• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Function evaluator for LLVM IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Evaluator.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/DiagnosticPrinter.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "evaluator"
29 
30 using namespace llvm;
31 
32 static inline bool
33 isSimpleEnoughValueToCommit(Constant *C,
34                             SmallPtrSetImpl<Constant *> &SimpleConstants,
35                             const DataLayout &DL);
36 
37 /// Return true if the specified constant can be handled by the code generator.
38 /// We don't want to generate something like:
39 ///   void *X = &X/42;
40 /// because the code generator doesn't have a relocation that can handle that.
41 ///
42 /// This function should be called if C was not found (but just got inserted)
43 /// in SimpleConstants to avoid having to rescan the same constants all the
44 /// time.
45 static bool
isSimpleEnoughValueToCommitHelper(Constant * C,SmallPtrSetImpl<Constant * > & SimpleConstants,const DataLayout & DL)46 isSimpleEnoughValueToCommitHelper(Constant *C,
47                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
48                                   const DataLayout &DL) {
49   // Simple global addresses are supported, do not allow dllimport or
50   // thread-local globals.
51   if (auto *GV = dyn_cast<GlobalValue>(C))
52     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
53 
54   // Simple integer, undef, constant aggregate zero, etc are all supported.
55   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
56     return true;
57 
58   // Aggregate values are safe if all their elements are.
59   if (isa<ConstantAggregate>(C)) {
60     for (Value *Op : C->operands())
61       if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
62         return false;
63     return true;
64   }
65 
66   // We don't know exactly what relocations are allowed in constant expressions,
67   // so we allow &global+constantoffset, which is safe and uniformly supported
68   // across targets.
69   ConstantExpr *CE = cast<ConstantExpr>(C);
70   switch (CE->getOpcode()) {
71   case Instruction::BitCast:
72     // Bitcast is fine if the casted value is fine.
73     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
74 
75   case Instruction::IntToPtr:
76   case Instruction::PtrToInt:
77     // int <=> ptr is fine if the int type is the same size as the
78     // pointer type.
79     if (DL.getTypeSizeInBits(CE->getType()) !=
80         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
81       return false;
82     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
83 
84   // GEP is fine if it is simple + constant offset.
85   case Instruction::GetElementPtr:
86     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
87       if (!isa<ConstantInt>(CE->getOperand(i)))
88         return false;
89     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
90 
91   case Instruction::Add:
92     // We allow simple+cst.
93     if (!isa<ConstantInt>(CE->getOperand(1)))
94       return false;
95     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
96   }
97   return false;
98 }
99 
100 static inline bool
isSimpleEnoughValueToCommit(Constant * C,SmallPtrSetImpl<Constant * > & SimpleConstants,const DataLayout & DL)101 isSimpleEnoughValueToCommit(Constant *C,
102                             SmallPtrSetImpl<Constant *> &SimpleConstants,
103                             const DataLayout &DL) {
104   // If we already checked this constant, we win.
105   if (!SimpleConstants.insert(C).second)
106     return true;
107   // Check the constant.
108   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
109 }
110 
111 /// Return true if this constant is simple enough for us to understand.  In
112 /// particular, if it is a cast to anything other than from one pointer type to
113 /// another pointer type, we punt.  We basically just support direct accesses to
114 /// globals and GEP's of globals.  This should be kept up to date with
115 /// CommitValueTo.
isSimpleEnoughPointerToCommit(Constant * C)116 static bool isSimpleEnoughPointerToCommit(Constant *C) {
117   // Conservatively, avoid aggregate types. This is because we don't
118   // want to worry about them partially overlapping other stores.
119   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
120     return false;
121 
122   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
123     // Do not allow weak/*_odr/linkonce linkage or external globals.
124     return GV->hasUniqueInitializer();
125 
126   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
127     // Handle a constantexpr gep.
128     if (CE->getOpcode() == Instruction::GetElementPtr &&
129         isa<GlobalVariable>(CE->getOperand(0)) &&
130         cast<GEPOperator>(CE)->isInBounds()) {
131       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
132       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
133       // external globals.
134       if (!GV->hasUniqueInitializer())
135         return false;
136 
137       // The first index must be zero.
138       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
139       if (!CI || !CI->isZero()) return false;
140 
141       // The remaining indices must be compile-time known integers within the
142       // notional bounds of the corresponding static array types.
143       if (!CE->isGEPWithNoNotionalOverIndexing())
144         return false;
145 
146       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
147 
148     // A constantexpr bitcast from a pointer to another pointer is a no-op,
149     // and we know how to evaluate it by moving the bitcast from the pointer
150     // operand to the value operand.
151     } else if (CE->getOpcode() == Instruction::BitCast &&
152                isa<GlobalVariable>(CE->getOperand(0))) {
153       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
154       // external globals.
155       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
156     }
157   }
158 
159   return false;
160 }
161 
162 /// Return the value that would be computed by a load from P after the stores
163 /// reflected by 'memory' have been performed.  If we can't decide, return null.
ComputeLoadResult(Constant * P)164 Constant *Evaluator::ComputeLoadResult(Constant *P) {
165   // If this memory location has been recently stored, use the stored value: it
166   // is the most up-to-date.
167   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
168   if (I != MutatedMemory.end()) return I->second;
169 
170   // Access it.
171   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
172     if (GV->hasDefinitiveInitializer())
173       return GV->getInitializer();
174     return nullptr;
175   }
176 
177   // Handle a constantexpr getelementptr.
178   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
179     if (CE->getOpcode() == Instruction::GetElementPtr &&
180         isa<GlobalVariable>(CE->getOperand(0))) {
181       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
182       if (GV->hasDefinitiveInitializer())
183         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
184     }
185 
186   return nullptr;  // don't know how to evaluate.
187 }
188 
189 /// Evaluate all instructions in block BB, returning true if successful, false
190 /// if we can't evaluate it.  NewBB returns the next BB that control flows into,
191 /// or null upon return.
EvaluateBlock(BasicBlock::iterator CurInst,BasicBlock * & NextBB)192 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
193                               BasicBlock *&NextBB) {
194   // This is the main evaluation loop.
195   while (1) {
196     Constant *InstResult = nullptr;
197 
198     DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
199 
200     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
201       if (!SI->isSimple()) {
202         DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
203         return false;  // no volatile/atomic accesses.
204       }
205       Constant *Ptr = getVal(SI->getOperand(1));
206       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
207         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
208         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
209         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
210       }
211       if (!isSimpleEnoughPointerToCommit(Ptr)) {
212         // If this is too complex for us to commit, reject it.
213         DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
214         return false;
215       }
216 
217       Constant *Val = getVal(SI->getOperand(0));
218 
219       // If this might be too difficult for the backend to handle (e.g. the addr
220       // of one global variable divided by another) then we can't commit it.
221       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
222         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
223               << "\n");
224         return false;
225       }
226 
227       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
228         if (CE->getOpcode() == Instruction::BitCast) {
229           DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
230           // If we're evaluating a store through a bitcast, then we need
231           // to pull the bitcast off the pointer type and push it onto the
232           // stored value.
233           Ptr = CE->getOperand(0);
234 
235           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
236 
237           // In order to push the bitcast onto the stored value, a bitcast
238           // from NewTy to Val's type must be legal.  If it's not, we can try
239           // introspecting NewTy to find a legal conversion.
240           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
241             // If NewTy is a struct, we can convert the pointer to the struct
242             // into a pointer to its first member.
243             // FIXME: This could be extended to support arrays as well.
244             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
245               NewTy = STy->getTypeAtIndex(0U);
246 
247               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
248               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
249               Constant * const IdxList[] = {IdxZero, IdxZero};
250 
251               Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
252               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
253                 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
254 
255             // If we can't improve the situation by introspecting NewTy,
256             // we have to give up.
257             } else {
258               DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
259                     "evaluate.\n");
260               return false;
261             }
262           }
263 
264           // If we found compatible types, go ahead and push the bitcast
265           // onto the stored value.
266           Val = ConstantExpr::getBitCast(Val, NewTy);
267 
268           DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
269         }
270       }
271 
272       MutatedMemory[Ptr] = Val;
273     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
274       InstResult = ConstantExpr::get(BO->getOpcode(),
275                                      getVal(BO->getOperand(0)),
276                                      getVal(BO->getOperand(1)));
277       DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
278             << "\n");
279     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
280       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
281                                             getVal(CI->getOperand(0)),
282                                             getVal(CI->getOperand(1)));
283       DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
284             << "\n");
285     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
286       InstResult = ConstantExpr::getCast(CI->getOpcode(),
287                                          getVal(CI->getOperand(0)),
288                                          CI->getType());
289       DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
290             << "\n");
291     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
292       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
293                                            getVal(SI->getOperand(1)),
294                                            getVal(SI->getOperand(2)));
295       DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
296             << "\n");
297     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
298       InstResult = ConstantExpr::getExtractValue(
299           getVal(EVI->getAggregateOperand()), EVI->getIndices());
300       DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
301                    << "\n");
302     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
303       InstResult = ConstantExpr::getInsertValue(
304           getVal(IVI->getAggregateOperand()),
305           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
306       DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
307                    << "\n");
308     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
309       Constant *P = getVal(GEP->getOperand(0));
310       SmallVector<Constant*, 8> GEPOps;
311       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
312            i != e; ++i)
313         GEPOps.push_back(getVal(*i));
314       InstResult =
315           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
316                                          cast<GEPOperator>(GEP)->isInBounds());
317       DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
318             << "\n");
319     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
320 
321       if (!LI->isSimple()) {
322         DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
323         return false;  // no volatile/atomic accesses.
324       }
325 
326       Constant *Ptr = getVal(LI->getOperand(0));
327       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
328         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
329         DEBUG(dbgs() << "Found a constant pointer expression, constant "
330               "folding: " << *Ptr << "\n");
331       }
332       InstResult = ComputeLoadResult(Ptr);
333       if (!InstResult) {
334         DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
335               "\n");
336         return false; // Could not evaluate load.
337       }
338 
339       DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
340     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
341       if (AI->isArrayAllocation()) {
342         DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
343         return false;  // Cannot handle array allocs.
344       }
345       Type *Ty = AI->getAllocatedType();
346       AllocaTmps.push_back(
347           make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
348                                       UndefValue::get(Ty), AI->getName()));
349       InstResult = AllocaTmps.back().get();
350       DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
351     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
352       CallSite CS(&*CurInst);
353 
354       // Debug info can safely be ignored here.
355       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
356         DEBUG(dbgs() << "Ignoring debug info.\n");
357         ++CurInst;
358         continue;
359       }
360 
361       // Cannot handle inline asm.
362       if (isa<InlineAsm>(CS.getCalledValue())) {
363         DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
364         return false;
365       }
366 
367       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
368         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
369           if (MSI->isVolatile()) {
370             DEBUG(dbgs() << "Can not optimize a volatile memset " <<
371                   "intrinsic.\n");
372             return false;
373           }
374           Constant *Ptr = getVal(MSI->getDest());
375           Constant *Val = getVal(MSI->getValue());
376           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
377           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
378             // This memset is a no-op.
379             DEBUG(dbgs() << "Ignoring no-op memset.\n");
380             ++CurInst;
381             continue;
382           }
383         }
384 
385         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
386             II->getIntrinsicID() == Intrinsic::lifetime_end) {
387           DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
388           ++CurInst;
389           continue;
390         }
391 
392         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
393           // We don't insert an entry into Values, as it doesn't have a
394           // meaningful return value.
395           if (!II->use_empty()) {
396             DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
397             return false;
398           }
399           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
400           Value *PtrArg = getVal(II->getArgOperand(1));
401           Value *Ptr = PtrArg->stripPointerCasts();
402           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
403             Type *ElemTy = GV->getValueType();
404             if (!Size->isAllOnesValue() &&
405                 Size->getValue().getLimitedValue() >=
406                     DL.getTypeStoreSize(ElemTy)) {
407               Invariants.insert(GV);
408               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
409                     << "\n");
410             } else {
411               DEBUG(dbgs() << "Found a global var, but can not treat it as an "
412                     "invariant.\n");
413             }
414           }
415           // Continue even if we do nothing.
416           ++CurInst;
417           continue;
418         } else if (II->getIntrinsicID() == Intrinsic::assume) {
419           DEBUG(dbgs() << "Skipping assume intrinsic.\n");
420           ++CurInst;
421           continue;
422         }
423 
424         DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
425         return false;
426       }
427 
428       // Resolve function pointers.
429       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
430       if (!Callee || Callee->isInterposable()) {
431         DEBUG(dbgs() << "Can not resolve function pointer.\n");
432         return false;  // Cannot resolve.
433       }
434 
435       SmallVector<Constant*, 8> Formals;
436       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
437         Formals.push_back(getVal(*i));
438 
439       if (Callee->isDeclaration()) {
440         // If this is a function we can constant fold, do it.
441         if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
442           InstResult = C;
443           DEBUG(dbgs() << "Constant folded function call. Result: " <<
444                 *InstResult << "\n");
445         } else {
446           DEBUG(dbgs() << "Can not constant fold function call.\n");
447           return false;
448         }
449       } else {
450         if (Callee->getFunctionType()->isVarArg()) {
451           DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
452           return false;
453         }
454 
455         Constant *RetVal = nullptr;
456         // Execute the call, if successful, use the return value.
457         ValueStack.emplace_back();
458         if (!EvaluateFunction(Callee, RetVal, Formals)) {
459           DEBUG(dbgs() << "Failed to evaluate function.\n");
460           return false;
461         }
462         ValueStack.pop_back();
463         InstResult = RetVal;
464 
465         if (InstResult) {
466           DEBUG(dbgs() << "Successfully evaluated function. Result: "
467                        << *InstResult << "\n\n");
468         } else {
469           DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
470         }
471       }
472     } else if (isa<TerminatorInst>(CurInst)) {
473       DEBUG(dbgs() << "Found a terminator instruction.\n");
474 
475       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
476         if (BI->isUnconditional()) {
477           NextBB = BI->getSuccessor(0);
478         } else {
479           ConstantInt *Cond =
480             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
481           if (!Cond) return false;  // Cannot determine.
482 
483           NextBB = BI->getSuccessor(!Cond->getZExtValue());
484         }
485       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
486         ConstantInt *Val =
487           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
488         if (!Val) return false;  // Cannot determine.
489         NextBB = SI->findCaseValue(Val).getCaseSuccessor();
490       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
491         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
492         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
493           NextBB = BA->getBasicBlock();
494         else
495           return false;  // Cannot determine.
496       } else if (isa<ReturnInst>(CurInst)) {
497         NextBB = nullptr;
498       } else {
499         // invoke, unwind, resume, unreachable.
500         DEBUG(dbgs() << "Can not handle terminator.");
501         return false;  // Cannot handle this terminator.
502       }
503 
504       // We succeeded at evaluating this block!
505       DEBUG(dbgs() << "Successfully evaluated block.\n");
506       return true;
507     } else {
508       // Did not know how to evaluate this!
509       DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
510             "\n");
511       return false;
512     }
513 
514     if (!CurInst->use_empty()) {
515       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
516         InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
517 
518       setVal(&*CurInst, InstResult);
519     }
520 
521     // If we just processed an invoke, we finished evaluating the block.
522     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
523       NextBB = II->getNormalDest();
524       DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
525       return true;
526     }
527 
528     // Advance program counter.
529     ++CurInst;
530   }
531 }
532 
533 /// Evaluate a call to function F, returning true if successful, false if we
534 /// can't evaluate it.  ActualArgs contains the formal arguments for the
535 /// function.
EvaluateFunction(Function * F,Constant * & RetVal,const SmallVectorImpl<Constant * > & ActualArgs)536 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
537                                  const SmallVectorImpl<Constant*> &ActualArgs) {
538   // Check to see if this function is already executing (recursion).  If so,
539   // bail out.  TODO: we might want to accept limited recursion.
540   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
541     return false;
542 
543   CallStack.push_back(F);
544 
545   // Initialize arguments to the incoming values specified.
546   unsigned ArgNo = 0;
547   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
548        ++AI, ++ArgNo)
549     setVal(&*AI, ActualArgs[ArgNo]);
550 
551   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
552   // we can only evaluate any one basic block at most once.  This set keeps
553   // track of what we have executed so we can detect recursive cases etc.
554   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
555 
556   // CurBB - The current basic block we're evaluating.
557   BasicBlock *CurBB = &F->front();
558 
559   BasicBlock::iterator CurInst = CurBB->begin();
560 
561   while (1) {
562     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
563     DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
564 
565     if (!EvaluateBlock(CurInst, NextBB))
566       return false;
567 
568     if (!NextBB) {
569       // Successfully running until there's no next block means that we found
570       // the return.  Fill it the return value and pop the call stack.
571       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
572       if (RI->getNumOperands())
573         RetVal = getVal(RI->getOperand(0));
574       CallStack.pop_back();
575       return true;
576     }
577 
578     // Okay, we succeeded in evaluating this control flow.  See if we have
579     // executed the new block before.  If so, we have a looping function,
580     // which we cannot evaluate in reasonable time.
581     if (!ExecutedBlocks.insert(NextBB).second)
582       return false;  // looped!
583 
584     // Okay, we have never been in this block before.  Check to see if there
585     // are any PHI nodes.  If so, evaluate them with information about where
586     // we came from.
587     PHINode *PN = nullptr;
588     for (CurInst = NextBB->begin();
589          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
590       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
591 
592     // Advance to the next block.
593     CurBB = NextBB;
594   }
595 }
596 
597