1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Function evaluator for LLVM IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Evaluator.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/DiagnosticPrinter.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27
28 #define DEBUG_TYPE "evaluator"
29
30 using namespace llvm;
31
32 static inline bool
33 isSimpleEnoughValueToCommit(Constant *C,
34 SmallPtrSetImpl<Constant *> &SimpleConstants,
35 const DataLayout &DL);
36
37 /// Return true if the specified constant can be handled by the code generator.
38 /// We don't want to generate something like:
39 /// void *X = &X/42;
40 /// because the code generator doesn't have a relocation that can handle that.
41 ///
42 /// This function should be called if C was not found (but just got inserted)
43 /// in SimpleConstants to avoid having to rescan the same constants all the
44 /// time.
45 static bool
isSimpleEnoughValueToCommitHelper(Constant * C,SmallPtrSetImpl<Constant * > & SimpleConstants,const DataLayout & DL)46 isSimpleEnoughValueToCommitHelper(Constant *C,
47 SmallPtrSetImpl<Constant *> &SimpleConstants,
48 const DataLayout &DL) {
49 // Simple global addresses are supported, do not allow dllimport or
50 // thread-local globals.
51 if (auto *GV = dyn_cast<GlobalValue>(C))
52 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
53
54 // Simple integer, undef, constant aggregate zero, etc are all supported.
55 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
56 return true;
57
58 // Aggregate values are safe if all their elements are.
59 if (isa<ConstantAggregate>(C)) {
60 for (Value *Op : C->operands())
61 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
62 return false;
63 return true;
64 }
65
66 // We don't know exactly what relocations are allowed in constant expressions,
67 // so we allow &global+constantoffset, which is safe and uniformly supported
68 // across targets.
69 ConstantExpr *CE = cast<ConstantExpr>(C);
70 switch (CE->getOpcode()) {
71 case Instruction::BitCast:
72 // Bitcast is fine if the casted value is fine.
73 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
74
75 case Instruction::IntToPtr:
76 case Instruction::PtrToInt:
77 // int <=> ptr is fine if the int type is the same size as the
78 // pointer type.
79 if (DL.getTypeSizeInBits(CE->getType()) !=
80 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
81 return false;
82 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
83
84 // GEP is fine if it is simple + constant offset.
85 case Instruction::GetElementPtr:
86 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
87 if (!isa<ConstantInt>(CE->getOperand(i)))
88 return false;
89 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
90
91 case Instruction::Add:
92 // We allow simple+cst.
93 if (!isa<ConstantInt>(CE->getOperand(1)))
94 return false;
95 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
96 }
97 return false;
98 }
99
100 static inline bool
isSimpleEnoughValueToCommit(Constant * C,SmallPtrSetImpl<Constant * > & SimpleConstants,const DataLayout & DL)101 isSimpleEnoughValueToCommit(Constant *C,
102 SmallPtrSetImpl<Constant *> &SimpleConstants,
103 const DataLayout &DL) {
104 // If we already checked this constant, we win.
105 if (!SimpleConstants.insert(C).second)
106 return true;
107 // Check the constant.
108 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
109 }
110
111 /// Return true if this constant is simple enough for us to understand. In
112 /// particular, if it is a cast to anything other than from one pointer type to
113 /// another pointer type, we punt. We basically just support direct accesses to
114 /// globals and GEP's of globals. This should be kept up to date with
115 /// CommitValueTo.
isSimpleEnoughPointerToCommit(Constant * C)116 static bool isSimpleEnoughPointerToCommit(Constant *C) {
117 // Conservatively, avoid aggregate types. This is because we don't
118 // want to worry about them partially overlapping other stores.
119 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
120 return false;
121
122 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
123 // Do not allow weak/*_odr/linkonce linkage or external globals.
124 return GV->hasUniqueInitializer();
125
126 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
127 // Handle a constantexpr gep.
128 if (CE->getOpcode() == Instruction::GetElementPtr &&
129 isa<GlobalVariable>(CE->getOperand(0)) &&
130 cast<GEPOperator>(CE)->isInBounds()) {
131 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
132 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
133 // external globals.
134 if (!GV->hasUniqueInitializer())
135 return false;
136
137 // The first index must be zero.
138 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
139 if (!CI || !CI->isZero()) return false;
140
141 // The remaining indices must be compile-time known integers within the
142 // notional bounds of the corresponding static array types.
143 if (!CE->isGEPWithNoNotionalOverIndexing())
144 return false;
145
146 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
147
148 // A constantexpr bitcast from a pointer to another pointer is a no-op,
149 // and we know how to evaluate it by moving the bitcast from the pointer
150 // operand to the value operand.
151 } else if (CE->getOpcode() == Instruction::BitCast &&
152 isa<GlobalVariable>(CE->getOperand(0))) {
153 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
154 // external globals.
155 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
156 }
157 }
158
159 return false;
160 }
161
162 /// Return the value that would be computed by a load from P after the stores
163 /// reflected by 'memory' have been performed. If we can't decide, return null.
ComputeLoadResult(Constant * P)164 Constant *Evaluator::ComputeLoadResult(Constant *P) {
165 // If this memory location has been recently stored, use the stored value: it
166 // is the most up-to-date.
167 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
168 if (I != MutatedMemory.end()) return I->second;
169
170 // Access it.
171 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
172 if (GV->hasDefinitiveInitializer())
173 return GV->getInitializer();
174 return nullptr;
175 }
176
177 // Handle a constantexpr getelementptr.
178 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
179 if (CE->getOpcode() == Instruction::GetElementPtr &&
180 isa<GlobalVariable>(CE->getOperand(0))) {
181 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
182 if (GV->hasDefinitiveInitializer())
183 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
184 }
185
186 return nullptr; // don't know how to evaluate.
187 }
188
189 /// Evaluate all instructions in block BB, returning true if successful, false
190 /// if we can't evaluate it. NewBB returns the next BB that control flows into,
191 /// or null upon return.
EvaluateBlock(BasicBlock::iterator CurInst,BasicBlock * & NextBB)192 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
193 BasicBlock *&NextBB) {
194 // This is the main evaluation loop.
195 while (1) {
196 Constant *InstResult = nullptr;
197
198 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
199
200 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
201 if (!SI->isSimple()) {
202 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
203 return false; // no volatile/atomic accesses.
204 }
205 Constant *Ptr = getVal(SI->getOperand(1));
206 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
207 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
208 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
209 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
210 }
211 if (!isSimpleEnoughPointerToCommit(Ptr)) {
212 // If this is too complex for us to commit, reject it.
213 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
214 return false;
215 }
216
217 Constant *Val = getVal(SI->getOperand(0));
218
219 // If this might be too difficult for the backend to handle (e.g. the addr
220 // of one global variable divided by another) then we can't commit it.
221 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
222 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
223 << "\n");
224 return false;
225 }
226
227 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
228 if (CE->getOpcode() == Instruction::BitCast) {
229 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
230 // If we're evaluating a store through a bitcast, then we need
231 // to pull the bitcast off the pointer type and push it onto the
232 // stored value.
233 Ptr = CE->getOperand(0);
234
235 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
236
237 // In order to push the bitcast onto the stored value, a bitcast
238 // from NewTy to Val's type must be legal. If it's not, we can try
239 // introspecting NewTy to find a legal conversion.
240 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
241 // If NewTy is a struct, we can convert the pointer to the struct
242 // into a pointer to its first member.
243 // FIXME: This could be extended to support arrays as well.
244 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
245 NewTy = STy->getTypeAtIndex(0U);
246
247 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
248 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
249 Constant * const IdxList[] = {IdxZero, IdxZero};
250
251 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
252 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
253 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
254
255 // If we can't improve the situation by introspecting NewTy,
256 // we have to give up.
257 } else {
258 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
259 "evaluate.\n");
260 return false;
261 }
262 }
263
264 // If we found compatible types, go ahead and push the bitcast
265 // onto the stored value.
266 Val = ConstantExpr::getBitCast(Val, NewTy);
267
268 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
269 }
270 }
271
272 MutatedMemory[Ptr] = Val;
273 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
274 InstResult = ConstantExpr::get(BO->getOpcode(),
275 getVal(BO->getOperand(0)),
276 getVal(BO->getOperand(1)));
277 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
278 << "\n");
279 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
280 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
281 getVal(CI->getOperand(0)),
282 getVal(CI->getOperand(1)));
283 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
284 << "\n");
285 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
286 InstResult = ConstantExpr::getCast(CI->getOpcode(),
287 getVal(CI->getOperand(0)),
288 CI->getType());
289 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
290 << "\n");
291 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
292 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
293 getVal(SI->getOperand(1)),
294 getVal(SI->getOperand(2)));
295 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
296 << "\n");
297 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
298 InstResult = ConstantExpr::getExtractValue(
299 getVal(EVI->getAggregateOperand()), EVI->getIndices());
300 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
301 << "\n");
302 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
303 InstResult = ConstantExpr::getInsertValue(
304 getVal(IVI->getAggregateOperand()),
305 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
306 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
307 << "\n");
308 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
309 Constant *P = getVal(GEP->getOperand(0));
310 SmallVector<Constant*, 8> GEPOps;
311 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
312 i != e; ++i)
313 GEPOps.push_back(getVal(*i));
314 InstResult =
315 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
316 cast<GEPOperator>(GEP)->isInBounds());
317 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
318 << "\n");
319 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
320
321 if (!LI->isSimple()) {
322 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
323 return false; // no volatile/atomic accesses.
324 }
325
326 Constant *Ptr = getVal(LI->getOperand(0));
327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
328 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
329 DEBUG(dbgs() << "Found a constant pointer expression, constant "
330 "folding: " << *Ptr << "\n");
331 }
332 InstResult = ComputeLoadResult(Ptr);
333 if (!InstResult) {
334 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
335 "\n");
336 return false; // Could not evaluate load.
337 }
338
339 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
340 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
341 if (AI->isArrayAllocation()) {
342 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
343 return false; // Cannot handle array allocs.
344 }
345 Type *Ty = AI->getAllocatedType();
346 AllocaTmps.push_back(
347 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
348 UndefValue::get(Ty), AI->getName()));
349 InstResult = AllocaTmps.back().get();
350 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
351 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
352 CallSite CS(&*CurInst);
353
354 // Debug info can safely be ignored here.
355 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
356 DEBUG(dbgs() << "Ignoring debug info.\n");
357 ++CurInst;
358 continue;
359 }
360
361 // Cannot handle inline asm.
362 if (isa<InlineAsm>(CS.getCalledValue())) {
363 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
364 return false;
365 }
366
367 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
368 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
369 if (MSI->isVolatile()) {
370 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
371 "intrinsic.\n");
372 return false;
373 }
374 Constant *Ptr = getVal(MSI->getDest());
375 Constant *Val = getVal(MSI->getValue());
376 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
377 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
378 // This memset is a no-op.
379 DEBUG(dbgs() << "Ignoring no-op memset.\n");
380 ++CurInst;
381 continue;
382 }
383 }
384
385 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
386 II->getIntrinsicID() == Intrinsic::lifetime_end) {
387 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
388 ++CurInst;
389 continue;
390 }
391
392 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
393 // We don't insert an entry into Values, as it doesn't have a
394 // meaningful return value.
395 if (!II->use_empty()) {
396 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
397 return false;
398 }
399 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
400 Value *PtrArg = getVal(II->getArgOperand(1));
401 Value *Ptr = PtrArg->stripPointerCasts();
402 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
403 Type *ElemTy = GV->getValueType();
404 if (!Size->isAllOnesValue() &&
405 Size->getValue().getLimitedValue() >=
406 DL.getTypeStoreSize(ElemTy)) {
407 Invariants.insert(GV);
408 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
409 << "\n");
410 } else {
411 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
412 "invariant.\n");
413 }
414 }
415 // Continue even if we do nothing.
416 ++CurInst;
417 continue;
418 } else if (II->getIntrinsicID() == Intrinsic::assume) {
419 DEBUG(dbgs() << "Skipping assume intrinsic.\n");
420 ++CurInst;
421 continue;
422 }
423
424 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
425 return false;
426 }
427
428 // Resolve function pointers.
429 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
430 if (!Callee || Callee->isInterposable()) {
431 DEBUG(dbgs() << "Can not resolve function pointer.\n");
432 return false; // Cannot resolve.
433 }
434
435 SmallVector<Constant*, 8> Formals;
436 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
437 Formals.push_back(getVal(*i));
438
439 if (Callee->isDeclaration()) {
440 // If this is a function we can constant fold, do it.
441 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
442 InstResult = C;
443 DEBUG(dbgs() << "Constant folded function call. Result: " <<
444 *InstResult << "\n");
445 } else {
446 DEBUG(dbgs() << "Can not constant fold function call.\n");
447 return false;
448 }
449 } else {
450 if (Callee->getFunctionType()->isVarArg()) {
451 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
452 return false;
453 }
454
455 Constant *RetVal = nullptr;
456 // Execute the call, if successful, use the return value.
457 ValueStack.emplace_back();
458 if (!EvaluateFunction(Callee, RetVal, Formals)) {
459 DEBUG(dbgs() << "Failed to evaluate function.\n");
460 return false;
461 }
462 ValueStack.pop_back();
463 InstResult = RetVal;
464
465 if (InstResult) {
466 DEBUG(dbgs() << "Successfully evaluated function. Result: "
467 << *InstResult << "\n\n");
468 } else {
469 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
470 }
471 }
472 } else if (isa<TerminatorInst>(CurInst)) {
473 DEBUG(dbgs() << "Found a terminator instruction.\n");
474
475 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
476 if (BI->isUnconditional()) {
477 NextBB = BI->getSuccessor(0);
478 } else {
479 ConstantInt *Cond =
480 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
481 if (!Cond) return false; // Cannot determine.
482
483 NextBB = BI->getSuccessor(!Cond->getZExtValue());
484 }
485 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
486 ConstantInt *Val =
487 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
488 if (!Val) return false; // Cannot determine.
489 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
490 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
491 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
492 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
493 NextBB = BA->getBasicBlock();
494 else
495 return false; // Cannot determine.
496 } else if (isa<ReturnInst>(CurInst)) {
497 NextBB = nullptr;
498 } else {
499 // invoke, unwind, resume, unreachable.
500 DEBUG(dbgs() << "Can not handle terminator.");
501 return false; // Cannot handle this terminator.
502 }
503
504 // We succeeded at evaluating this block!
505 DEBUG(dbgs() << "Successfully evaluated block.\n");
506 return true;
507 } else {
508 // Did not know how to evaluate this!
509 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
510 "\n");
511 return false;
512 }
513
514 if (!CurInst->use_empty()) {
515 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
516 InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
517
518 setVal(&*CurInst, InstResult);
519 }
520
521 // If we just processed an invoke, we finished evaluating the block.
522 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
523 NextBB = II->getNormalDest();
524 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
525 return true;
526 }
527
528 // Advance program counter.
529 ++CurInst;
530 }
531 }
532
533 /// Evaluate a call to function F, returning true if successful, false if we
534 /// can't evaluate it. ActualArgs contains the formal arguments for the
535 /// function.
EvaluateFunction(Function * F,Constant * & RetVal,const SmallVectorImpl<Constant * > & ActualArgs)536 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
537 const SmallVectorImpl<Constant*> &ActualArgs) {
538 // Check to see if this function is already executing (recursion). If so,
539 // bail out. TODO: we might want to accept limited recursion.
540 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
541 return false;
542
543 CallStack.push_back(F);
544
545 // Initialize arguments to the incoming values specified.
546 unsigned ArgNo = 0;
547 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
548 ++AI, ++ArgNo)
549 setVal(&*AI, ActualArgs[ArgNo]);
550
551 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
552 // we can only evaluate any one basic block at most once. This set keeps
553 // track of what we have executed so we can detect recursive cases etc.
554 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
555
556 // CurBB - The current basic block we're evaluating.
557 BasicBlock *CurBB = &F->front();
558
559 BasicBlock::iterator CurInst = CurBB->begin();
560
561 while (1) {
562 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
563 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
564
565 if (!EvaluateBlock(CurInst, NextBB))
566 return false;
567
568 if (!NextBB) {
569 // Successfully running until there's no next block means that we found
570 // the return. Fill it the return value and pop the call stack.
571 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
572 if (RI->getNumOperands())
573 RetVal = getVal(RI->getOperand(0));
574 CallStack.pop_back();
575 return true;
576 }
577
578 // Okay, we succeeded in evaluating this control flow. See if we have
579 // executed the new block before. If so, we have a looping function,
580 // which we cannot evaluate in reasonable time.
581 if (!ExecutedBlocks.insert(NextBB).second)
582 return false; // looped!
583
584 // Okay, we have never been in this block before. Check to see if there
585 // are any PHI nodes. If so, evaluate them with information about where
586 // we came from.
587 PHINode *PN = nullptr;
588 for (CurInst = NextBB->begin();
589 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
590 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
591
592 // Advance to the next block.
593 CurBB = NextBB;
594 }
595 }
596
597