1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the implementation of the LLVM difference
11 // engine, which structurally compares global values within a module.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "DifferenceEngine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
29 #include <utility>
30
31 using namespace llvm;
32
33 namespace {
34
35 /// A priority queue, implemented as a heap.
36 template <class T, class Sorter, unsigned InlineCapacity>
37 class PriorityQueue {
38 Sorter Precedes;
39 llvm::SmallVector<T, InlineCapacity> Storage;
40
41 public:
PriorityQueue(const Sorter & Precedes)42 PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43
44 /// Checks whether the heap is empty.
empty() const45 bool empty() const { return Storage.empty(); }
46
47 /// Insert a new value on the heap.
insert(const T & V)48 void insert(const T &V) {
49 unsigned Index = Storage.size();
50 Storage.push_back(V);
51 if (Index == 0) return;
52
53 T *data = Storage.data();
54 while (true) {
55 unsigned Target = (Index + 1) / 2 - 1;
56 if (!Precedes(data[Index], data[Target])) return;
57 std::swap(data[Index], data[Target]);
58 if (Target == 0) return;
59 Index = Target;
60 }
61 }
62
63 /// Remove the minimum value in the heap. Only valid on a non-empty heap.
remove_min()64 T remove_min() {
65 assert(!empty());
66 T tmp = Storage[0];
67
68 unsigned NewSize = Storage.size() - 1;
69 if (NewSize) {
70 // Move the slot at the end to the beginning.
71 if (isPodLike<T>::value)
72 Storage[0] = Storage[NewSize];
73 else
74 std::swap(Storage[0], Storage[NewSize]);
75
76 // Bubble the root up as necessary.
77 unsigned Index = 0;
78 while (true) {
79 // With a 1-based index, the children would be Index*2 and Index*2+1.
80 unsigned R = (Index + 1) * 2;
81 unsigned L = R - 1;
82
83 // If R is out of bounds, we're done after this in any case.
84 if (R >= NewSize) {
85 // If L is also out of bounds, we're done immediately.
86 if (L >= NewSize) break;
87
88 // Otherwise, test whether we should swap L and Index.
89 if (Precedes(Storage[L], Storage[Index]))
90 std::swap(Storage[L], Storage[Index]);
91 break;
92 }
93
94 // Otherwise, we need to compare with the smaller of L and R.
95 // Prefer R because it's closer to the end of the array.
96 unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97
98 // If Index is >= the min of L and R, then heap ordering is restored.
99 if (!Precedes(Storage[IndexToTest], Storage[Index]))
100 break;
101
102 // Otherwise, keep bubbling up.
103 std::swap(Storage[IndexToTest], Storage[Index]);
104 Index = IndexToTest;
105 }
106 }
107 Storage.pop_back();
108
109 return tmp;
110 }
111 };
112
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine {
115 DifferenceEngine &Engine;
116
117 /// The current mapping from old local values to new local values.
118 DenseMap<Value*, Value*> Values;
119
120 /// The current mapping from old blocks to new blocks.
121 DenseMap<BasicBlock*, BasicBlock*> Blocks;
122
123 DenseSet<std::pair<Value*, Value*> > TentativeValues;
124
getUnprocPredCount(BasicBlock * Block) const125 unsigned getUnprocPredCount(BasicBlock *Block) const {
126 unsigned Count = 0;
127 for (pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E; ++I)
128 if (!Blocks.count(*I)) Count++;
129 return Count;
130 }
131
132 typedef std::pair<BasicBlock*, BasicBlock*> BlockPair;
133
134 /// A type which sorts a priority queue by the number of unprocessed
135 /// predecessor blocks it has remaining.
136 ///
137 /// This is actually really expensive to calculate.
138 struct QueueSorter {
139 const FunctionDifferenceEngine &fde;
QueueSorter__anondb2877680111::FunctionDifferenceEngine::QueueSorter140 explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
141
operator ()__anondb2877680111::FunctionDifferenceEngine::QueueSorter142 bool operator()(const BlockPair &Old, const BlockPair &New) {
143 return fde.getUnprocPredCount(Old.first)
144 < fde.getUnprocPredCount(New.first);
145 }
146 };
147
148 /// A queue of unified blocks to process.
149 PriorityQueue<BlockPair, QueueSorter, 20> Queue;
150
151 /// Try to unify the given two blocks. Enqueues them for processing
152 /// if they haven't already been processed.
153 ///
154 /// Returns true if there was a problem unifying them.
tryUnify(BasicBlock * L,BasicBlock * R)155 bool tryUnify(BasicBlock *L, BasicBlock *R) {
156 BasicBlock *&Ref = Blocks[L];
157
158 if (Ref) {
159 if (Ref == R) return false;
160
161 Engine.logf("successor %l cannot be equivalent to %r; "
162 "it's already equivalent to %r")
163 << L << R << Ref;
164 return true;
165 }
166
167 Ref = R;
168 Queue.insert(BlockPair(L, R));
169 return false;
170 }
171
172 /// Unifies two instructions, given that they're known not to have
173 /// structural differences.
unify(Instruction * L,Instruction * R)174 void unify(Instruction *L, Instruction *R) {
175 DifferenceEngine::Context C(Engine, L, R);
176
177 bool Result = diff(L, R, true, true);
178 assert(!Result && "structural differences second time around?");
179 (void) Result;
180 if (!L->use_empty())
181 Values[L] = R;
182 }
183
processQueue()184 void processQueue() {
185 while (!Queue.empty()) {
186 BlockPair Pair = Queue.remove_min();
187 diff(Pair.first, Pair.second);
188 }
189 }
190
diff(BasicBlock * L,BasicBlock * R)191 void diff(BasicBlock *L, BasicBlock *R) {
192 DifferenceEngine::Context C(Engine, L, R);
193
194 BasicBlock::iterator LI = L->begin(), LE = L->end();
195 BasicBlock::iterator RI = R->begin();
196
197 do {
198 assert(LI != LE && RI != R->end());
199 Instruction *LeftI = &*LI, *RightI = &*RI;
200
201 // If the instructions differ, start the more sophisticated diff
202 // algorithm at the start of the block.
203 if (diff(LeftI, RightI, false, false)) {
204 TentativeValues.clear();
205 return runBlockDiff(L->begin(), R->begin());
206 }
207
208 // Otherwise, tentatively unify them.
209 if (!LeftI->use_empty())
210 TentativeValues.insert(std::make_pair(LeftI, RightI));
211
212 ++LI;
213 ++RI;
214 } while (LI != LE); // This is sufficient: we can't get equality of
215 // terminators if there are residual instructions.
216
217 // Unify everything in the block, non-tentatively this time.
218 TentativeValues.clear();
219 for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
220 unify(&*LI, &*RI);
221 }
222
223 bool matchForBlockDiff(Instruction *L, Instruction *R);
224 void runBlockDiff(BasicBlock::iterator LI, BasicBlock::iterator RI);
225
diffCallSites(CallSite L,CallSite R,bool Complain)226 bool diffCallSites(CallSite L, CallSite R, bool Complain) {
227 // FIXME: call attributes
228 if (!equivalentAsOperands(L.getCalledValue(), R.getCalledValue())) {
229 if (Complain) Engine.log("called functions differ");
230 return true;
231 }
232 if (L.arg_size() != R.arg_size()) {
233 if (Complain) Engine.log("argument counts differ");
234 return true;
235 }
236 for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
237 if (!equivalentAsOperands(L.getArgument(I), R.getArgument(I))) {
238 if (Complain)
239 Engine.logf("arguments %l and %r differ")
240 << L.getArgument(I) << R.getArgument(I);
241 return true;
242 }
243 return false;
244 }
245
diff(Instruction * L,Instruction * R,bool Complain,bool TryUnify)246 bool diff(Instruction *L, Instruction *R, bool Complain, bool TryUnify) {
247 // FIXME: metadata (if Complain is set)
248
249 // Different opcodes always imply different operations.
250 if (L->getOpcode() != R->getOpcode()) {
251 if (Complain) Engine.log("different instruction types");
252 return true;
253 }
254
255 if (isa<CmpInst>(L)) {
256 if (cast<CmpInst>(L)->getPredicate()
257 != cast<CmpInst>(R)->getPredicate()) {
258 if (Complain) Engine.log("different predicates");
259 return true;
260 }
261 } else if (isa<CallInst>(L)) {
262 return diffCallSites(CallSite(L), CallSite(R), Complain);
263 } else if (isa<PHINode>(L)) {
264 // FIXME: implement.
265
266 // This is really weird; type uniquing is broken?
267 if (L->getType() != R->getType()) {
268 if (!L->getType()->isPointerTy() || !R->getType()->isPointerTy()) {
269 if (Complain) Engine.log("different phi types");
270 return true;
271 }
272 }
273 return false;
274
275 // Terminators.
276 } else if (isa<InvokeInst>(L)) {
277 InvokeInst *LI = cast<InvokeInst>(L);
278 InvokeInst *RI = cast<InvokeInst>(R);
279 if (diffCallSites(CallSite(LI), CallSite(RI), Complain))
280 return true;
281
282 if (TryUnify) {
283 tryUnify(LI->getNormalDest(), RI->getNormalDest());
284 tryUnify(LI->getUnwindDest(), RI->getUnwindDest());
285 }
286 return false;
287
288 } else if (isa<BranchInst>(L)) {
289 BranchInst *LI = cast<BranchInst>(L);
290 BranchInst *RI = cast<BranchInst>(R);
291 if (LI->isConditional() != RI->isConditional()) {
292 if (Complain) Engine.log("branch conditionality differs");
293 return true;
294 }
295
296 if (LI->isConditional()) {
297 if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
298 if (Complain) Engine.log("branch conditions differ");
299 return true;
300 }
301 if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
302 }
303 if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
304 return false;
305
306 } else if (isa<SwitchInst>(L)) {
307 SwitchInst *LI = cast<SwitchInst>(L);
308 SwitchInst *RI = cast<SwitchInst>(R);
309 if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
310 if (Complain) Engine.log("switch conditions differ");
311 return true;
312 }
313 if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
314
315 bool Difference = false;
316
317 DenseMap<ConstantInt*,BasicBlock*> LCases;
318
319 for (SwitchInst::CaseIt I = LI->case_begin(), E = LI->case_end();
320 I != E; ++I)
321 LCases[I.getCaseValue()] = I.getCaseSuccessor();
322
323 for (SwitchInst::CaseIt I = RI->case_begin(), E = RI->case_end();
324 I != E; ++I) {
325 ConstantInt *CaseValue = I.getCaseValue();
326 BasicBlock *LCase = LCases[CaseValue];
327 if (LCase) {
328 if (TryUnify) tryUnify(LCase, I.getCaseSuccessor());
329 LCases.erase(CaseValue);
330 } else if (Complain || !Difference) {
331 if (Complain)
332 Engine.logf("right switch has extra case %r") << CaseValue;
333 Difference = true;
334 }
335 }
336 if (!Difference)
337 for (DenseMap<ConstantInt*,BasicBlock*>::iterator
338 I = LCases.begin(), E = LCases.end(); I != E; ++I) {
339 if (Complain)
340 Engine.logf("left switch has extra case %l") << I->first;
341 Difference = true;
342 }
343 return Difference;
344 } else if (isa<UnreachableInst>(L)) {
345 return false;
346 }
347
348 if (L->getNumOperands() != R->getNumOperands()) {
349 if (Complain) Engine.log("instructions have different operand counts");
350 return true;
351 }
352
353 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
354 Value *LO = L->getOperand(I), *RO = R->getOperand(I);
355 if (!equivalentAsOperands(LO, RO)) {
356 if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
357 return true;
358 }
359 }
360
361 return false;
362 }
363
equivalentAsOperands(Constant * L,Constant * R)364 bool equivalentAsOperands(Constant *L, Constant *R) {
365 // Use equality as a preliminary filter.
366 if (L == R)
367 return true;
368
369 if (L->getValueID() != R->getValueID())
370 return false;
371
372 // Ask the engine about global values.
373 if (isa<GlobalValue>(L))
374 return Engine.equivalentAsOperands(cast<GlobalValue>(L),
375 cast<GlobalValue>(R));
376
377 // Compare constant expressions structurally.
378 if (isa<ConstantExpr>(L))
379 return equivalentAsOperands(cast<ConstantExpr>(L),
380 cast<ConstantExpr>(R));
381
382 // Nulls of the "same type" don't always actually have the same
383 // type; I don't know why. Just white-list them.
384 if (isa<ConstantPointerNull>(L))
385 return true;
386
387 // Block addresses only match if we've already encountered the
388 // block. FIXME: tentative matches?
389 if (isa<BlockAddress>(L))
390 return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
391 == cast<BlockAddress>(R)->getBasicBlock();
392
393 return false;
394 }
395
equivalentAsOperands(ConstantExpr * L,ConstantExpr * R)396 bool equivalentAsOperands(ConstantExpr *L, ConstantExpr *R) {
397 if (L == R)
398 return true;
399 if (L->getOpcode() != R->getOpcode())
400 return false;
401
402 switch (L->getOpcode()) {
403 case Instruction::ICmp:
404 case Instruction::FCmp:
405 if (L->getPredicate() != R->getPredicate())
406 return false;
407 break;
408
409 case Instruction::GetElementPtr:
410 // FIXME: inbounds?
411 break;
412
413 default:
414 break;
415 }
416
417 if (L->getNumOperands() != R->getNumOperands())
418 return false;
419
420 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I)
421 if (!equivalentAsOperands(L->getOperand(I), R->getOperand(I)))
422 return false;
423
424 return true;
425 }
426
equivalentAsOperands(Value * L,Value * R)427 bool equivalentAsOperands(Value *L, Value *R) {
428 // Fall out if the values have different kind.
429 // This possibly shouldn't take priority over oracles.
430 if (L->getValueID() != R->getValueID())
431 return false;
432
433 // Value subtypes: Argument, Constant, Instruction, BasicBlock,
434 // InlineAsm, MDNode, MDString, PseudoSourceValue
435
436 if (isa<Constant>(L))
437 return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R));
438
439 if (isa<Instruction>(L))
440 return Values[L] == R || TentativeValues.count(std::make_pair(L, R));
441
442 if (isa<Argument>(L))
443 return Values[L] == R;
444
445 if (isa<BasicBlock>(L))
446 return Blocks[cast<BasicBlock>(L)] != R;
447
448 // Pretend everything else is identical.
449 return true;
450 }
451
452 // Avoid a gcc warning about accessing 'this' in an initializer.
this_()453 FunctionDifferenceEngine *this_() { return this; }
454
455 public:
FunctionDifferenceEngine(DifferenceEngine & Engine)456 FunctionDifferenceEngine(DifferenceEngine &Engine) :
457 Engine(Engine), Queue(QueueSorter(*this_())) {}
458
diff(Function * L,Function * R)459 void diff(Function *L, Function *R) {
460 if (L->arg_size() != R->arg_size())
461 Engine.log("different argument counts");
462
463 // Map the arguments.
464 for (Function::arg_iterator
465 LI = L->arg_begin(), LE = L->arg_end(),
466 RI = R->arg_begin(), RE = R->arg_end();
467 LI != LE && RI != RE; ++LI, ++RI)
468 Values[&*LI] = &*RI;
469
470 tryUnify(&*L->begin(), &*R->begin());
471 processQueue();
472 }
473 };
474
475 struct DiffEntry {
DiffEntry__anondb2877680111::DiffEntry476 DiffEntry() : Cost(0) {}
477
478 unsigned Cost;
479 llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
480 };
481
matchForBlockDiff(Instruction * L,Instruction * R)482 bool FunctionDifferenceEngine::matchForBlockDiff(Instruction *L,
483 Instruction *R) {
484 return !diff(L, R, false, false);
485 }
486
runBlockDiff(BasicBlock::iterator LStart,BasicBlock::iterator RStart)487 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::iterator LStart,
488 BasicBlock::iterator RStart) {
489 BasicBlock::iterator LE = LStart->getParent()->end();
490 BasicBlock::iterator RE = RStart->getParent()->end();
491
492 unsigned NL = std::distance(LStart, LE);
493
494 SmallVector<DiffEntry, 20> Paths1(NL+1);
495 SmallVector<DiffEntry, 20> Paths2(NL+1);
496
497 DiffEntry *Cur = Paths1.data();
498 DiffEntry *Next = Paths2.data();
499
500 const unsigned LeftCost = 2;
501 const unsigned RightCost = 2;
502 const unsigned MatchCost = 0;
503
504 assert(TentativeValues.empty());
505
506 // Initialize the first column.
507 for (unsigned I = 0; I != NL+1; ++I) {
508 Cur[I].Cost = I * LeftCost;
509 for (unsigned J = 0; J != I; ++J)
510 Cur[I].Path.push_back(DC_left);
511 }
512
513 for (BasicBlock::iterator RI = RStart; RI != RE; ++RI) {
514 // Initialize the first row.
515 Next[0] = Cur[0];
516 Next[0].Cost += RightCost;
517 Next[0].Path.push_back(DC_right);
518
519 unsigned Index = 1;
520 for (BasicBlock::iterator LI = LStart; LI != LE; ++LI, ++Index) {
521 if (matchForBlockDiff(&*LI, &*RI)) {
522 Next[Index] = Cur[Index-1];
523 Next[Index].Cost += MatchCost;
524 Next[Index].Path.push_back(DC_match);
525 TentativeValues.insert(std::make_pair(&*LI, &*RI));
526 } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
527 Next[Index] = Next[Index-1];
528 Next[Index].Cost += LeftCost;
529 Next[Index].Path.push_back(DC_left);
530 } else {
531 Next[Index] = Cur[Index];
532 Next[Index].Cost += RightCost;
533 Next[Index].Path.push_back(DC_right);
534 }
535 }
536
537 std::swap(Cur, Next);
538 }
539
540 // We don't need the tentative values anymore; everything from here
541 // on out should be non-tentative.
542 TentativeValues.clear();
543
544 SmallVectorImpl<char> &Path = Cur[NL].Path;
545 BasicBlock::iterator LI = LStart, RI = RStart;
546
547 DiffLogBuilder Diff(Engine.getConsumer());
548
549 // Drop trailing matches.
550 while (Path.back() == DC_match)
551 Path.pop_back();
552
553 // Skip leading matches.
554 SmallVectorImpl<char>::iterator
555 PI = Path.begin(), PE = Path.end();
556 while (PI != PE && *PI == DC_match) {
557 unify(&*LI, &*RI);
558 ++PI;
559 ++LI;
560 ++RI;
561 }
562
563 for (; PI != PE; ++PI) {
564 switch (static_cast<DiffChange>(*PI)) {
565 case DC_match:
566 assert(LI != LE && RI != RE);
567 {
568 Instruction *L = &*LI, *R = &*RI;
569 unify(L, R);
570 Diff.addMatch(L, R);
571 }
572 ++LI; ++RI;
573 break;
574
575 case DC_left:
576 assert(LI != LE);
577 Diff.addLeft(&*LI);
578 ++LI;
579 break;
580
581 case DC_right:
582 assert(RI != RE);
583 Diff.addRight(&*RI);
584 ++RI;
585 break;
586 }
587 }
588
589 // Finishing unifying and complaining about the tails of the block,
590 // which should be matches all the way through.
591 while (LI != LE) {
592 assert(RI != RE);
593 unify(&*LI, &*RI);
594 ++LI;
595 ++RI;
596 }
597
598 // If the terminators have different kinds, but one is an invoke and the
599 // other is an unconditional branch immediately following a call, unify
600 // the results and the destinations.
601 TerminatorInst *LTerm = LStart->getParent()->getTerminator();
602 TerminatorInst *RTerm = RStart->getParent()->getTerminator();
603 if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
604 if (cast<BranchInst>(LTerm)->isConditional()) return;
605 BasicBlock::iterator I = LTerm->getIterator();
606 if (I == LStart->getParent()->begin()) return;
607 --I;
608 if (!isa<CallInst>(*I)) return;
609 CallInst *LCall = cast<CallInst>(&*I);
610 InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
611 if (!equivalentAsOperands(LCall->getCalledValue(), RInvoke->getCalledValue()))
612 return;
613 if (!LCall->use_empty())
614 Values[LCall] = RInvoke;
615 tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
616 } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
617 if (cast<BranchInst>(RTerm)->isConditional()) return;
618 BasicBlock::iterator I = RTerm->getIterator();
619 if (I == RStart->getParent()->begin()) return;
620 --I;
621 if (!isa<CallInst>(*I)) return;
622 CallInst *RCall = cast<CallInst>(I);
623 InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
624 if (!equivalentAsOperands(LInvoke->getCalledValue(), RCall->getCalledValue()))
625 return;
626 if (!LInvoke->use_empty())
627 Values[LInvoke] = RCall;
628 tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
629 }
630 }
631
632 }
633
anchor()634 void DifferenceEngine::Oracle::anchor() { }
635
diff(Function * L,Function * R)636 void DifferenceEngine::diff(Function *L, Function *R) {
637 Context C(*this, L, R);
638
639 // FIXME: types
640 // FIXME: attributes and CC
641 // FIXME: parameter attributes
642
643 // If both are declarations, we're done.
644 if (L->empty() && R->empty())
645 return;
646 else if (L->empty())
647 log("left function is declaration, right function is definition");
648 else if (R->empty())
649 log("right function is declaration, left function is definition");
650 else
651 FunctionDifferenceEngine(*this).diff(L, R);
652 }
653
diff(Module * L,Module * R)654 void DifferenceEngine::diff(Module *L, Module *R) {
655 StringSet<> LNames;
656 SmallVector<std::pair<Function*,Function*>, 20> Queue;
657
658 for (Module::iterator I = L->begin(), E = L->end(); I != E; ++I) {
659 Function *LFn = &*I;
660 LNames.insert(LFn->getName());
661
662 if (Function *RFn = R->getFunction(LFn->getName()))
663 Queue.push_back(std::make_pair(LFn, RFn));
664 else
665 logf("function %l exists only in left module") << LFn;
666 }
667
668 for (Module::iterator I = R->begin(), E = R->end(); I != E; ++I) {
669 Function *RFn = &*I;
670 if (!LNames.count(RFn->getName()))
671 logf("function %r exists only in right module") << RFn;
672 }
673
674 for (SmallVectorImpl<std::pair<Function*,Function*> >::iterator
675 I = Queue.begin(), E = Queue.end(); I != E; ++I)
676 diff(I->first, I->second);
677 }
678
equivalentAsOperands(GlobalValue * L,GlobalValue * R)679 bool DifferenceEngine::equivalentAsOperands(GlobalValue *L, GlobalValue *R) {
680 if (globalValueOracle) return (*globalValueOracle)(L, R);
681 return L->getName() == R->getName();
682 }
683