bool CannotTailCallElimCallsMarkedTail,
724 const TargetTransformInfo *TTI) {
725 CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
726 if (!CI)
727 return false;
728
729 return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
730 ArgumentPHIs,
731 CannotTailCallElimCallsMarkedTail);
732 }
733
eliminateTailRecursion(Function & F,const TargetTransformInfo * TTI)734 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI) {
735 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
736 return false;
737
738 bool MadeChange = false;
739 bool AllCallsAreTailCalls = false;
740 MadeChange |= markTails(F, AllCallsAreTailCalls);
741 if (!AllCallsAreTailCalls)
742 return MadeChange;
743
744 // If this function is a varargs function, we won't be able to PHI the args
745 // right, so don't even try to convert it...
746 if (F.getFunctionType()->isVarArg())
747 return false;
748
749 BasicBlock *OldEntry = nullptr;
750 bool TailCallsAreMarkedTail = false;
751 SmallVector<PHINode*, 8> ArgumentPHIs;
752
753 // If false, we cannot perform TRE on tail calls marked with the 'tail'
754 // attribute, because doing so would cause the stack size to increase (real
755 // TRE would deallocate variable sized allocas, TRE doesn't).
756 bool CanTRETailMarkedCall = canTRE(F);
757
758 // Change any tail recursive calls to loops.
759 //
760 // FIXME: The code generator produces really bad code when an 'escaping
761 // alloca' is changed from being a static alloca to being a dynamic alloca.
762 // Until this is resolved, disable this transformation if that would ever
763 // happen. This bug is PR962.
764 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
765 BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
766 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
767 bool Change =
768 processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
769 ArgumentPHIs, !CanTRETailMarkedCall, TTI);
770 if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
771 Change =
772 foldReturnAndProcessPred(BB, Ret, OldEntry, TailCallsAreMarkedTail,
773 ArgumentPHIs, !CanTRETailMarkedCall, TTI);
774 MadeChange |= Change;
775 }
776 }
777
778 // If we eliminated any tail recursions, it's possible that we inserted some
779 // silly PHI nodes which just merge an initial value (the incoming operand)
780 // with themselves. Check to see if we did and clean up our mess if so. This
781 // occurs when a function passes an argument straight through to its tail
782 // call.
783 for (PHINode *PN : ArgumentPHIs) {
784 // If the PHI Node is a dynamic constant, replace it with the value it is.
785 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
786 PN->replaceAllUsesWith(PNV);
787 PN->eraseFromParent();
788 }
789 }
790
791 return MadeChange;
792 }
793
794 namespace {
795 struct TailCallElim : public FunctionPass {
796 static char ID; // Pass identification, replacement for typeid
TailCallElim__anon9a737bdd0311::TailCallElim797 TailCallElim() : FunctionPass(ID) {
798 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
799 }
800
getAnalysisUsage__anon9a737bdd0311::TailCallElim801 void getAnalysisUsage(AnalysisUsage &AU) const override {
802 AU.addRequired<TargetTransformInfoWrapperPass>();
803 AU.addPreserved<GlobalsAAWrapperPass>();
804 }
805
runOnFunction__anon9a737bdd0311::TailCallElim806 bool runOnFunction(Function &F) override {
807 if (skipFunction(F))
808 return false;
809
810 return eliminateTailRecursion(
811 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F));
812 }
813 };
814 }
815
816 char TailCallElim::ID = 0;
817 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
818 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)819 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
820 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
821 false, false)
822
823 // Public interface to the TailCallElimination pass
824 FunctionPass *llvm::createTailCallEliminationPass() {
825 return new TailCallElim();
826 }
827
run(Function & F,FunctionAnalysisManager & AM)828 PreservedAnalyses TailCallElimPass::run(Function &F,
829 FunctionAnalysisManager &AM) {
830
831 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
832
833 bool Changed = eliminateTailRecursion(F, &TTI);
834
835 if (!Changed)
836 return PreservedAnalyses::all();
837 PreservedAnalyses PA;
838 PA.preserve<GlobalsAA>();
839 return PA;
840 }
841