• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/RegionInfo.h"
22 #include "llvm/Analysis/RegionIterator.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include <algorithm>
38 #include <set>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "code-extractor"
42 
43 // Provide a command-line option to aggregate function arguments into a struct
44 // for functions produced by the code extractor. This is useful when converting
45 // extracted functions to pthread-based code, as only one argument (void*) can
46 // be passed in to pthread_create().
47 static cl::opt<bool>
48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
49                  cl::desc("Aggregate arguments to code-extracted functions"));
50 
51 /// \brief Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB)52 static bool isBlockValidForExtraction(const BasicBlock &BB) {
53   // Landing pads must be in the function where they were inserted for cleanup.
54   if (BB.isEHPad())
55     return false;
56 
57   // Don't hoist code containing allocas, invokes, or vastarts.
58   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
59     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
60       return false;
61     if (const CallInst *CI = dyn_cast<CallInst>(I))
62       if (const Function *F = CI->getCalledFunction())
63         if (F->getIntrinsicID() == Intrinsic::vastart)
64           return false;
65   }
66 
67   return true;
68 }
69 
70 /// \brief Build a set of blocks to extract if the input blocks are viable.
71 template <typename IteratorT>
buildExtractionBlockSet(IteratorT BBBegin,IteratorT BBEnd)72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
73                                                        IteratorT BBEnd) {
74   SetVector<BasicBlock *> Result;
75 
76   assert(BBBegin != BBEnd);
77 
78   // Loop over the blocks, adding them to our set-vector, and aborting with an
79   // empty set if we encounter invalid blocks.
80   do {
81     if (!Result.insert(*BBBegin))
82       llvm_unreachable("Repeated basic blocks in extraction input");
83 
84     if (!isBlockValidForExtraction(**BBBegin)) {
85       Result.clear();
86       return Result;
87     }
88   } while (++BBBegin != BBEnd);
89 
90 #ifndef NDEBUG
91   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
92                                          E = Result.end();
93        I != E; ++I)
94     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
95          PI != PE; ++PI)
96       assert(Result.count(*PI) &&
97              "No blocks in this region may have entries from outside the region"
98              " except for the first block!");
99 #endif
100 
101   return Result;
102 }
103 
104 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
105 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs)106 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
107   return buildExtractionBlockSet(BBs.begin(), BBs.end());
108 }
109 
110 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
111 static SetVector<BasicBlock *>
buildExtractionBlockSet(const RegionNode & RN)112 buildExtractionBlockSet(const RegionNode &RN) {
113   if (!RN.isSubRegion())
114     // Just a single BasicBlock.
115     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
116 
117   const Region &R = *RN.getNodeAs<Region>();
118 
119   return buildExtractionBlockSet(R.block_begin(), R.block_end());
120 }
121 
CodeExtractor(BasicBlock * BB,bool AggregateArgs)122 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
123   : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
124     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
125 
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs)126 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
127                              bool AggregateArgs)
128   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
129     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
130 
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs)131 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
132   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
133     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
134 
CodeExtractor(DominatorTree & DT,const RegionNode & RN,bool AggregateArgs)135 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
136                              bool AggregateArgs)
137   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
138     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
139 
140 /// definedInRegion - Return true if the specified value is defined in the
141 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)142 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
143   if (Instruction *I = dyn_cast<Instruction>(V))
144     if (Blocks.count(I->getParent()))
145       return true;
146   return false;
147 }
148 
149 /// definedInCaller - Return true if the specified value is defined in the
150 /// function being code extracted, but not in the region being extracted.
151 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)152 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
153   if (isa<Argument>(V)) return true;
154   if (Instruction *I = dyn_cast<Instruction>(V))
155     if (!Blocks.count(I->getParent()))
156       return true;
157   return false;
158 }
159 
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs) const160 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
161                                       ValueSet &Outputs) const {
162   for (BasicBlock *BB : Blocks) {
163     // If a used value is defined outside the region, it's an input.  If an
164     // instruction is used outside the region, it's an output.
165     for (Instruction &II : *BB) {
166       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
167            ++OI)
168         if (definedInCaller(Blocks, *OI))
169           Inputs.insert(*OI);
170 
171       for (User *U : II.users())
172         if (!definedInRegion(Blocks, U)) {
173           Outputs.insert(&II);
174           break;
175         }
176     }
177   }
178 }
179 
180 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
181 /// region, we need to split the entry block of the region so that the PHI node
182 /// is easier to deal with.
severSplitPHINodes(BasicBlock * & Header)183 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
184   unsigned NumPredsFromRegion = 0;
185   unsigned NumPredsOutsideRegion = 0;
186 
187   if (Header != &Header->getParent()->getEntryBlock()) {
188     PHINode *PN = dyn_cast<PHINode>(Header->begin());
189     if (!PN) return;  // No PHI nodes.
190 
191     // If the header node contains any PHI nodes, check to see if there is more
192     // than one entry from outside the region.  If so, we need to sever the
193     // header block into two.
194     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
195       if (Blocks.count(PN->getIncomingBlock(i)))
196         ++NumPredsFromRegion;
197       else
198         ++NumPredsOutsideRegion;
199 
200     // If there is one (or fewer) predecessor from outside the region, we don't
201     // need to do anything special.
202     if (NumPredsOutsideRegion <= 1) return;
203   }
204 
205   // Otherwise, we need to split the header block into two pieces: one
206   // containing PHI nodes merging values from outside of the region, and a
207   // second that contains all of the code for the block and merges back any
208   // incoming values from inside of the region.
209   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
210   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
211                                               Header->getName()+".ce");
212 
213   // We only want to code extract the second block now, and it becomes the new
214   // header of the region.
215   BasicBlock *OldPred = Header;
216   Blocks.remove(OldPred);
217   Blocks.insert(NewBB);
218   Header = NewBB;
219 
220   // Okay, update dominator sets. The blocks that dominate the new one are the
221   // blocks that dominate TIBB plus the new block itself.
222   if (DT)
223     DT->splitBlock(NewBB);
224 
225   // Okay, now we need to adjust the PHI nodes and any branches from within the
226   // region to go to the new header block instead of the old header block.
227   if (NumPredsFromRegion) {
228     PHINode *PN = cast<PHINode>(OldPred->begin());
229     // Loop over all of the predecessors of OldPred that are in the region,
230     // changing them to branch to NewBB instead.
231     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
232       if (Blocks.count(PN->getIncomingBlock(i))) {
233         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
234         TI->replaceUsesOfWith(OldPred, NewBB);
235       }
236 
237     // Okay, everything within the region is now branching to the right block, we
238     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
239     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
240       PHINode *PN = cast<PHINode>(AfterPHIs);
241       // Create a new PHI node in the new region, which has an incoming value
242       // from OldPred of PN.
243       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
244                                        PN->getName() + ".ce", &NewBB->front());
245       NewPN->addIncoming(PN, OldPred);
246 
247       // Loop over all of the incoming value in PN, moving them to NewPN if they
248       // are from the extracted region.
249       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
250         if (Blocks.count(PN->getIncomingBlock(i))) {
251           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
252           PN->removeIncomingValue(i);
253           --i;
254         }
255       }
256     }
257   }
258 }
259 
splitReturnBlocks()260 void CodeExtractor::splitReturnBlocks() {
261   for (BasicBlock *Block : Blocks)
262     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
263       BasicBlock *New =
264           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
265       if (DT) {
266         // Old dominates New. New node dominates all other nodes dominated
267         // by Old.
268         DomTreeNode *OldNode = DT->getNode(Block);
269         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
270                                                OldNode->end());
271 
272         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
273 
274         for (DomTreeNode *I : Children)
275           DT->changeImmediateDominator(I, NewNode);
276       }
277     }
278 }
279 
280 /// constructFunction - make a function based on inputs and outputs, as follows:
281 /// f(in0, ..., inN, out0, ..., outN)
282 ///
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)283 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
284                                            const ValueSet &outputs,
285                                            BasicBlock *header,
286                                            BasicBlock *newRootNode,
287                                            BasicBlock *newHeader,
288                                            Function *oldFunction,
289                                            Module *M) {
290   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
291   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
292 
293   // This function returns unsigned, outputs will go back by reference.
294   switch (NumExitBlocks) {
295   case 0:
296   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
297   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
298   default: RetTy = Type::getInt16Ty(header->getContext()); break;
299   }
300 
301   std::vector<Type*> paramTy;
302 
303   // Add the types of the input values to the function's argument list
304   for (Value *value : inputs) {
305     DEBUG(dbgs() << "value used in func: " << *value << "\n");
306     paramTy.push_back(value->getType());
307   }
308 
309   // Add the types of the output values to the function's argument list.
310   for (Value *output : outputs) {
311     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
312     if (AggregateArgs)
313       paramTy.push_back(output->getType());
314     else
315       paramTy.push_back(PointerType::getUnqual(output->getType()));
316   }
317 
318   DEBUG({
319     dbgs() << "Function type: " << *RetTy << " f(";
320     for (Type *i : paramTy)
321       dbgs() << *i << ", ";
322     dbgs() << ")\n";
323   });
324 
325   StructType *StructTy;
326   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
327     StructTy = StructType::get(M->getContext(), paramTy);
328     paramTy.clear();
329     paramTy.push_back(PointerType::getUnqual(StructTy));
330   }
331   FunctionType *funcType =
332                   FunctionType::get(RetTy, paramTy, false);
333 
334   // Create the new function
335   Function *newFunction = Function::Create(funcType,
336                                            GlobalValue::InternalLinkage,
337                                            oldFunction->getName() + "_" +
338                                            header->getName(), M);
339   // If the old function is no-throw, so is the new one.
340   if (oldFunction->doesNotThrow())
341     newFunction->setDoesNotThrow();
342 
343   newFunction->getBasicBlockList().push_back(newRootNode);
344 
345   // Create an iterator to name all of the arguments we inserted.
346   Function::arg_iterator AI = newFunction->arg_begin();
347 
348   // Rewrite all users of the inputs in the extracted region to use the
349   // arguments (or appropriate addressing into struct) instead.
350   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
351     Value *RewriteVal;
352     if (AggregateArgs) {
353       Value *Idx[2];
354       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
355       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
356       TerminatorInst *TI = newFunction->begin()->getTerminator();
357       GetElementPtrInst *GEP = GetElementPtrInst::Create(
358           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
359       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
360     } else
361       RewriteVal = &*AI++;
362 
363     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
364     for (User *use : Users)
365       if (Instruction *inst = dyn_cast<Instruction>(use))
366         if (Blocks.count(inst->getParent()))
367           inst->replaceUsesOfWith(inputs[i], RewriteVal);
368   }
369 
370   // Set names for input and output arguments.
371   if (!AggregateArgs) {
372     AI = newFunction->arg_begin();
373     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
374       AI->setName(inputs[i]->getName());
375     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
376       AI->setName(outputs[i]->getName()+".out");
377   }
378 
379   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
380   // within the new function. This must be done before we lose track of which
381   // blocks were originally in the code region.
382   std::vector<User*> Users(header->user_begin(), header->user_end());
383   for (unsigned i = 0, e = Users.size(); i != e; ++i)
384     // The BasicBlock which contains the branch is not in the region
385     // modify the branch target to a new block
386     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
387       if (!Blocks.count(TI->getParent()) &&
388           TI->getParent()->getParent() == oldFunction)
389         TI->replaceUsesOfWith(header, newHeader);
390 
391   return newFunction;
392 }
393 
394 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
395 /// that uses the value within the basic block, and return the predecessor
396 /// block associated with that use, or return 0 if none is found.
FindPhiPredForUseInBlock(Value * Used,BasicBlock * BB)397 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
398   for (Use &U : Used->uses()) {
399      PHINode *P = dyn_cast<PHINode>(U.getUser());
400      if (P && P->getParent() == BB)
401        return P->getIncomingBlock(U);
402   }
403 
404   return nullptr;
405 }
406 
407 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
408 /// the call instruction, splitting any PHI nodes in the header block as
409 /// necessary.
410 void CodeExtractor::
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)411 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
412                            ValueSet &inputs, ValueSet &outputs) {
413   // Emit a call to the new function, passing in: *pointer to struct (if
414   // aggregating parameters), or plan inputs and allocated memory for outputs
415   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
416 
417   LLVMContext &Context = newFunction->getContext();
418 
419   // Add inputs as params, or to be filled into the struct
420   for (Value *input : inputs)
421     if (AggregateArgs)
422       StructValues.push_back(input);
423     else
424       params.push_back(input);
425 
426   // Create allocas for the outputs
427   for (Value *output : outputs) {
428     if (AggregateArgs) {
429       StructValues.push_back(output);
430     } else {
431       AllocaInst *alloca =
432           new AllocaInst(output->getType(), nullptr, output->getName() + ".loc",
433                          &codeReplacer->getParent()->front().front());
434       ReloadOutputs.push_back(alloca);
435       params.push_back(alloca);
436     }
437   }
438 
439   StructType *StructArgTy = nullptr;
440   AllocaInst *Struct = nullptr;
441   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
442     std::vector<Type*> ArgTypes;
443     for (ValueSet::iterator v = StructValues.begin(),
444            ve = StructValues.end(); v != ve; ++v)
445       ArgTypes.push_back((*v)->getType());
446 
447     // Allocate a struct at the beginning of this function
448     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
449     Struct = new AllocaInst(StructArgTy, nullptr, "structArg",
450                             &codeReplacer->getParent()->front().front());
451     params.push_back(Struct);
452 
453     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
454       Value *Idx[2];
455       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
456       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
457       GetElementPtrInst *GEP = GetElementPtrInst::Create(
458           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
459       codeReplacer->getInstList().push_back(GEP);
460       StoreInst *SI = new StoreInst(StructValues[i], GEP);
461       codeReplacer->getInstList().push_back(SI);
462     }
463   }
464 
465   // Emit the call to the function
466   CallInst *call = CallInst::Create(newFunction, params,
467                                     NumExitBlocks > 1 ? "targetBlock" : "");
468   codeReplacer->getInstList().push_back(call);
469 
470   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
471   unsigned FirstOut = inputs.size();
472   if (!AggregateArgs)
473     std::advance(OutputArgBegin, inputs.size());
474 
475   // Reload the outputs passed in by reference
476   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
477     Value *Output = nullptr;
478     if (AggregateArgs) {
479       Value *Idx[2];
480       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
481       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
482       GetElementPtrInst *GEP = GetElementPtrInst::Create(
483           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
484       codeReplacer->getInstList().push_back(GEP);
485       Output = GEP;
486     } else {
487       Output = ReloadOutputs[i];
488     }
489     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
490     Reloads.push_back(load);
491     codeReplacer->getInstList().push_back(load);
492     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
493     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
494       Instruction *inst = cast<Instruction>(Users[u]);
495       if (!Blocks.count(inst->getParent()))
496         inst->replaceUsesOfWith(outputs[i], load);
497     }
498   }
499 
500   // Now we can emit a switch statement using the call as a value.
501   SwitchInst *TheSwitch =
502       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
503                          codeReplacer, 0, codeReplacer);
504 
505   // Since there may be multiple exits from the original region, make the new
506   // function return an unsigned, switch on that number.  This loop iterates
507   // over all of the blocks in the extracted region, updating any terminator
508   // instructions in the to-be-extracted region that branch to blocks that are
509   // not in the region to be extracted.
510   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
511 
512   unsigned switchVal = 0;
513   for (BasicBlock *Block : Blocks) {
514     TerminatorInst *TI = Block->getTerminator();
515     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
516       if (!Blocks.count(TI->getSuccessor(i))) {
517         BasicBlock *OldTarget = TI->getSuccessor(i);
518         // add a new basic block which returns the appropriate value
519         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
520         if (!NewTarget) {
521           // If we don't already have an exit stub for this non-extracted
522           // destination, create one now!
523           NewTarget = BasicBlock::Create(Context,
524                                          OldTarget->getName() + ".exitStub",
525                                          newFunction);
526           unsigned SuccNum = switchVal++;
527 
528           Value *brVal = nullptr;
529           switch (NumExitBlocks) {
530           case 0:
531           case 1: break;  // No value needed.
532           case 2:         // Conditional branch, return a bool
533             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
534             break;
535           default:
536             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
537             break;
538           }
539 
540           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
541 
542           // Update the switch instruction.
543           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
544                                               SuccNum),
545                              OldTarget);
546 
547           // Restore values just before we exit
548           Function::arg_iterator OAI = OutputArgBegin;
549           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
550             // For an invoke, the normal destination is the only one that is
551             // dominated by the result of the invocation
552             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
553 
554             bool DominatesDef = true;
555 
556             BasicBlock *NormalDest = nullptr;
557             if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
558               NormalDest = Invoke->getNormalDest();
559 
560             if (NormalDest) {
561               DefBlock = NormalDest;
562 
563               // Make sure we are looking at the original successor block, not
564               // at a newly inserted exit block, which won't be in the dominator
565               // info.
566               for (const auto &I : ExitBlockMap)
567                 if (DefBlock == I.second) {
568                   DefBlock = I.first;
569                   break;
570                 }
571 
572               // In the extract block case, if the block we are extracting ends
573               // with an invoke instruction, make sure that we don't emit a
574               // store of the invoke value for the unwind block.
575               if (!DT && DefBlock != OldTarget)
576                 DominatesDef = false;
577             }
578 
579             if (DT) {
580               DominatesDef = DT->dominates(DefBlock, OldTarget);
581 
582               // If the output value is used by a phi in the target block,
583               // then we need to test for dominance of the phi's predecessor
584               // instead.  Unfortunately, this a little complicated since we
585               // have already rewritten uses of the value to uses of the reload.
586               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
587                                                           OldTarget);
588               if (pred && DT && DT->dominates(DefBlock, pred))
589                 DominatesDef = true;
590             }
591 
592             if (DominatesDef) {
593               if (AggregateArgs) {
594                 Value *Idx[2];
595                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
596                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
597                                           FirstOut+out);
598                 GetElementPtrInst *GEP = GetElementPtrInst::Create(
599                     StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
600                     NTRet);
601                 new StoreInst(outputs[out], GEP, NTRet);
602               } else {
603                 new StoreInst(outputs[out], &*OAI, NTRet);
604               }
605             }
606             // Advance output iterator even if we don't emit a store
607             if (!AggregateArgs) ++OAI;
608           }
609         }
610 
611         // rewrite the original branch instruction with this new target
612         TI->setSuccessor(i, NewTarget);
613       }
614   }
615 
616   // Now that we've done the deed, simplify the switch instruction.
617   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
618   switch (NumExitBlocks) {
619   case 0:
620     // There are no successors (the block containing the switch itself), which
621     // means that previously this was the last part of the function, and hence
622     // this should be rewritten as a `ret'
623 
624     // Check if the function should return a value
625     if (OldFnRetTy->isVoidTy()) {
626       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
627     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
628       // return what we have
629       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
630     } else {
631       // Otherwise we must have code extracted an unwind or something, just
632       // return whatever we want.
633       ReturnInst::Create(Context,
634                          Constant::getNullValue(OldFnRetTy), TheSwitch);
635     }
636 
637     TheSwitch->eraseFromParent();
638     break;
639   case 1:
640     // Only a single destination, change the switch into an unconditional
641     // branch.
642     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
643     TheSwitch->eraseFromParent();
644     break;
645   case 2:
646     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
647                        call, TheSwitch);
648     TheSwitch->eraseFromParent();
649     break;
650   default:
651     // Otherwise, make the default destination of the switch instruction be one
652     // of the other successors.
653     TheSwitch->setCondition(call);
654     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
655     // Remove redundant case
656     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
657     break;
658   }
659 }
660 
moveCodeToFunction(Function * newFunction)661 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
662   Function *oldFunc = (*Blocks.begin())->getParent();
663   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
664   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
665 
666   for (BasicBlock *Block : Blocks) {
667     // Delete the basic block from the old function, and the list of blocks
668     oldBlocks.remove(Block);
669 
670     // Insert this basic block into the new function
671     newBlocks.push_back(Block);
672   }
673 }
674 
extractCodeRegion()675 Function *CodeExtractor::extractCodeRegion() {
676   if (!isEligible())
677     return nullptr;
678 
679   ValueSet inputs, outputs;
680 
681   // Assumption: this is a single-entry code region, and the header is the first
682   // block in the region.
683   BasicBlock *header = *Blocks.begin();
684 
685   // If we have to split PHI nodes or the entry block, do so now.
686   severSplitPHINodes(header);
687 
688   // If we have any return instructions in the region, split those blocks so
689   // that the return is not in the region.
690   splitReturnBlocks();
691 
692   Function *oldFunction = header->getParent();
693 
694   // This takes place of the original loop
695   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
696                                                 "codeRepl", oldFunction,
697                                                 header);
698 
699   // The new function needs a root node because other nodes can branch to the
700   // head of the region, but the entry node of a function cannot have preds.
701   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
702                                                "newFuncRoot");
703   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
704 
705   // Find inputs to, outputs from the code region.
706   findInputsOutputs(inputs, outputs);
707 
708   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
709   for (BasicBlock *Block : Blocks)
710     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
711          ++SI)
712       if (!Blocks.count(*SI))
713         ExitBlocks.insert(*SI);
714   NumExitBlocks = ExitBlocks.size();
715 
716   // Construct new function based on inputs/outputs & add allocas for all defs.
717   Function *newFunction = constructFunction(inputs, outputs, header,
718                                             newFuncRoot,
719                                             codeReplacer, oldFunction,
720                                             oldFunction->getParent());
721 
722   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
723 
724   moveCodeToFunction(newFunction);
725 
726   // Loop over all of the PHI nodes in the header block, and change any
727   // references to the old incoming edge to be the new incoming edge.
728   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
729     PHINode *PN = cast<PHINode>(I);
730     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
731       if (!Blocks.count(PN->getIncomingBlock(i)))
732         PN->setIncomingBlock(i, newFuncRoot);
733   }
734 
735   // Look at all successors of the codeReplacer block.  If any of these blocks
736   // had PHI nodes in them, we need to update the "from" block to be the code
737   // replacer, not the original block in the extracted region.
738   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
739                                  succ_end(codeReplacer));
740   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
741     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
742       PHINode *PN = cast<PHINode>(I);
743       std::set<BasicBlock*> ProcessedPreds;
744       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
745         if (Blocks.count(PN->getIncomingBlock(i))) {
746           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
747             PN->setIncomingBlock(i, codeReplacer);
748           else {
749             // There were multiple entries in the PHI for this block, now there
750             // is only one, so remove the duplicated entries.
751             PN->removeIncomingValue(i, false);
752             --i; --e;
753           }
754         }
755     }
756 
757   //cerr << "NEW FUNCTION: " << *newFunction;
758   //  verifyFunction(*newFunction);
759 
760   //  cerr << "OLD FUNCTION: " << *oldFunction;
761   //  verifyFunction(*oldFunction);
762 
763   DEBUG(if (verifyFunction(*newFunction))
764         report_fatal_error("verifyFunction failed!"));
765   return newFunction;
766 }
767