• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SetOperations.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Analysis/AliasAnalysis.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LoopInfo.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-simplify"
74 
75 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
76 STATISTIC(NumNested  , "Number of nested loops split out");
77 
78 // If the block isn't already, move the new block to right after some 'outside
79 // block' block.  This prevents the preheader from being placed inside the loop
80 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)81 static void placeSplitBlockCarefully(BasicBlock *NewBB,
82                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
83                                      Loop *L) {
84   // Check to see if NewBB is already well placed.
85   Function::iterator BBI = --NewBB->getIterator();
86   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
87     if (&*BBI == SplitPreds[i])
88       return;
89   }
90 
91   // If it isn't already after an outside block, move it after one.  This is
92   // always good as it makes the uncond branch from the outside block into a
93   // fall-through.
94 
95   // Figure out *which* outside block to put this after.  Prefer an outside
96   // block that neighbors a BB actually in the loop.
97   BasicBlock *FoundBB = nullptr;
98   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
99     Function::iterator BBI = SplitPreds[i]->getIterator();
100     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
101       FoundBB = SplitPreds[i];
102       break;
103     }
104   }
105 
106   // If our heuristic for a *good* bb to place this after doesn't find
107   // anything, just pick something.  It's likely better than leaving it within
108   // the loop.
109   if (!FoundBB)
110     FoundBB = SplitPreds[0];
111   NewBB->moveAfter(FoundBB);
112 }
113 
114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
115 /// preheader, this method is called to insert one.  This method has two phases:
116 /// preheader insertion and analysis updating.
117 ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
119                                          LoopInfo *LI, bool PreserveLCSSA) {
120   BasicBlock *Header = L->getHeader();
121 
122   // Compute the set of predecessors of the loop that are not in the loop.
123   SmallVector<BasicBlock*, 8> OutsideBlocks;
124   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
125        PI != PE; ++PI) {
126     BasicBlock *P = *PI;
127     if (!L->contains(P)) {         // Coming in from outside the loop?
128       // If the loop is branched to from an indirect branch, we won't
129       // be able to fully transform the loop, because it prohibits
130       // edge splitting.
131       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
132 
133       // Keep track of it.
134       OutsideBlocks.push_back(P);
135     }
136   }
137 
138   // Split out the loop pre-header.
139   BasicBlock *PreheaderBB;
140   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
141                                        LI, PreserveLCSSA);
142   if (!PreheaderBB)
143     return nullptr;
144 
145   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146                << PreheaderBB->getName() << "\n");
147 
148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149   // code layout too horribly.
150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151 
152   return PreheaderBB;
153 }
154 
155 /// \brief Ensure that the loop preheader dominates all exit blocks.
156 ///
157 /// This method is used to split exit blocks that have predecessors outside of
158 /// the loop.
rewriteLoopExitBlock(Loop * L,BasicBlock * Exit,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
160                                         DominatorTree *DT, LoopInfo *LI,
161                                         bool PreserveLCSSA) {
162   SmallVector<BasicBlock*, 8> LoopBlocks;
163   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
164     BasicBlock *P = *I;
165     if (L->contains(P)) {
166       // Don't do this if the loop is exited via an indirect branch.
167       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
168 
169       LoopBlocks.push_back(P);
170     }
171   }
172 
173   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
174   BasicBlock *NewExitBB = nullptr;
175 
176   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
177                                      PreserveLCSSA);
178   if (!NewExitBB)
179     return nullptr;
180 
181   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
182                << NewExitBB->getName() << "\n");
183   return NewExitBB;
184 }
185 
186 /// Add the specified block, and all of its predecessors, to the specified set,
187 /// if it's not already in there.  Stop predecessor traversal when we reach
188 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)189 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
190                                   std::set<BasicBlock*> &Blocks) {
191   SmallVector<BasicBlock *, 8> Worklist;
192   Worklist.push_back(InputBB);
193   do {
194     BasicBlock *BB = Worklist.pop_back_val();
195     if (Blocks.insert(BB).second && BB != StopBlock)
196       // If BB is not already processed and it is not a stop block then
197       // insert its predecessor in the work list
198       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
199         BasicBlock *WBB = *I;
200         Worklist.push_back(WBB);
201       }
202   } while (!Worklist.empty());
203 }
204 
205 /// \brief The first part of loop-nestification is to find a PHI node that tells
206 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)207 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
208                                         AssumptionCache *AC) {
209   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
210   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
211     PHINode *PN = cast<PHINode>(I);
212     ++I;
213     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
214       // This is a degenerate PHI already, don't modify it!
215       PN->replaceAllUsesWith(V);
216       PN->eraseFromParent();
217       continue;
218     }
219 
220     // Scan this PHI node looking for a use of the PHI node by itself.
221     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
222       if (PN->getIncomingValue(i) == PN &&
223           L->contains(PN->getIncomingBlock(i)))
224         // We found something tasty to remove.
225         return PN;
226   }
227   return nullptr;
228 }
229 
230 /// \brief If this loop has multiple backedges, try to pull one of them out into
231 /// a nested loop.
232 ///
233 /// This is important for code that looks like
234 /// this:
235 ///
236 ///  Loop:
237 ///     ...
238 ///     br cond, Loop, Next
239 ///     ...
240 ///     br cond2, Loop, Out
241 ///
242 /// To identify this common case, we look at the PHI nodes in the header of the
243 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
244 /// that change in the "outer" loop, but not in the "inner" loop.
245 ///
246 /// If we are able to separate out a loop, return the new outer loop that was
247 /// created.
248 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC)249 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
250                                 DominatorTree *DT, LoopInfo *LI,
251                                 ScalarEvolution *SE, bool PreserveLCSSA,
252                                 AssumptionCache *AC) {
253   // Don't try to separate loops without a preheader.
254   if (!Preheader)
255     return nullptr;
256 
257   // The header is not a landing pad; preheader insertion should ensure this.
258   BasicBlock *Header = L->getHeader();
259   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
260 
261   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
262   if (!PN) return nullptr;  // No known way to partition.
263 
264   // Pull out all predecessors that have varying values in the loop.  This
265   // handles the case when a PHI node has multiple instances of itself as
266   // arguments.
267   SmallVector<BasicBlock*, 8> OuterLoopPreds;
268   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
269     if (PN->getIncomingValue(i) != PN ||
270         !L->contains(PN->getIncomingBlock(i))) {
271       // We can't split indirectbr edges.
272       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
273         return nullptr;
274       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
275     }
276   }
277   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
278 
279   // If ScalarEvolution is around and knows anything about values in
280   // this loop, tell it to forget them, because we're about to
281   // substantially change it.
282   if (SE)
283     SE->forgetLoop(L);
284 
285   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
286                                              DT, LI, PreserveLCSSA);
287 
288   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
289   // code layout too horribly.
290   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
291 
292   // Create the new outer loop.
293   Loop *NewOuter = new Loop();
294 
295   // Change the parent loop to use the outer loop as its child now.
296   if (Loop *Parent = L->getParentLoop())
297     Parent->replaceChildLoopWith(L, NewOuter);
298   else
299     LI->changeTopLevelLoop(L, NewOuter);
300 
301   // L is now a subloop of our outer loop.
302   NewOuter->addChildLoop(L);
303 
304   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
305        I != E; ++I)
306     NewOuter->addBlockEntry(*I);
307 
308   // Now reset the header in L, which had been moved by
309   // SplitBlockPredecessors for the outer loop.
310   L->moveToHeader(Header);
311 
312   // Determine which blocks should stay in L and which should be moved out to
313   // the Outer loop now.
314   std::set<BasicBlock*> BlocksInL;
315   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
316     BasicBlock *P = *PI;
317     if (DT->dominates(Header, P))
318       addBlockAndPredsToSet(P, Header, BlocksInL);
319   }
320 
321   // Scan all of the loop children of L, moving them to OuterLoop if they are
322   // not part of the inner loop.
323   const std::vector<Loop*> &SubLoops = L->getSubLoops();
324   for (size_t I = 0; I != SubLoops.size(); )
325     if (BlocksInL.count(SubLoops[I]->getHeader()))
326       ++I;   // Loop remains in L
327     else
328       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
329 
330   // Now that we know which blocks are in L and which need to be moved to
331   // OuterLoop, move any blocks that need it.
332   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
333     BasicBlock *BB = L->getBlocks()[i];
334     if (!BlocksInL.count(BB)) {
335       // Move this block to the parent, updating the exit blocks sets
336       L->removeBlockFromLoop(BB);
337       if ((*LI)[BB] == L)
338         LI->changeLoopFor(BB, NewOuter);
339       --i;
340     }
341   }
342 
343   return NewOuter;
344 }
345 
346 /// \brief This method is called when the specified loop has more than one
347 /// backedge in it.
348 ///
349 /// If this occurs, revector all of these backedges to target a new basic block
350 /// and have that block branch to the loop header.  This ensures that loops
351 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI)352 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
353                                              DominatorTree *DT, LoopInfo *LI) {
354   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
355 
356   // Get information about the loop
357   BasicBlock *Header = L->getHeader();
358   Function *F = Header->getParent();
359 
360   // Unique backedge insertion currently depends on having a preheader.
361   if (!Preheader)
362     return nullptr;
363 
364   // The header is not an EH pad; preheader insertion should ensure this.
365   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
366 
367   // Figure out which basic blocks contain back-edges to the loop header.
368   std::vector<BasicBlock*> BackedgeBlocks;
369   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
370     BasicBlock *P = *I;
371 
372     // Indirectbr edges cannot be split, so we must fail if we find one.
373     if (isa<IndirectBrInst>(P->getTerminator()))
374       return nullptr;
375 
376     if (P != Preheader) BackedgeBlocks.push_back(P);
377   }
378 
379   // Create and insert the new backedge block...
380   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
381                                            Header->getName() + ".backedge", F);
382   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
383   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
384 
385   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
386                << BEBlock->getName() << "\n");
387 
388   // Move the new backedge block to right after the last backedge block.
389   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
390   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
391 
392   // Now that the block has been inserted into the function, create PHI nodes in
393   // the backedge block which correspond to any PHI nodes in the header block.
394   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
395     PHINode *PN = cast<PHINode>(I);
396     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
397                                      PN->getName()+".be", BETerminator);
398 
399     // Loop over the PHI node, moving all entries except the one for the
400     // preheader over to the new PHI node.
401     unsigned PreheaderIdx = ~0U;
402     bool HasUniqueIncomingValue = true;
403     Value *UniqueValue = nullptr;
404     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
405       BasicBlock *IBB = PN->getIncomingBlock(i);
406       Value *IV = PN->getIncomingValue(i);
407       if (IBB == Preheader) {
408         PreheaderIdx = i;
409       } else {
410         NewPN->addIncoming(IV, IBB);
411         if (HasUniqueIncomingValue) {
412           if (!UniqueValue)
413             UniqueValue = IV;
414           else if (UniqueValue != IV)
415             HasUniqueIncomingValue = false;
416         }
417       }
418     }
419 
420     // Delete all of the incoming values from the old PN except the preheader's
421     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
422     if (PreheaderIdx != 0) {
423       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
424       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
425     }
426     // Nuke all entries except the zero'th.
427     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
428       PN->removeIncomingValue(e-i, false);
429 
430     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
431     PN->addIncoming(NewPN, BEBlock);
432 
433     // As an optimization, if all incoming values in the new PhiNode (which is a
434     // subset of the incoming values of the old PHI node) have the same value,
435     // eliminate the PHI Node.
436     if (HasUniqueIncomingValue) {
437       NewPN->replaceAllUsesWith(UniqueValue);
438       BEBlock->getInstList().erase(NewPN);
439     }
440   }
441 
442   // Now that all of the PHI nodes have been inserted and adjusted, modify the
443   // backedge blocks to just to the BEBlock instead of the header.
444   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
445     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
446     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
447       if (TI->getSuccessor(Op) == Header)
448         TI->setSuccessor(Op, BEBlock);
449   }
450 
451   //===--- Update all analyses which we must preserve now -----------------===//
452 
453   // Update Loop Information - we know that this block is now in the current
454   // loop and all parent loops.
455   L->addBasicBlockToLoop(BEBlock, *LI);
456 
457   // Update dominator information
458   DT->splitBlock(BEBlock);
459 
460   return BEBlock;
461 }
462 
463 /// \brief Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)464 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
465                             DominatorTree *DT, LoopInfo *LI,
466                             ScalarEvolution *SE, AssumptionCache *AC,
467                             bool PreserveLCSSA) {
468   bool Changed = false;
469 ReprocessLoop:
470 
471   // Check to see that no blocks (other than the header) in this loop have
472   // predecessors that are not in the loop.  This is not valid for natural
473   // loops, but can occur if the blocks are unreachable.  Since they are
474   // unreachable we can just shamelessly delete those CFG edges!
475   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
476        BB != E; ++BB) {
477     if (*BB == L->getHeader()) continue;
478 
479     SmallPtrSet<BasicBlock*, 4> BadPreds;
480     for (pred_iterator PI = pred_begin(*BB),
481          PE = pred_end(*BB); PI != PE; ++PI) {
482       BasicBlock *P = *PI;
483       if (!L->contains(P))
484         BadPreds.insert(P);
485     }
486 
487     // Delete each unique out-of-loop (and thus dead) predecessor.
488     for (BasicBlock *P : BadPreds) {
489 
490       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
491                    << P->getName() << "\n");
492 
493       // Zap the dead pred's terminator and replace it with unreachable.
494       TerminatorInst *TI = P->getTerminator();
495       changeToUnreachable(TI, /*UseLLVMTrap=*/false);
496       Changed = true;
497     }
498   }
499 
500   // If there are exiting blocks with branches on undef, resolve the undef in
501   // the direction which will exit the loop. This will help simplify loop
502   // trip count computations.
503   SmallVector<BasicBlock*, 8> ExitingBlocks;
504   L->getExitingBlocks(ExitingBlocks);
505   for (BasicBlock *ExitingBlock : ExitingBlocks)
506     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
507       if (BI->isConditional()) {
508         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
509 
510           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
511                        << ExitingBlock->getName() << "\n");
512 
513           BI->setCondition(ConstantInt::get(Cond->getType(),
514                                             !L->contains(BI->getSuccessor(0))));
515 
516           // This may make the loop analyzable, force SCEV recomputation.
517           if (SE)
518             SE->forgetLoop(L);
519 
520           Changed = true;
521         }
522       }
523 
524   // Does the loop already have a preheader?  If so, don't insert one.
525   BasicBlock *Preheader = L->getLoopPreheader();
526   if (!Preheader) {
527     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
528     if (Preheader) {
529       ++NumInserted;
530       Changed = true;
531     }
532   }
533 
534   // Next, check to make sure that all exit nodes of the loop only have
535   // predecessors that are inside of the loop.  This check guarantees that the
536   // loop preheader/header will dominate the exit blocks.  If the exit block has
537   // predecessors from outside of the loop, split the edge now.
538   SmallVector<BasicBlock*, 8> ExitBlocks;
539   L->getExitBlocks(ExitBlocks);
540 
541   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
542                                                ExitBlocks.end());
543   for (BasicBlock *ExitBlock : ExitBlockSet) {
544     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
545          PI != PE; ++PI)
546       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
547       // allowed.
548       if (!L->contains(*PI)) {
549         if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
550           ++NumInserted;
551           Changed = true;
552         }
553         break;
554       }
555   }
556 
557   // If the header has more than two predecessors at this point (from the
558   // preheader and from multiple backedges), we must adjust the loop.
559   BasicBlock *LoopLatch = L->getLoopLatch();
560   if (!LoopLatch) {
561     // If this is really a nested loop, rip it out into a child loop.  Don't do
562     // this for loops with a giant number of backedges, just factor them into a
563     // common backedge instead.
564     if (L->getNumBackEdges() < 8) {
565       if (Loop *OuterL =
566               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
567         ++NumNested;
568         // Enqueue the outer loop as it should be processed next in our
569         // depth-first nest walk.
570         Worklist.push_back(OuterL);
571 
572         // This is a big restructuring change, reprocess the whole loop.
573         Changed = true;
574         // GCC doesn't tail recursion eliminate this.
575         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
576         goto ReprocessLoop;
577       }
578     }
579 
580     // If we either couldn't, or didn't want to, identify nesting of the loops,
581     // insert a new block that all backedges target, then make it jump to the
582     // loop header.
583     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
584     if (LoopLatch) {
585       ++NumInserted;
586       Changed = true;
587     }
588   }
589 
590   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
591 
592   // Scan over the PHI nodes in the loop header.  Since they now have only two
593   // incoming values (the loop is canonicalized), we may have simplified the PHI
594   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
595   PHINode *PN;
596   for (BasicBlock::iterator I = L->getHeader()->begin();
597        (PN = dyn_cast<PHINode>(I++)); )
598     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
599       if (SE) SE->forgetValue(PN);
600       PN->replaceAllUsesWith(V);
601       PN->eraseFromParent();
602     }
603 
604   // If this loop has multiple exits and the exits all go to the same
605   // block, attempt to merge the exits. This helps several passes, such
606   // as LoopRotation, which do not support loops with multiple exits.
607   // SimplifyCFG also does this (and this code uses the same utility
608   // function), however this code is loop-aware, where SimplifyCFG is
609   // not. That gives it the advantage of being able to hoist
610   // loop-invariant instructions out of the way to open up more
611   // opportunities, and the disadvantage of having the responsibility
612   // to preserve dominator information.
613   bool UniqueExit = true;
614   if (!ExitBlocks.empty())
615     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
616       if (ExitBlocks[i] != ExitBlocks[0]) {
617         UniqueExit = false;
618         break;
619       }
620   if (UniqueExit) {
621     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
622       BasicBlock *ExitingBlock = ExitingBlocks[i];
623       if (!ExitingBlock->getSinglePredecessor()) continue;
624       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
625       if (!BI || !BI->isConditional()) continue;
626       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
627       if (!CI || CI->getParent() != ExitingBlock) continue;
628 
629       // Attempt to hoist out all instructions except for the
630       // comparison and the branch.
631       bool AllInvariant = true;
632       bool AnyInvariant = false;
633       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
634         Instruction *Inst = &*I++;
635         // Skip debug info intrinsics.
636         if (isa<DbgInfoIntrinsic>(Inst))
637           continue;
638         if (Inst == CI)
639           continue;
640         if (!L->makeLoopInvariant(Inst, AnyInvariant,
641                                   Preheader ? Preheader->getTerminator()
642                                             : nullptr)) {
643           AllInvariant = false;
644           break;
645         }
646       }
647       if (AnyInvariant) {
648         Changed = true;
649         // The loop disposition of all SCEV expressions that depend on any
650         // hoisted values have also changed.
651         if (SE)
652           SE->forgetLoopDispositions(L);
653       }
654       if (!AllInvariant) continue;
655 
656       // The block has now been cleared of all instructions except for
657       // a comparison and a conditional branch. SimplifyCFG may be able
658       // to fold it now.
659       if (!FoldBranchToCommonDest(BI))
660         continue;
661 
662       // Success. The block is now dead, so remove it from the loop,
663       // update the dominator tree and delete it.
664       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
665                    << ExitingBlock->getName() << "\n");
666 
667       // Notify ScalarEvolution before deleting this block. Currently assume the
668       // parent loop doesn't change (spliting edges doesn't count). If blocks,
669       // CFG edges, or other values in the parent loop change, then we need call
670       // to forgetLoop() for the parent instead.
671       if (SE)
672         SE->forgetLoop(L);
673 
674       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
675       Changed = true;
676       LI->removeBlock(ExitingBlock);
677 
678       DomTreeNode *Node = DT->getNode(ExitingBlock);
679       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
680         Node->getChildren();
681       while (!Children.empty()) {
682         DomTreeNode *Child = Children.front();
683         DT->changeImmediateDominator(Child, Node->getIDom());
684       }
685       DT->eraseNode(ExitingBlock);
686 
687       BI->getSuccessor(0)->removePredecessor(
688           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
689       BI->getSuccessor(1)->removePredecessor(
690           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
691       ExitingBlock->eraseFromParent();
692     }
693   }
694 
695   return Changed;
696 }
697 
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)698 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
699                         ScalarEvolution *SE, AssumptionCache *AC,
700                         bool PreserveLCSSA) {
701   bool Changed = false;
702 
703   // Worklist maintains our depth-first queue of loops in this nest to process.
704   SmallVector<Loop *, 4> Worklist;
705   Worklist.push_back(L);
706 
707   // Walk the worklist from front to back, pushing newly found sub loops onto
708   // the back. This will let us process loops from back to front in depth-first
709   // order. We can use this simple process because loops form a tree.
710   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
711     Loop *L2 = Worklist[Idx];
712     Worklist.append(L2->begin(), L2->end());
713   }
714 
715   while (!Worklist.empty())
716     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
717                                AC, PreserveLCSSA);
718 
719   return Changed;
720 }
721 
722 namespace {
723   struct LoopSimplify : public FunctionPass {
724     static char ID; // Pass identification, replacement for typeid
LoopSimplify__anona1826e020111::LoopSimplify725     LoopSimplify() : FunctionPass(ID) {
726       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
727     }
728 
729     bool runOnFunction(Function &F) override;
730 
getAnalysisUsage__anona1826e020111::LoopSimplify731     void getAnalysisUsage(AnalysisUsage &AU) const override {
732       AU.addRequired<AssumptionCacheTracker>();
733 
734       // We need loop information to identify the loops...
735       AU.addRequired<DominatorTreeWrapperPass>();
736       AU.addPreserved<DominatorTreeWrapperPass>();
737 
738       AU.addRequired<LoopInfoWrapperPass>();
739       AU.addPreserved<LoopInfoWrapperPass>();
740 
741       AU.addPreserved<BasicAAWrapperPass>();
742       AU.addPreserved<AAResultsWrapperPass>();
743       AU.addPreserved<GlobalsAAWrapperPass>();
744       AU.addPreserved<ScalarEvolutionWrapperPass>();
745       AU.addPreserved<SCEVAAWrapperPass>();
746       AU.addPreservedID(LCSSAID);
747       AU.addPreserved<DependenceAnalysisWrapperPass>();
748       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
749     }
750 
751     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
752     void verifyAnalysis() const override;
753   };
754 }
755 
756 char LoopSimplify::ID = 0;
757 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
758                 "Canonicalize natural loops", false, false)
759 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
761 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
762 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
763                 "Canonicalize natural loops", false, false)
764 
765 // Publicly exposed interface to pass...
766 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()767 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
768 
769 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
770 /// it in any convenient order) inserting preheaders...
771 ///
runOnFunction(Function & F)772 bool LoopSimplify::runOnFunction(Function &F) {
773   bool Changed = false;
774   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
775   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
776   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
777   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
778   AssumptionCache *AC =
779       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
780 
781   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
782 #ifndef NDEBUG
783   if (PreserveLCSSA) {
784     assert(DT && "DT not available.");
785     assert(LI && "LI not available.");
786     bool InLCSSA =
787         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
788     assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken.");
789   }
790 #endif
791 
792   // Simplify each loop nest in the function.
793   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
794     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
795 
796 #ifndef NDEBUG
797   if (PreserveLCSSA) {
798     bool InLCSSA =
799         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
800     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
801   }
802 #endif
803   return Changed;
804 }
805 
run(Function & F,AnalysisManager<Function> & AM)806 PreservedAnalyses LoopSimplifyPass::run(Function &F,
807                                         AnalysisManager<Function> &AM) {
808   bool Changed = false;
809   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
810   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
811   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
812   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
813 
814   // FIXME: This pass should verify that the loops on which it's operating
815   // are in canonical SSA form, and that the pass itself preserves this form.
816   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
817     Changed |= simplifyLoop(*I, DT, LI, SE, AC, true /* PreserveLCSSA */);
818 
819   if (!Changed)
820     return PreservedAnalyses::all();
821   PreservedAnalyses PA;
822   PA.preserve<DominatorTreeAnalysis>();
823   PA.preserve<LoopAnalysis>();
824   PA.preserve<BasicAA>();
825   PA.preserve<GlobalsAA>();
826   PA.preserve<SCEVAA>();
827   PA.preserve<ScalarEvolutionAnalysis>();
828   PA.preserve<DependenceAnalysis>();
829   return PA;
830 }
831 
832 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
833 // below.
834 #if 0
835 static void verifyLoop(Loop *L) {
836   // Verify subloops.
837   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
838     verifyLoop(*I);
839 
840   // It used to be possible to just assert L->isLoopSimplifyForm(), however
841   // with the introduction of indirectbr, there are now cases where it's
842   // not possible to transform a loop as necessary. We can at least check
843   // that there is an indirectbr near any time there's trouble.
844 
845   // Indirectbr can interfere with preheader and unique backedge insertion.
846   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
847     bool HasIndBrPred = false;
848     for (pred_iterator PI = pred_begin(L->getHeader()),
849          PE = pred_end(L->getHeader()); PI != PE; ++PI)
850       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
851         HasIndBrPred = true;
852         break;
853       }
854     assert(HasIndBrPred &&
855            "LoopSimplify has no excuse for missing loop header info!");
856     (void)HasIndBrPred;
857   }
858 
859   // Indirectbr can interfere with exit block canonicalization.
860   if (!L->hasDedicatedExits()) {
861     bool HasIndBrExiting = false;
862     SmallVector<BasicBlock*, 8> ExitingBlocks;
863     L->getExitingBlocks(ExitingBlocks);
864     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
865       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
866         HasIndBrExiting = true;
867         break;
868       }
869     }
870 
871     assert(HasIndBrExiting &&
872            "LoopSimplify has no excuse for missing exit block info!");
873     (void)HasIndBrExiting;
874   }
875 }
876 #endif
877 
verifyAnalysis() const878 void LoopSimplify::verifyAnalysis() const {
879   // FIXME: This routine is being called mid-way through the loop pass manager
880   // as loop passes destroy this analysis. That's actually fine, but we have no
881   // way of expressing that here. Once all of the passes that destroy this are
882   // hoisted out of the loop pass manager we can add back verification here.
883 #if 0
884   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
885     verifyLoop(*I);
886 #endif
887 }
888