1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/memstream.h"
34 #include "util/u_math.h"
35
36 namespace aco {
37
38 #ifndef NDEBUG
perfwarn(Program * program,bool cond,const char * msg,Instruction * instr)39 void perfwarn(Program *program, bool cond, const char *msg, Instruction *instr)
40 {
41 if (cond) {
42 char *out;
43 size_t outsize;
44 struct u_memstream mem;
45 u_memstream_open(&mem, &out, &outsize);
46 FILE *const memf = u_memstream_get(&mem);
47
48 fprintf(memf, "%s: ", msg);
49 aco_print_instr(instr, memf);
50 u_memstream_close(&mem);
51
52 aco_perfwarn(program, out);
53 free(out);
54
55 if (debug_flags & DEBUG_PERFWARN)
56 exit(1);
57 }
58 }
59 #endif
60
61 /**
62 * The optimizer works in 4 phases:
63 * (1) The first pass collects information for each ssa-def,
64 * propagates reg->reg operands of the same type, inline constants
65 * and neg/abs input modifiers.
66 * (2) The second pass combines instructions like mad, omod, clamp and
67 * propagates sgpr's on VALU instructions.
68 * This pass depends on information collected in the first pass.
69 * (3) The third pass goes backwards, and selects instructions,
70 * i.e. decides if a mad instruction is profitable and eliminates dead code.
71 * (4) The fourth pass cleans up the sequence: literals get applied and dead
72 * instructions are removed from the sequence.
73 */
74
75
76 struct mad_info {
77 aco_ptr<Instruction> add_instr;
78 uint32_t mul_temp_id;
79 uint16_t literal_idx;
80 bool check_literal;
81
mad_infoaco::mad_info82 mad_info(aco_ptr<Instruction> instr, uint32_t id)
83 : add_instr(std::move(instr)), mul_temp_id(id), literal_idx(0), check_literal(false) {}
84 };
85
86 enum Label {
87 label_vec = 1 << 0,
88 label_constant_32bit = 1 << 1,
89 /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
90 * 32-bit operations but this shouldn't cause any issues because we don't
91 * look through any conversions */
92 label_abs = 1 << 2,
93 label_neg = 1 << 3,
94 label_mul = 1 << 4,
95 label_temp = 1 << 5,
96 label_literal = 1 << 6,
97 label_mad = 1 << 7,
98 label_omod2 = 1 << 8,
99 label_omod4 = 1 << 9,
100 label_omod5 = 1 << 10,
101 label_clamp = 1 << 12,
102 label_undefined = 1 << 14,
103 label_vcc = 1 << 15,
104 label_b2f = 1 << 16,
105 label_add_sub = 1 << 17,
106 label_bitwise = 1 << 18,
107 label_minmax = 1 << 19,
108 label_vopc = 1 << 20,
109 label_uniform_bool = 1 << 21,
110 label_constant_64bit = 1 << 22,
111 label_uniform_bitwise = 1 << 23,
112 label_scc_invert = 1 << 24,
113 label_vcc_hint = 1 << 25,
114 label_scc_needed = 1 << 26,
115 label_b2i = 1 << 27,
116 label_constant_16bit = 1 << 29,
117 };
118
119 static constexpr uint64_t instr_usedef_labels = label_vec | label_mul | label_mad | label_add_sub |
120 label_bitwise | label_uniform_bitwise | label_minmax | label_vopc;
121 static constexpr uint64_t instr_mod_labels = label_omod2 | label_omod4 | label_omod5 | label_clamp;
122
123 static constexpr uint64_t instr_labels = instr_usedef_labels | instr_mod_labels;
124 static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
125 label_scc_invert | label_b2i;
126 static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal;
127
128 static_assert((instr_labels & temp_labels) == 0, "labels cannot intersect");
129 static_assert((instr_labels & val_labels) == 0, "labels cannot intersect");
130 static_assert((temp_labels & val_labels) == 0, "labels cannot intersect");
131
132 struct ssa_info {
133 uint64_t label;
134 union {
135 uint32_t val;
136 Temp temp;
137 Instruction* instr;
138 };
139
ssa_infoaco::ssa_info140 ssa_info() : label(0) {}
141
add_labelaco::ssa_info142 void add_label(Label new_label)
143 {
144 /* Since all the instr_usedef_labels use instr for the same thing
145 * (indicating the defining instruction), there is usually no need to
146 * clear any other instr labels. */
147 if (new_label & instr_usedef_labels)
148 label &= ~(instr_mod_labels | temp_labels | val_labels); /* instr, temp and val alias */
149
150 if (new_label & instr_mod_labels) {
151 label &= ~instr_labels;
152 label &= ~(temp_labels | val_labels); /* instr, temp and val alias */
153 }
154
155 if (new_label & temp_labels) {
156 label &= ~temp_labels;
157 label &= ~(instr_labels | val_labels); /* instr, temp and val alias */
158 }
159
160 uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
161 if (new_label & const_labels) {
162 label &= ~val_labels | const_labels;
163 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
164 } else if (new_label & val_labels) {
165 label &= ~val_labels;
166 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
167 }
168
169 label |= new_label;
170 }
171
set_vecaco::ssa_info172 void set_vec(Instruction* vec)
173 {
174 add_label(label_vec);
175 instr = vec;
176 }
177
is_vecaco::ssa_info178 bool is_vec()
179 {
180 return label & label_vec;
181 }
182
set_constantaco::ssa_info183 void set_constant(chip_class chip, uint64_t constant)
184 {
185 Operand op16((uint16_t)constant);
186 Operand op32((uint32_t)constant);
187 add_label(label_literal);
188 val = constant;
189
190 if (chip >= GFX8 && !op16.isLiteral())
191 add_label(label_constant_16bit);
192
193 if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
194 add_label(label_constant_32bit);
195
196 if (constant <= 64) {
197 add_label(label_constant_64bit);
198 } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
199 add_label(label_constant_64bit);
200 } else if (constant == 0x3FE0000000000000) { /* 0.5 */
201 add_label(label_constant_64bit);
202 } else if (constant == 0xBFE0000000000000) { /* -0.5 */
203 add_label(label_constant_64bit);
204 } else if (constant == 0x3FF0000000000000) { /* 1.0 */
205 add_label(label_constant_64bit);
206 } else if (constant == 0xBFF0000000000000) { /* -1.0 */
207 add_label(label_constant_64bit);
208 } else if (constant == 0x4000000000000000) { /* 2.0 */
209 add_label(label_constant_64bit);
210 } else if (constant == 0xC000000000000000) { /* -2.0 */
211 add_label(label_constant_64bit);
212 } else if (constant == 0x4010000000000000) { /* 4.0 */
213 add_label(label_constant_64bit);
214 } else if (constant == 0xC010000000000000) { /* -4.0 */
215 add_label(label_constant_64bit);
216 }
217
218 if (label & label_constant_64bit) {
219 val = Operand(constant).constantValue();
220 if (val != constant)
221 label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
222 }
223 }
224
is_constantaco::ssa_info225 bool is_constant(unsigned bits)
226 {
227 switch (bits) {
228 case 8:
229 return label & label_literal;
230 case 16:
231 return label & label_constant_16bit;
232 case 32:
233 return label & label_constant_32bit;
234 case 64:
235 return label & label_constant_64bit;
236 }
237 return false;
238 }
239
is_literalaco::ssa_info240 bool is_literal(unsigned bits)
241 {
242 bool is_lit = label & label_literal;
243 switch (bits) {
244 case 8:
245 return false;
246 case 16:
247 return is_lit && ~(label & label_constant_16bit);
248 case 32:
249 return is_lit && ~(label & label_constant_32bit);
250 case 64:
251 return false;
252 }
253 return false;
254 }
255
is_constant_or_literalaco::ssa_info256 bool is_constant_or_literal(unsigned bits)
257 {
258 if (bits == 64)
259 return label & label_constant_64bit;
260 else
261 return label & label_literal;
262 }
263
set_absaco::ssa_info264 void set_abs(Temp abs_temp)
265 {
266 add_label(label_abs);
267 temp = abs_temp;
268 }
269
is_absaco::ssa_info270 bool is_abs()
271 {
272 return label & label_abs;
273 }
274
set_negaco::ssa_info275 void set_neg(Temp neg_temp)
276 {
277 add_label(label_neg);
278 temp = neg_temp;
279 }
280
is_negaco::ssa_info281 bool is_neg()
282 {
283 return label & label_neg;
284 }
285
set_neg_absaco::ssa_info286 void set_neg_abs(Temp neg_abs_temp)
287 {
288 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
289 temp = neg_abs_temp;
290 }
291
set_mulaco::ssa_info292 void set_mul(Instruction* mul)
293 {
294 add_label(label_mul);
295 instr = mul;
296 }
297
is_mulaco::ssa_info298 bool is_mul()
299 {
300 return label & label_mul;
301 }
302
set_tempaco::ssa_info303 void set_temp(Temp tmp)
304 {
305 add_label(label_temp);
306 temp = tmp;
307 }
308
is_tempaco::ssa_info309 bool is_temp()
310 {
311 return label & label_temp;
312 }
313
set_madaco::ssa_info314 void set_mad(Instruction* mad, uint32_t mad_info_idx)
315 {
316 add_label(label_mad);
317 mad->pass_flags = mad_info_idx;
318 instr = mad;
319 }
320
is_madaco::ssa_info321 bool is_mad()
322 {
323 return label & label_mad;
324 }
325
set_omod2aco::ssa_info326 void set_omod2(Instruction* mul)
327 {
328 add_label(label_omod2);
329 instr = mul;
330 }
331
is_omod2aco::ssa_info332 bool is_omod2()
333 {
334 return label & label_omod2;
335 }
336
set_omod4aco::ssa_info337 void set_omod4(Instruction* mul)
338 {
339 add_label(label_omod4);
340 instr = mul;
341 }
342
is_omod4aco::ssa_info343 bool is_omod4()
344 {
345 return label & label_omod4;
346 }
347
set_omod5aco::ssa_info348 void set_omod5(Instruction* mul)
349 {
350 add_label(label_omod5);
351 instr = mul;
352 }
353
is_omod5aco::ssa_info354 bool is_omod5()
355 {
356 return label & label_omod5;
357 }
358
set_clampaco::ssa_info359 void set_clamp(Instruction *med3)
360 {
361 add_label(label_clamp);
362 instr = med3;
363 }
364
is_clampaco::ssa_info365 bool is_clamp()
366 {
367 return label & label_clamp;
368 }
369
set_undefinedaco::ssa_info370 void set_undefined()
371 {
372 add_label(label_undefined);
373 }
374
is_undefinedaco::ssa_info375 bool is_undefined()
376 {
377 return label & label_undefined;
378 }
379
set_vccaco::ssa_info380 void set_vcc(Temp vcc)
381 {
382 add_label(label_vcc);
383 temp = vcc;
384 }
385
is_vccaco::ssa_info386 bool is_vcc()
387 {
388 return label & label_vcc;
389 }
390
set_b2faco::ssa_info391 void set_b2f(Temp val)
392 {
393 add_label(label_b2f);
394 temp = val;
395 }
396
is_b2faco::ssa_info397 bool is_b2f()
398 {
399 return label & label_b2f;
400 }
401
set_add_subaco::ssa_info402 void set_add_sub(Instruction *add_sub_instr)
403 {
404 add_label(label_add_sub);
405 instr = add_sub_instr;
406 }
407
is_add_subaco::ssa_info408 bool is_add_sub()
409 {
410 return label & label_add_sub;
411 }
412
set_bitwiseaco::ssa_info413 void set_bitwise(Instruction *bitwise_instr)
414 {
415 add_label(label_bitwise);
416 instr = bitwise_instr;
417 }
418
is_bitwiseaco::ssa_info419 bool is_bitwise()
420 {
421 return label & label_bitwise;
422 }
423
set_uniform_bitwiseaco::ssa_info424 void set_uniform_bitwise()
425 {
426 add_label(label_uniform_bitwise);
427 }
428
is_uniform_bitwiseaco::ssa_info429 bool is_uniform_bitwise()
430 {
431 return label & label_uniform_bitwise;
432 }
433
set_minmaxaco::ssa_info434 void set_minmax(Instruction *minmax_instr)
435 {
436 add_label(label_minmax);
437 instr = minmax_instr;
438 }
439
is_minmaxaco::ssa_info440 bool is_minmax()
441 {
442 return label & label_minmax;
443 }
444
set_vopcaco::ssa_info445 void set_vopc(Instruction *vopc_instr)
446 {
447 add_label(label_vopc);
448 instr = vopc_instr;
449 }
450
is_vopcaco::ssa_info451 bool is_vopc()
452 {
453 return label & label_vopc;
454 }
455
set_scc_neededaco::ssa_info456 void set_scc_needed()
457 {
458 add_label(label_scc_needed);
459 }
460
is_scc_neededaco::ssa_info461 bool is_scc_needed()
462 {
463 return label & label_scc_needed;
464 }
465
set_scc_invertaco::ssa_info466 void set_scc_invert(Temp scc_inv)
467 {
468 add_label(label_scc_invert);
469 temp = scc_inv;
470 }
471
is_scc_invertaco::ssa_info472 bool is_scc_invert()
473 {
474 return label & label_scc_invert;
475 }
476
set_uniform_boolaco::ssa_info477 void set_uniform_bool(Temp uniform_bool)
478 {
479 add_label(label_uniform_bool);
480 temp = uniform_bool;
481 }
482
is_uniform_boolaco::ssa_info483 bool is_uniform_bool()
484 {
485 return label & label_uniform_bool;
486 }
487
set_vcc_hintaco::ssa_info488 void set_vcc_hint()
489 {
490 add_label(label_vcc_hint);
491 }
492
is_vcc_hintaco::ssa_info493 bool is_vcc_hint()
494 {
495 return label & label_vcc_hint;
496 }
497
set_b2iaco::ssa_info498 void set_b2i(Temp val)
499 {
500 add_label(label_b2i);
501 temp = val;
502 }
503
is_b2iaco::ssa_info504 bool is_b2i()
505 {
506 return label & label_b2i;
507 }
508
509 };
510
511 struct opt_ctx {
512 Program* program;
513 std::vector<aco_ptr<Instruction>> instructions;
514 ssa_info* info;
515 std::pair<uint32_t,Temp> last_literal;
516 std::vector<mad_info> mad_infos;
517 std::vector<uint16_t> uses;
518 };
519
520 struct CmpInfo {
521 aco_opcode ordered;
522 aco_opcode unordered;
523 aco_opcode ordered_swapped;
524 aco_opcode unordered_swapped;
525 aco_opcode inverse;
526 aco_opcode f32;
527 unsigned size;
528 };
529
530 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info);
531
can_swap_operands(aco_ptr<Instruction> & instr)532 bool can_swap_operands(aco_ptr<Instruction>& instr)
533 {
534 if (instr->operands[0].isConstant() ||
535 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
536 return false;
537
538 switch (instr->opcode) {
539 case aco_opcode::v_add_u32:
540 case aco_opcode::v_add_co_u32:
541 case aco_opcode::v_add_co_u32_e64:
542 case aco_opcode::v_add_i32:
543 case aco_opcode::v_add_f16:
544 case aco_opcode::v_add_f32:
545 case aco_opcode::v_mul_f16:
546 case aco_opcode::v_mul_f32:
547 case aco_opcode::v_or_b32:
548 case aco_opcode::v_and_b32:
549 case aco_opcode::v_xor_b32:
550 case aco_opcode::v_max_f16:
551 case aco_opcode::v_max_f32:
552 case aco_opcode::v_min_f16:
553 case aco_opcode::v_min_f32:
554 case aco_opcode::v_max_i32:
555 case aco_opcode::v_min_i32:
556 case aco_opcode::v_max_u32:
557 case aco_opcode::v_min_u32:
558 case aco_opcode::v_max_i16:
559 case aco_opcode::v_min_i16:
560 case aco_opcode::v_max_u16:
561 case aco_opcode::v_min_u16:
562 case aco_opcode::v_max_i16_e64:
563 case aco_opcode::v_min_i16_e64:
564 case aco_opcode::v_max_u16_e64:
565 case aco_opcode::v_min_u16_e64:
566 return true;
567 case aco_opcode::v_sub_f16:
568 instr->opcode = aco_opcode::v_subrev_f16;
569 return true;
570 case aco_opcode::v_sub_f32:
571 instr->opcode = aco_opcode::v_subrev_f32;
572 return true;
573 case aco_opcode::v_sub_co_u32:
574 instr->opcode = aco_opcode::v_subrev_co_u32;
575 return true;
576 case aco_opcode::v_sub_u16:
577 instr->opcode = aco_opcode::v_subrev_u16;
578 return true;
579 case aco_opcode::v_sub_u32:
580 instr->opcode = aco_opcode::v_subrev_u32;
581 return true;
582 default: {
583 CmpInfo info;
584 get_cmp_info(instr->opcode, &info);
585 if (info.ordered == instr->opcode) {
586 instr->opcode = info.ordered_swapped;
587 return true;
588 }
589 if (info.unordered == instr->opcode) {
590 instr->opcode = info.unordered_swapped;
591 return true;
592 }
593 return false;
594 }
595 }
596 }
597
can_use_VOP3(opt_ctx & ctx,const aco_ptr<Instruction> & instr)598 bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
599 {
600 if (instr->isVOP3())
601 return true;
602
603 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
604 return false;
605
606 if (instr->isDPP() || instr->isSDWA())
607 return false;
608
609 return instr->opcode != aco_opcode::v_madmk_f32 &&
610 instr->opcode != aco_opcode::v_madak_f32 &&
611 instr->opcode != aco_opcode::v_madmk_f16 &&
612 instr->opcode != aco_opcode::v_madak_f16 &&
613 instr->opcode != aco_opcode::v_fmamk_f32 &&
614 instr->opcode != aco_opcode::v_fmaak_f32 &&
615 instr->opcode != aco_opcode::v_fmamk_f16 &&
616 instr->opcode != aco_opcode::v_fmaak_f16 &&
617 instr->opcode != aco_opcode::v_readlane_b32 &&
618 instr->opcode != aco_opcode::v_writelane_b32 &&
619 instr->opcode != aco_opcode::v_readfirstlane_b32;
620 }
621
can_apply_sgprs(opt_ctx & ctx,aco_ptr<Instruction> & instr)622 bool can_apply_sgprs(opt_ctx& ctx, aco_ptr<Instruction>& instr)
623 {
624 if (instr->isSDWA() && ctx.program->chip_class < GFX9)
625 return false;
626 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
627 instr->opcode != aco_opcode::v_readlane_b32 &&
628 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
629 instr->opcode != aco_opcode::v_writelane_b32 &&
630 instr->opcode != aco_opcode::v_writelane_b32_e64;
631 }
632
to_VOP3(opt_ctx & ctx,aco_ptr<Instruction> & instr)633 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
634 {
635 if (instr->isVOP3())
636 return;
637
638 aco_ptr<Instruction> tmp = std::move(instr);
639 Format format = asVOP3(tmp->format);
640 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
641 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
642 for (unsigned i = 0; i < instr->definitions.size(); i++) {
643 instr->definitions[i] = tmp->definitions[i];
644 if (instr->definitions[i].isTemp()) {
645 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
646 if (info.label & instr_usedef_labels && info.instr == tmp.get())
647 info.instr = instr.get();
648 }
649 }
650 /* we don't need to update any instr_mod_labels because they either haven't
651 * been applied yet or this instruction isn't dead and so they've been ignored */
652 }
653
654 /* only covers special cases */
alu_can_accept_constant(aco_opcode opcode,unsigned operand)655 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
656 {
657 switch (opcode) {
658 case aco_opcode::v_interp_p2_f32:
659 case aco_opcode::v_mac_f32:
660 case aco_opcode::v_writelane_b32:
661 case aco_opcode::v_writelane_b32_e64:
662 case aco_opcode::v_cndmask_b32:
663 return operand != 2;
664 case aco_opcode::s_addk_i32:
665 case aco_opcode::s_mulk_i32:
666 case aco_opcode::p_wqm:
667 case aco_opcode::p_extract_vector:
668 case aco_opcode::p_split_vector:
669 case aco_opcode::v_readlane_b32:
670 case aco_opcode::v_readlane_b32_e64:
671 case aco_opcode::v_readfirstlane_b32:
672 return operand != 0;
673 default:
674 return true;
675 }
676 }
677
valu_can_accept_vgpr(aco_ptr<Instruction> & instr,unsigned operand)678 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
679 {
680 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
681 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
682 return operand != 1;
683 return true;
684 }
685
686 /* check constant bus and literal limitations */
check_vop3_operands(opt_ctx & ctx,unsigned num_operands,Operand * operands)687 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
688 {
689 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
690 Operand literal32(s1);
691 Operand literal64(s2);
692 unsigned num_sgprs = 0;
693 unsigned sgpr[] = {0, 0};
694
695 for (unsigned i = 0; i < num_operands; i++) {
696 Operand op = operands[i];
697
698 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
699 /* two reads of the same SGPR count as 1 to the limit */
700 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
701 if (num_sgprs < 2)
702 sgpr[num_sgprs++] = op.tempId();
703 limit--;
704 if (limit < 0)
705 return false;
706 }
707 } else if (op.isLiteral()) {
708 if (ctx.program->chip_class < GFX10)
709 return false;
710
711 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
712 return false;
713 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
714 return false;
715
716 /* Any number of 32-bit literals counts as only 1 to the limit. Same
717 * (but separately) for 64-bit literals. */
718 if (op.size() == 1 && literal32.isUndefined()) {
719 limit--;
720 literal32 = op;
721 } else if (op.size() == 2 && literal64.isUndefined()) {
722 limit--;
723 literal64 = op;
724 }
725
726 if (limit < 0)
727 return false;
728 }
729 }
730
731 return true;
732 }
733
parse_base_offset(opt_ctx & ctx,Instruction * instr,unsigned op_index,Temp * base,uint32_t * offset,bool prevent_overflow)734 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset, bool prevent_overflow)
735 {
736 Operand op = instr->operands[op_index];
737
738 if (!op.isTemp())
739 return false;
740 Temp tmp = op.getTemp();
741 if (!ctx.info[tmp.id()].is_add_sub())
742 return false;
743
744 Instruction *add_instr = ctx.info[tmp.id()].instr;
745
746 switch (add_instr->opcode) {
747 case aco_opcode::v_add_u32:
748 case aco_opcode::v_add_co_u32:
749 case aco_opcode::v_add_co_u32_e64:
750 case aco_opcode::s_add_i32:
751 case aco_opcode::s_add_u32:
752 break;
753 default:
754 return false;
755 }
756 if (prevent_overflow && !add_instr->definitions[0].isNUW())
757 return false;
758
759 if (add_instr->usesModifiers())
760 return false;
761
762 for (unsigned i = 0; i < 2; i++) {
763 if (add_instr->operands[i].isConstant()) {
764 *offset = add_instr->operands[i].constantValue();
765 } else if (add_instr->operands[i].isTemp() &&
766 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
767 *offset = ctx.info[add_instr->operands[i].tempId()].val;
768 } else {
769 continue;
770 }
771 if (!add_instr->operands[!i].isTemp())
772 continue;
773
774 uint32_t offset2 = 0;
775 if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) {
776 *offset += offset2;
777 } else {
778 *base = add_instr->operands[!i].getTemp();
779 }
780 return true;
781 }
782
783 return false;
784 }
785
get_operand_size(aco_ptr<Instruction> & instr,unsigned index)786 unsigned get_operand_size(aco_ptr<Instruction>& instr, unsigned index)
787 {
788 if (instr->format == Format::PSEUDO)
789 return instr->operands[index].bytes() * 8u;
790 else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32)
791 return index == 2 ? 64 : 32;
792 else if (instr->isVALU() || instr->isSALU())
793 return instr_info.operand_size[(int)instr->opcode];
794 else
795 return 0;
796 }
797
get_constant_op(opt_ctx & ctx,ssa_info info,uint32_t bits)798 Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
799 {
800 if (bits == 8)
801 return Operand((uint8_t)info.val);
802 if (bits == 16)
803 return Operand((uint16_t)info.val);
804 // TODO: this functions shouldn't be needed if we store Operand instead of value.
805 Operand op(info.val, bits == 64);
806 if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
807 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
808 return op;
809 }
810
fixed_to_exec(Operand op)811 bool fixed_to_exec(Operand op)
812 {
813 return op.isFixed() && op.physReg() == exec;
814 }
815
label_instruction(opt_ctx & ctx,Block & block,aco_ptr<Instruction> & instr)816 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
817 {
818 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
819 ASSERTED bool all_const = false;
820 for (Operand& op : instr->operands)
821 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
822 perfwarn(ctx.program, all_const, "All instruction operands are constant", instr.get());
823
824 ASSERTED bool is_copy = instr->opcode == aco_opcode::s_mov_b32 ||
825 instr->opcode == aco_opcode::s_mov_b64 ||
826 instr->opcode == aco_opcode::v_mov_b32;
827 perfwarn(ctx.program, is_copy && !instr->usesModifiers(), "Use p_parallelcopy instead", instr.get());
828 }
829
830 for (unsigned i = 0; i < instr->operands.size(); i++)
831 {
832 if (!instr->operands[i].isTemp())
833 continue;
834
835 ssa_info info = ctx.info[instr->operands[i].tempId()];
836 /* propagate undef */
837 if (info.is_undefined() && is_phi(instr))
838 instr->operands[i] = Operand(instr->operands[i].regClass());
839 /* propagate reg->reg of same type */
840 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
841 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
842 info = ctx.info[info.temp.id()];
843 }
844
845 /* SALU / PSEUDO: propagate inline constants */
846 if (instr->isSALU() || instr->format == Format::PSEUDO) {
847 bool is_subdword = false;
848 // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
849 if (instr->format == Format::PSEUDO) {
850 is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
851 [] (const Definition& def) { return def.regClass().is_subdword();});
852 is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
853 [] (const Operand& op) { return op.bytes() % 4;});
854 if (is_subdword && ctx.program->chip_class < GFX9)
855 continue;
856 }
857
858 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
859 instr->operands[i].setTemp(info.temp);
860 info = ctx.info[info.temp.id()];
861 } else if (info.is_temp() && info.temp.type() == RegType::vgpr &&
862 info.temp.bytes() == instr->operands[i].bytes()) {
863 /* propagate vgpr if it can take it */
864 switch (instr->opcode) {
865 case aco_opcode::p_create_vector:
866 case aco_opcode::p_split_vector:
867 case aco_opcode::p_extract_vector:
868 case aco_opcode::p_phi:
869 case aco_opcode::p_parallelcopy: {
870 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
871 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
872 if (all_vgpr) {
873 instr->operands[i] = Operand(info.temp);
874 info = ctx.info[info.temp.id()];
875 }
876 break;
877 }
878 default:
879 break;
880 }
881 }
882 unsigned bits = get_operand_size(instr, i);
883 if ((info.is_constant(bits) || (info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
884 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
885 instr->operands[i] = get_constant_op(ctx, info, bits);
886 continue;
887 }
888 }
889
890 /* VALU: propagate neg, abs & inline constants */
891 else if (instr->isVALU()) {
892 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
893 instr->operands[i].setTemp(info.temp);
894 info = ctx.info[info.temp.id()];
895 }
896 /* applying SGPRs to VOP1 doesn't increase code size and DCE is helped by doing it earlier */
897 if (info.is_temp() && info.temp.type() == RegType::sgpr && can_apply_sgprs(ctx, instr) && instr->operands.size() == 1) {
898 instr->operands[i].setTemp(info.temp);
899 info = ctx.info[info.temp.id()];
900 }
901
902 /* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */
903 unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4;
904 can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode];
905
906 if (instr->isSDWA())
907 can_use_mod = can_use_mod && (static_cast<SDWA_instruction*>(instr.get())->sel[i] & sdwa_asuint) == sdwa_udword;
908 else
909 can_use_mod = can_use_mod && (instr->isDPP() || can_use_VOP3(ctx, instr));
910
911 if (info.is_abs() && can_use_mod) {
912 if (!instr->isDPP() && !instr->isSDWA())
913 to_VOP3(ctx, instr);
914 instr->operands[i] = Operand(info.temp);
915 if (instr->isDPP())
916 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
917 else if (instr->isSDWA())
918 static_cast<SDWA_instruction*>(instr.get())->abs[i] = true;
919 else
920 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
921 }
922 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
923 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
924 instr->operands[i].setTemp(info.temp);
925 continue;
926 } else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) {
927 instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16;
928 instr->operands[i].setTemp(info.temp);
929 continue;
930 } else if (info.is_neg() && can_use_mod) {
931 if (!instr->isDPP() && !instr->isSDWA())
932 to_VOP3(ctx, instr);
933 instr->operands[i].setTemp(info.temp);
934 if (instr->isDPP())
935 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
936 else if (instr->isSDWA())
937 static_cast<SDWA_instruction*>(instr.get())->neg[i] = true;
938 else
939 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
940 continue;
941 }
942 unsigned bits = get_operand_size(instr, i);
943 if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i) &&
944 (!instr->isSDWA() || ctx.program->chip_class >= GFX9)) {
945 Operand op = get_constant_op(ctx, info, bits);
946 perfwarn(ctx.program, instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
947 if (i == 0 || instr->isSDWA() || instr->opcode == aco_opcode::v_readlane_b32 ||
948 instr->opcode == aco_opcode::v_writelane_b32) {
949 instr->operands[i] = op;
950 continue;
951 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
952 instr->operands[i] = instr->operands[0];
953 instr->operands[0] = op;
954 continue;
955 } else if (can_use_VOP3(ctx, instr)) {
956 to_VOP3(ctx, instr);
957 instr->operands[i] = op;
958 continue;
959 }
960 }
961 }
962
963 /* MUBUF: propagate constants and combine additions */
964 else if (instr->format == Format::MUBUF) {
965 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
966 Temp base;
967 uint32_t offset;
968 while (info.is_temp())
969 info = ctx.info[info.temp.id()];
970
971 /* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr
972 * overflow for scratch accesses works only on GFX9+ and saddr overflow
973 * never works. Since swizzling is the only thing that separates
974 * scratch accesses and other accesses and swizzling changing how
975 * addressing works significantly, this probably applies to swizzled
976 * MUBUF accesses. */
977 bool vaddr_prevent_overflow = mubuf->swizzled && ctx.program->chip_class < GFX9;
978 bool saddr_prevent_overflow = mubuf->swizzled;
979
980 if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
981 assert(!mubuf->idxen);
982 instr->operands[1] = Operand(v1);
983 mubuf->offset += info.val;
984 mubuf->offen = false;
985 continue;
986 } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
987 instr->operands[2] = Operand((uint32_t) 0);
988 mubuf->offset += info.val;
989 continue;
990 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, vaddr_prevent_overflow) &&
991 base.regClass() == v1 && mubuf->offset + offset < 4096) {
992 assert(!mubuf->idxen);
993 instr->operands[1].setTemp(base);
994 mubuf->offset += offset;
995 continue;
996 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, saddr_prevent_overflow) &&
997 base.regClass() == s1 && mubuf->offset + offset < 4096) {
998 instr->operands[i].setTemp(base);
999 mubuf->offset += offset;
1000 continue;
1001 }
1002 }
1003
1004 /* DS: combine additions */
1005 else if (instr->format == Format::DS) {
1006
1007 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
1008 Temp base;
1009 uint32_t offset;
1010 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
1011 if (has_usable_ds_offset &&
1012 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) &&
1013 base.regClass() == instr->operands[i].regClass() &&
1014 instr->opcode != aco_opcode::ds_swizzle_b32) {
1015 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
1016 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
1017 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
1018 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
1019
1020 if ((offset & mask) == 0 &&
1021 ds->offset0 + (offset >> shifts) <= 255 &&
1022 ds->offset1 + (offset >> shifts) <= 255) {
1023 instr->operands[i].setTemp(base);
1024 ds->offset0 += offset >> shifts;
1025 ds->offset1 += offset >> shifts;
1026 }
1027 } else {
1028 if (ds->offset0 + offset <= 65535) {
1029 instr->operands[i].setTemp(base);
1030 ds->offset0 += offset;
1031 }
1032 }
1033 }
1034 }
1035
1036 /* SMEM: propagate constants and combine additions */
1037 else if (instr->format == Format::SMEM) {
1038
1039 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
1040 Temp base;
1041 uint32_t offset;
1042 bool prevent_overflow = smem->operands[0].size() > 2 || smem->prevent_overflow;
1043 if (i == 1 && info.is_constant_or_literal(32) &&
1044 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
1045 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
1046 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
1047 instr->operands[i] = Operand(info.val);
1048 continue;
1049 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, prevent_overflow) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
1050 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
1051 if (soe &&
1052 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
1053 ctx.info[smem->operands.back().tempId()].val != 0)) {
1054 continue;
1055 }
1056 if (soe) {
1057 smem->operands[1] = Operand(offset);
1058 smem->operands.back() = Operand(base);
1059 } else {
1060 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
1061 new_instr->operands[0] = smem->operands[0];
1062 new_instr->operands[1] = Operand(offset);
1063 if (smem->definitions.empty())
1064 new_instr->operands[2] = smem->operands[2];
1065 new_instr->operands.back() = Operand(base);
1066 if (!smem->definitions.empty())
1067 new_instr->definitions[0] = smem->definitions[0];
1068 new_instr->sync = smem->sync;
1069 new_instr->glc = smem->glc;
1070 new_instr->dlc = smem->dlc;
1071 new_instr->nv = smem->nv;
1072 new_instr->disable_wqm = smem->disable_wqm;
1073 instr.reset(new_instr);
1074 smem = static_cast<SMEM_instruction *>(instr.get());
1075 }
1076 continue;
1077 }
1078 }
1079
1080 else if (instr->format == Format::PSEUDO_BRANCH) {
1081 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1082 /* Flip the branch instruction to get rid of the scc_invert instruction */
1083 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
1084 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
1085 }
1086 }
1087 }
1088
1089 /* if this instruction doesn't define anything, return */
1090 if (instr->definitions.empty())
1091 return;
1092
1093 if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
1094 ctx.info[instr->definitions[0].tempId()].set_vopc(instr.get());
1095 return;
1096 }
1097
1098 switch (instr->opcode) {
1099 case aco_opcode::p_create_vector: {
1100 bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() &&
1101 instr->operands[0].regClass() == instr->definitions[0].regClass();
1102 if (copy_prop) {
1103 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1104 break;
1105 }
1106
1107 /* expand vector operands */
1108 bool accept_subdword = instr->definitions[0].regClass().type() == RegType::vgpr &&
1109 std::all_of(instr->operands.begin(), instr->operands.end(),
1110 [&] (const Operand& op) { return !op.isLiteral() &&
1111 (ctx.program->chip_class >= GFX9 || (op.hasRegClass() && op.regClass().type() == RegType::vgpr));});
1112
1113 std::vector<Operand> ops;
1114 for (const Operand& op : instr->operands) {
1115 if (!op.isTemp() || !ctx.info[op.tempId()].is_vec()) {
1116 ops.emplace_back(op);
1117 continue;
1118 }
1119 Instruction* vec = ctx.info[op.tempId()].instr;
1120 bool is_subdword = std::any_of(vec->operands.begin(), vec->operands.end(),
1121 [&] (const Operand& op) { return op.bytes() % 4; } );
1122
1123 if (accept_subdword || !is_subdword) {
1124 for (const Operand& vec_op : vec->operands) {
1125 ops.emplace_back(vec_op);
1126 if (op.isLiteral() || (ctx.program->chip_class <= GFX8 &&
1127 (!op.hasRegClass() || op.regClass().type() == RegType::sgpr)))
1128 accept_subdword = false;
1129 }
1130 } else {
1131 ops.emplace_back(op);
1132 }
1133 }
1134
1135 /* combine expanded operands to new vector */
1136 if (ops.size() != instr->operands.size()) {
1137 assert(ops.size() > instr->operands.size());
1138 Definition def = instr->definitions[0];
1139 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, ops.size(), 1));
1140 for (unsigned i = 0; i < ops.size(); i++) {
1141 if (ops[i].isTemp() && ctx.info[ops[i].tempId()].is_temp() &&
1142 ctx.info[ops[i].tempId()].temp.type() == def.regClass().type())
1143 ops[i].setTemp(ctx.info[ops[i].tempId()].temp);
1144 instr->operands[i] = ops[i];
1145 }
1146 instr->definitions[0] = def;
1147 } else {
1148 for (unsigned i = 0; i < ops.size(); i++) {
1149 assert(instr->operands[i] == ops[i]);
1150 }
1151 }
1152 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
1153 break;
1154 }
1155 case aco_opcode::p_split_vector: {
1156 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1157
1158 if (info.is_constant_or_literal(32)) {
1159 uint32_t val = info.val;
1160 for (Definition def : instr->definitions) {
1161 uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u);
1162 ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask);
1163 val >>= def.bytes() * 8u;
1164 }
1165 break;
1166 } else if (!info.is_vec()) {
1167 break;
1168 }
1169
1170 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
1171 unsigned split_offset = 0;
1172 unsigned vec_offset = 0;
1173 unsigned vec_index = 0;
1174 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
1175 while (vec_offset < split_offset && vec_index < vec->operands.size())
1176 vec_offset += vec->operands[vec_index++].bytes();
1177
1178 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
1179 continue;
1180
1181 Operand vec_op = vec->operands[vec_index];
1182 if (vec_op.isConstant()) {
1183 ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
1184 } else if (vec_op.isUndefined()) {
1185 ctx.info[instr->definitions[i].tempId()].set_undefined();
1186 } else {
1187 assert(vec_op.isTemp());
1188 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
1189 }
1190 }
1191 break;
1192 }
1193 case aco_opcode::p_extract_vector: { /* mov */
1194 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1195 const unsigned index = instr->operands[1].constantValue();
1196 const unsigned dst_offset = index * instr->definitions[0].bytes();
1197
1198 if (info.is_constant_or_literal(32)) {
1199 uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u);
1200 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask);
1201 break;
1202 } else if (!info.is_vec()) {
1203 break;
1204 }
1205
1206 /* check if we index directly into a vector element */
1207 Instruction* vec = info.instr;
1208 unsigned offset = 0;
1209
1210 for (const Operand& op : vec->operands) {
1211 if (offset < dst_offset) {
1212 offset += op.bytes();
1213 continue;
1214 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
1215 break;
1216 }
1217
1218 /* convert this extract into a copy instruction */
1219 instr->opcode = aco_opcode::p_parallelcopy;
1220 instr->operands.pop_back();
1221 instr->operands[0] = op;
1222
1223 if (op.isConstant()) {
1224 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
1225 } else if (op.isUndefined()) {
1226 ctx.info[instr->definitions[0].tempId()].set_undefined();
1227 } else {
1228 assert(op.isTemp());
1229 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
1230 }
1231 break;
1232 }
1233 break;
1234 }
1235 case aco_opcode::p_parallelcopy: /* propagate */
1236 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_vec() &&
1237 instr->operands[0].regClass() != instr->definitions[0].regClass()) {
1238 /* We might not be able to copy-propagate if it's a SGPR->VGPR copy, so
1239 * duplicate the vector instead.
1240 */
1241 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
1242 aco_ptr<Instruction> old_copy = std::move(instr);
1243
1244 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, vec->operands.size(), 1));
1245 instr->definitions[0] = old_copy->definitions[0];
1246 std::copy(vec->operands.begin(), vec->operands.end(), instr->operands.begin());
1247 for (unsigned i = 0; i < vec->operands.size(); i++) {
1248 Operand& op = instr->operands[i];
1249 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
1250 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
1251 op.setTemp(ctx.info[op.tempId()].temp);
1252 }
1253 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
1254 break;
1255 }
1256 /* fallthrough */
1257 case aco_opcode::p_as_uniform:
1258 if (instr->definitions[0].isFixed()) {
1259 /* don't copy-propagate copies into fixed registers */
1260 } else if (instr->usesModifiers()) {
1261 // TODO
1262 } else if (instr->operands[0].isConstant()) {
1263 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
1264 } else if (instr->operands[0].isTemp()) {
1265 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1266 } else {
1267 assert(instr->operands[0].isFixed());
1268 }
1269 break;
1270 case aco_opcode::p_is_helper:
1271 if (!ctx.program->needs_wqm)
1272 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
1273 break;
1274 case aco_opcode::v_mul_f16:
1275 case aco_opcode::v_mul_f32: { /* omod */
1276 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1277
1278 /* TODO: try to move the negate/abs modifier to the consumer instead */
1279 if (instr->usesModifiers())
1280 break;
1281
1282 bool fp16 = instr->opcode == aco_opcode::v_mul_f16;
1283
1284 for (unsigned i = 0; i < 2; i++) {
1285 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1286 if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */
1287 ctx.info[instr->operands[i].tempId()].set_omod2(instr.get());
1288 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */
1289 ctx.info[instr->operands[i].tempId()].set_omod4(instr.get());
1290 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3800 : 0x3f000000)) { /* 0.5 */
1291 ctx.info[instr->operands[i].tempId()].set_omod5(instr.get());
1292 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) &&
1293 !(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */
1294 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1295 } else {
1296 continue;
1297 }
1298 break;
1299 }
1300 }
1301 break;
1302 }
1303 case aco_opcode::v_and_b32: { /* abs */
1304 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1305 instr->operands[1].getTemp().type() == RegType::vgpr &&
1306 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) ||
1307 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu))))
1308 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1309 else
1310 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1311 break;
1312 }
1313 case aco_opcode::v_xor_b32: { /* neg */
1314 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1315 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) ||
1316 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) {
1317 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1318 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1319 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1320 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1321 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1322 instr->opcode = aco_opcode::v_or_b32;
1323 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1324 } else {
1325 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1326 }
1327 }
1328 } else {
1329 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1330 }
1331 break;
1332 }
1333 case aco_opcode::v_med3_f16:
1334 case aco_opcode::v_med3_f32: { /* clamp */
1335 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1336 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1337 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1338 vop3->omod != 0 || vop3->opsel != 0)
1339 break;
1340
1341 unsigned idx = 0;
1342 bool found_zero = false, found_one = false;
1343 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
1344 for (unsigned i = 0; i < 3; i++)
1345 {
1346 if (instr->operands[i].constantEquals(0))
1347 found_zero = true;
1348 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
1349 found_one = true;
1350 else
1351 idx = i;
1352 }
1353 if (found_zero && found_one && instr->operands[idx].isTemp())
1354 ctx.info[instr->operands[idx].tempId()].set_clamp(instr.get());
1355 break;
1356 }
1357 case aco_opcode::v_cndmask_b32:
1358 if (instr->operands[0].constantEquals(0) &&
1359 instr->operands[1].constantEquals(0xFFFFFFFF))
1360 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1361 else if (instr->operands[0].constantEquals(0) &&
1362 instr->operands[1].constantEquals(0x3f800000u))
1363 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1364 else if (instr->operands[0].constantEquals(0) &&
1365 instr->operands[1].constantEquals(1))
1366 ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp());
1367
1368 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1369 break;
1370 case aco_opcode::v_cmp_lg_u32:
1371 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1372 instr->operands[0].constantEquals(0) &&
1373 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1374 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1375 break;
1376 case aco_opcode::p_linear_phi: {
1377 /* lower_bool_phis() can create phis like this */
1378 bool all_same_temp = instr->operands[0].isTemp();
1379 /* this check is needed when moving uniform loop counters out of a divergent loop */
1380 if (all_same_temp)
1381 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1382 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1383 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1384 all_same_temp = false;
1385 }
1386 if (all_same_temp) {
1387 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1388 } else {
1389 bool all_undef = instr->operands[0].isUndefined();
1390 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1391 if (!instr->operands[i].isUndefined())
1392 all_undef = false;
1393 }
1394 if (all_undef)
1395 ctx.info[instr->definitions[0].tempId()].set_undefined();
1396 }
1397 break;
1398 }
1399 case aco_opcode::v_add_u32:
1400 case aco_opcode::v_add_co_u32:
1401 case aco_opcode::v_add_co_u32_e64:
1402 case aco_opcode::s_add_i32:
1403 case aco_opcode::s_add_u32:
1404 case aco_opcode::v_subbrev_co_u32:
1405 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1406 break;
1407 case aco_opcode::s_not_b32:
1408 case aco_opcode::s_not_b64:
1409 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1410 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1411 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1412 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1413 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1414 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1415 }
1416 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1417 break;
1418 case aco_opcode::s_and_b32:
1419 case aco_opcode::s_and_b64:
1420 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1421 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1422 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1423 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1424 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1425 break;
1426 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1427 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1428 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1429 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1430 break;
1431 } else if (ctx.info[instr->operands[0].tempId()].is_vopc()) {
1432 Instruction* vopc_instr = ctx.info[instr->operands[0].tempId()].instr;
1433 /* Remove superfluous s_and when the VOPC instruction uses the same exec and thus already produces the same result */
1434 if (vopc_instr->pass_flags == instr->pass_flags) {
1435 assert(instr->pass_flags > 0);
1436 ctx.info[instr->definitions[0].tempId()].set_temp(vopc_instr->definitions[0].getTemp());
1437 break;
1438 }
1439 }
1440 }
1441 /* fallthrough */
1442 case aco_opcode::s_or_b32:
1443 case aco_opcode::s_or_b64:
1444 case aco_opcode::s_xor_b32:
1445 case aco_opcode::s_xor_b64:
1446 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1447 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1448 })) {
1449 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1450 }
1451 /* fallthrough */
1452 case aco_opcode::s_lshl_b32:
1453 case aco_opcode::v_or_b32:
1454 case aco_opcode::v_lshlrev_b32:
1455 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1456 break;
1457 case aco_opcode::v_min_f32:
1458 case aco_opcode::v_min_f16:
1459 case aco_opcode::v_min_u32:
1460 case aco_opcode::v_min_i32:
1461 case aco_opcode::v_min_u16:
1462 case aco_opcode::v_min_i16:
1463 case aco_opcode::v_max_f32:
1464 case aco_opcode::v_max_f16:
1465 case aco_opcode::v_max_u32:
1466 case aco_opcode::v_max_i32:
1467 case aco_opcode::v_max_u16:
1468 case aco_opcode::v_max_i16:
1469 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1470 break;
1471 case aco_opcode::s_cselect_b64:
1472 case aco_opcode::s_cselect_b32:
1473 if (instr->operands[0].constantEquals((unsigned) -1) &&
1474 instr->operands[1].constantEquals(0)) {
1475 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1476 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1477 }
1478 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1479 /* Flip the operands to get rid of the scc_invert instruction */
1480 std::swap(instr->operands[0], instr->operands[1]);
1481 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1482 }
1483 break;
1484 case aco_opcode::p_wqm:
1485 if (instr->operands[0].isTemp() &&
1486 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1487 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1488 }
1489 break;
1490 default:
1491 break;
1492 }
1493 }
1494
get_cmp_info(aco_opcode op,CmpInfo * info)1495 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info)
1496 {
1497 info->ordered = aco_opcode::num_opcodes;
1498 info->unordered = aco_opcode::num_opcodes;
1499 info->ordered_swapped = aco_opcode::num_opcodes;
1500 info->unordered_swapped = aco_opcode::num_opcodes;
1501 switch (op) {
1502 #define CMP2(ord, unord, ord_swap, unord_swap, sz) \
1503 case aco_opcode::v_cmp_##ord##_f##sz:\
1504 case aco_opcode::v_cmp_n##unord##_f##sz:\
1505 info->ordered = aco_opcode::v_cmp_##ord##_f##sz;\
1506 info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;\
1507 info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;\
1508 info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;\
1509 info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz : aco_opcode::v_cmp_n##ord##_f##sz;\
1510 info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 : aco_opcode::v_cmp_n##unord##_f32;\
1511 info->size = sz;\
1512 return true;
1513 #define CMP(ord, unord, ord_swap, unord_swap) \
1514 CMP2(ord, unord, ord_swap, unord_swap, 16)\
1515 CMP2(ord, unord, ord_swap, unord_swap, 32)\
1516 CMP2(ord, unord, ord_swap, unord_swap, 64)
1517 CMP(lt, /*n*/ge, gt, /*n*/le)
1518 CMP(eq, /*n*/lg, eq, /*n*/lg)
1519 CMP(le, /*n*/gt, ge, /*n*/lt)
1520 CMP(gt, /*n*/le, lt, /*n*/le)
1521 CMP(lg, /*n*/eq, lg, /*n*/eq)
1522 CMP(ge, /*n*/lt, le, /*n*/gt)
1523 #undef CMP
1524 #undef CMP2
1525 #define ORD_TEST(sz) \
1526 case aco_opcode::v_cmp_u_f##sz:\
1527 info->f32 = aco_opcode::v_cmp_u_f32;\
1528 info->inverse = aco_opcode::v_cmp_o_f##sz;\
1529 info->size = sz;\
1530 return true;\
1531 case aco_opcode::v_cmp_o_f##sz:\
1532 info->f32 = aco_opcode::v_cmp_o_f32;\
1533 info->inverse = aco_opcode::v_cmp_u_f##sz;\
1534 info->size = sz;\
1535 return true;
1536 ORD_TEST(16)
1537 ORD_TEST(32)
1538 ORD_TEST(64)
1539 #undef ORD_TEST
1540 default:
1541 return false;
1542 }
1543 }
1544
get_ordered(aco_opcode op)1545 aco_opcode get_ordered(aco_opcode op)
1546 {
1547 CmpInfo info;
1548 return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
1549 }
1550
get_unordered(aco_opcode op)1551 aco_opcode get_unordered(aco_opcode op)
1552 {
1553 CmpInfo info;
1554 return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
1555 }
1556
get_inverse(aco_opcode op)1557 aco_opcode get_inverse(aco_opcode op)
1558 {
1559 CmpInfo info;
1560 return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
1561 }
1562
get_f32_cmp(aco_opcode op)1563 aco_opcode get_f32_cmp(aco_opcode op)
1564 {
1565 CmpInfo info;
1566 return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
1567 }
1568
get_cmp_bitsize(aco_opcode op)1569 unsigned get_cmp_bitsize(aco_opcode op)
1570 {
1571 CmpInfo info;
1572 return get_cmp_info(op, &info) ? info.size : 0;
1573 }
1574
is_cmp(aco_opcode op)1575 bool is_cmp(aco_opcode op)
1576 {
1577 CmpInfo info;
1578 return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
1579 }
1580
original_temp_id(opt_ctx & ctx,Temp tmp)1581 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1582 {
1583 if (ctx.info[tmp.id()].is_temp())
1584 return ctx.info[tmp.id()].temp.id();
1585 else
1586 return tmp.id();
1587 }
1588
decrease_uses(opt_ctx & ctx,Instruction * instr)1589 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1590 {
1591 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1592 for (const Operand& op : instr->operands) {
1593 if (op.isTemp())
1594 ctx.uses[op.tempId()]--;
1595 }
1596 }
1597 }
1598
follow_operand(opt_ctx & ctx,Operand op,bool ignore_uses=false)1599 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1600 {
1601 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_usedef_labels))
1602 return nullptr;
1603 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1604 return nullptr;
1605
1606 Instruction *instr = ctx.info[op.tempId()].instr;
1607
1608 if (instr->definitions.size() == 2) {
1609 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1610 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1611 return nullptr;
1612 }
1613
1614 return instr;
1615 }
1616
1617 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1618 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
combine_ordering_test(opt_ctx & ctx,aco_ptr<Instruction> & instr)1619 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1620 {
1621 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1622 return false;
1623 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1624 return false;
1625
1626 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1627
1628 bool neg[2] = {false, false};
1629 bool abs[2] = {false, false};
1630 uint8_t opsel = 0;
1631 Instruction *op_instr[2];
1632 Temp op[2];
1633
1634 unsigned bitsize = 0;
1635 for (unsigned i = 0; i < 2; i++) {
1636 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1637 if (!op_instr[i])
1638 return false;
1639
1640 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1641 unsigned op_bitsize = get_cmp_bitsize(op_instr[i]->opcode);
1642
1643 if (get_f32_cmp(op_instr[i]->opcode) != expected_cmp)
1644 return false;
1645 if (bitsize && op_bitsize != bitsize)
1646 return false;
1647 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1648 return false;
1649
1650 if (op_instr[i]->isVOP3()) {
1651 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1652 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1653 return false;
1654 neg[i] = vop3->neg[0];
1655 abs[i] = vop3->abs[0];
1656 opsel |= (vop3->opsel & 1) << i;
1657 } else if (op_instr[i]->isSDWA()) {
1658 return false;
1659 }
1660
1661 Temp op0 = op_instr[i]->operands[0].getTemp();
1662 Temp op1 = op_instr[i]->operands[1].getTemp();
1663 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1664 return false;
1665
1666 op[i] = op1;
1667 bitsize = op_bitsize;
1668 }
1669
1670 if (op[1].type() == RegType::sgpr)
1671 std::swap(op[0], op[1]);
1672 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1673 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1674 return false;
1675
1676 ctx.uses[op[0].id()]++;
1677 ctx.uses[op[1].id()]++;
1678 decrease_uses(ctx, op_instr[0]);
1679 decrease_uses(ctx, op_instr[1]);
1680
1681 aco_opcode new_op = aco_opcode::num_opcodes;
1682 switch (bitsize) {
1683 case 16:
1684 new_op = is_or ? aco_opcode::v_cmp_u_f16 : aco_opcode::v_cmp_o_f16;
1685 break;
1686 case 32:
1687 new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1688 break;
1689 case 64:
1690 new_op = is_or ? aco_opcode::v_cmp_u_f64 : aco_opcode::v_cmp_o_f64;
1691 break;
1692 }
1693 Instruction *new_instr;
1694 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1695 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1696 for (unsigned i = 0; i < 2; i++) {
1697 vop3->neg[i] = neg[i];
1698 vop3->abs[i] = abs[i];
1699 }
1700 vop3->opsel = opsel;
1701 new_instr = static_cast<Instruction *>(vop3);
1702 } else {
1703 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1704 }
1705 new_instr->operands[0] = Operand(op[0]);
1706 new_instr->operands[1] = Operand(op[1]);
1707 new_instr->definitions[0] = instr->definitions[0];
1708
1709 ctx.info[instr->definitions[0].tempId()].label = 0;
1710 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1711
1712 instr.reset(new_instr);
1713
1714 return true;
1715 }
1716
1717 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1718 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
combine_comparison_ordering(opt_ctx & ctx,aco_ptr<Instruction> & instr)1719 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1720 {
1721 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1722 return false;
1723 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1724 return false;
1725
1726 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1727 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1728
1729 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1730 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1731 if (!nan_test || !cmp)
1732 return false;
1733 if (nan_test->isSDWA() || cmp->isSDWA())
1734 return false;
1735
1736 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1737 std::swap(nan_test, cmp);
1738 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1739 return false;
1740
1741 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
1742 return false;
1743
1744 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1745 return false;
1746 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1747 return false;
1748
1749 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1750 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1751 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1752 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1753 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1754 return false;
1755 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1756 return false;
1757
1758 ctx.uses[cmp->operands[0].tempId()]++;
1759 ctx.uses[cmp->operands[1].tempId()]++;
1760 decrease_uses(ctx, nan_test);
1761 decrease_uses(ctx, cmp);
1762
1763 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1764 Instruction *new_instr;
1765 if (cmp->isVOP3()) {
1766 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1767 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1768 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1769 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1770 new_vop3->clamp = cmp_vop3->clamp;
1771 new_vop3->omod = cmp_vop3->omod;
1772 new_vop3->opsel = cmp_vop3->opsel;
1773 new_instr = new_vop3;
1774 } else {
1775 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1776 }
1777 new_instr->operands[0] = cmp->operands[0];
1778 new_instr->operands[1] = cmp->operands[1];
1779 new_instr->definitions[0] = instr->definitions[0];
1780
1781 ctx.info[instr->definitions[0].tempId()].label = 0;
1782 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1783
1784 instr.reset(new_instr);
1785
1786 return true;
1787 }
1788
is_operand_constant(opt_ctx & ctx,Operand op,unsigned bit_size,uint64_t * value)1789 bool is_operand_constant(opt_ctx &ctx, Operand op, unsigned bit_size, uint64_t *value)
1790 {
1791 if (op.isConstant()) {
1792 *value = op.constantValue64();
1793 return true;
1794 } else if (op.isTemp()) {
1795 unsigned id = original_temp_id(ctx, op.getTemp());
1796 if (!ctx.info[id].is_constant_or_literal(bit_size))
1797 return false;
1798 *value = get_constant_op(ctx, ctx.info[id], bit_size).constantValue64();
1799 return true;
1800 }
1801 return false;
1802 }
1803
is_constant_nan(uint64_t value,unsigned bit_size)1804 bool is_constant_nan(uint64_t value, unsigned bit_size)
1805 {
1806 if (bit_size == 16)
1807 return ((value >> 10) & 0x1f) == 0x1f && (value & 0x3ff);
1808 else if (bit_size == 32)
1809 return ((value >> 23) & 0xff) == 0xff && (value & 0x7fffff);
1810 else
1811 return ((value >> 52) & 0x7ff) == 0x7ff && (value & 0xfffffffffffff);
1812 }
1813
1814 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1815 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
combine_constant_comparison_ordering(opt_ctx & ctx,aco_ptr<Instruction> & instr)1816 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1817 {
1818 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1819 return false;
1820 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1821 return false;
1822
1823 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1824
1825 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1826 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1827
1828 if (!nan_test || !cmp)
1829 return false;
1830 if (nan_test->isSDWA() || cmp->isSDWA())
1831 return false;
1832
1833 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1834 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1835 std::swap(nan_test, cmp);
1836 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1837 return false;
1838
1839 unsigned bit_size = get_cmp_bitsize(cmp->opcode);
1840 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(nan_test->opcode) != bit_size)
1841 return false;
1842
1843 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1844 return false;
1845 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1846 return false;
1847
1848 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1849 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1850 if (prop_nan0 != prop_nan1)
1851 return false;
1852
1853 if (nan_test->isVOP3()) {
1854 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1855 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1856 return false;
1857 }
1858
1859 int constant_operand = -1;
1860 for (unsigned i = 0; i < 2; i++) {
1861 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1862 constant_operand = !i;
1863 break;
1864 }
1865 }
1866 if (constant_operand == -1)
1867 return false;
1868
1869 uint64_t constant_value;
1870 if (!is_operand_constant(ctx, cmp->operands[constant_operand], bit_size, &constant_value))
1871 return false;
1872 if (is_constant_nan(constant_value, bit_size))
1873 return false;
1874
1875 if (cmp->operands[0].isTemp())
1876 ctx.uses[cmp->operands[0].tempId()]++;
1877 if (cmp->operands[1].isTemp())
1878 ctx.uses[cmp->operands[1].tempId()]++;
1879 decrease_uses(ctx, nan_test);
1880 decrease_uses(ctx, cmp);
1881
1882 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1883 Instruction *new_instr;
1884 if (cmp->isVOP3()) {
1885 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1886 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1887 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1888 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1889 new_vop3->clamp = cmp_vop3->clamp;
1890 new_vop3->omod = cmp_vop3->omod;
1891 new_vop3->opsel = cmp_vop3->opsel;
1892 new_instr = new_vop3;
1893 } else {
1894 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1895 }
1896 new_instr->operands[0] = cmp->operands[0];
1897 new_instr->operands[1] = cmp->operands[1];
1898 new_instr->definitions[0] = instr->definitions[0];
1899
1900 ctx.info[instr->definitions[0].tempId()].label = 0;
1901 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1902
1903 instr.reset(new_instr);
1904
1905 return true;
1906 }
1907
1908 /* s_andn2(exec, cmp(a, b)) -> get_inverse(cmp)(a, b) */
combine_inverse_comparison(opt_ctx & ctx,aco_ptr<Instruction> & instr)1909 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1910 {
1911 if (!instr->operands[0].isFixed() || instr->operands[0].physReg() != exec)
1912 return false;
1913 if (ctx.uses[instr->definitions[1].tempId()])
1914 return false;
1915
1916 Instruction *cmp = follow_operand(ctx, instr->operands[1]);
1917 if (!cmp)
1918 return false;
1919
1920 aco_opcode new_opcode = get_inverse(cmp->opcode);
1921 if (new_opcode == aco_opcode::num_opcodes)
1922 return false;
1923
1924 if (cmp->operands[0].isTemp())
1925 ctx.uses[cmp->operands[0].tempId()]++;
1926 if (cmp->operands[1].isTemp())
1927 ctx.uses[cmp->operands[1].tempId()]++;
1928 decrease_uses(ctx, cmp);
1929
1930 /* This creates a new instruction instead of modifying the existing
1931 * comparison so that the comparison is done with the correct exec mask. */
1932 Instruction *new_instr;
1933 if (cmp->isVOP3()) {
1934 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1935 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1936 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1937 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1938 new_vop3->clamp = cmp_vop3->clamp;
1939 new_vop3->omod = cmp_vop3->omod;
1940 new_vop3->opsel = cmp_vop3->opsel;
1941 new_instr = new_vop3;
1942 } else if (cmp->isSDWA()) {
1943 SDWA_instruction *new_sdwa = create_instruction<SDWA_instruction>(
1944 new_opcode, (Format)((uint16_t)Format::SDWA | (uint16_t)Format::VOPC), 2, 1);
1945 SDWA_instruction *cmp_sdwa = static_cast<SDWA_instruction*>(cmp);
1946 memcpy(new_sdwa->abs, cmp_sdwa->abs, sizeof(new_sdwa->abs));
1947 memcpy(new_sdwa->sel, cmp_sdwa->sel, sizeof(new_sdwa->sel));
1948 memcpy(new_sdwa->neg, cmp_sdwa->neg, sizeof(new_sdwa->neg));
1949 new_sdwa->dst_sel = cmp_sdwa->dst_sel;
1950 new_sdwa->dst_preserve = cmp_sdwa->dst_preserve;
1951 new_sdwa->clamp = cmp_sdwa->clamp;
1952 new_sdwa->omod = cmp_sdwa->omod;
1953 new_instr = new_sdwa;
1954 } else {
1955 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1956 }
1957 new_instr->operands[0] = cmp->operands[0];
1958 new_instr->operands[1] = cmp->operands[1];
1959 new_instr->definitions[0] = instr->definitions[0];
1960
1961 ctx.info[instr->definitions[0].tempId()].label = 0;
1962 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1963
1964 instr.reset(new_instr);
1965
1966 return true;
1967 }
1968
1969 /* op1(op2(1, 2), 0) if swap = false
1970 * op1(0, op2(1, 2)) if swap = true */
match_op3_for_vop3(opt_ctx & ctx,aco_opcode op1,aco_opcode op2,Instruction * op1_instr,bool swap,const char * shuffle_str,Operand operands[3],bool neg[3],bool abs[3],uint8_t * opsel,bool * op1_clamp,uint8_t * op1_omod,bool * inbetween_neg,bool * inbetween_abs,bool * inbetween_opsel,bool * precise)1971 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1972 Instruction* op1_instr, bool swap, const char *shuffle_str,
1973 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1974 bool *op1_clamp, uint8_t *op1_omod,
1975 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel,
1976 bool *precise)
1977 {
1978 /* checks */
1979 if (op1_instr->opcode != op1)
1980 return false;
1981
1982 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1983 if (!op2_instr || op2_instr->opcode != op2)
1984 return false;
1985 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1986 return false;
1987
1988 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1989 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1990
1991 if (op1_instr->isSDWA() || op2_instr->isSDWA())
1992 return false;
1993
1994 /* don't support inbetween clamp/omod */
1995 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1996 return false;
1997
1998 /* get operands and modifiers and check inbetween modifiers */
1999 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
2000 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
2001
2002 if (inbetween_neg)
2003 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
2004 else if (op1_vop3 && op1_vop3->neg[swap])
2005 return false;
2006
2007 if (inbetween_abs)
2008 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
2009 else if (op1_vop3 && op1_vop3->abs[swap])
2010 return false;
2011
2012 if (inbetween_opsel)
2013 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
2014 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
2015 return false;
2016
2017 *precise = op1_instr->definitions[0].isPrecise() ||
2018 op2_instr->definitions[0].isPrecise();
2019
2020 int shuffle[3];
2021 shuffle[shuffle_str[0] - '0'] = 0;
2022 shuffle[shuffle_str[1] - '0'] = 1;
2023 shuffle[shuffle_str[2] - '0'] = 2;
2024
2025 operands[shuffle[0]] = op1_instr->operands[!swap];
2026 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
2027 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
2028 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
2029 *opsel |= 1 << shuffle[0];
2030
2031 for (unsigned i = 0; i < 2; i++) {
2032 operands[shuffle[i + 1]] = op2_instr->operands[i];
2033 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
2034 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
2035 if (op2_vop3 && op2_vop3->opsel & (1 << i))
2036 *opsel |= 1 << shuffle[i + 1];
2037 }
2038
2039 /* check operands */
2040 if (!check_vop3_operands(ctx, 3, operands))
2041 return false;
2042
2043 return true;
2044 }
2045
create_vop3_for_op3(opt_ctx & ctx,aco_opcode opcode,aco_ptr<Instruction> & instr,Operand operands[3],bool neg[3],bool abs[3],uint8_t opsel,bool clamp,unsigned omod)2046 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
2047 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
2048 bool clamp, unsigned omod)
2049 {
2050 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
2051 memcpy(new_instr->abs, abs, sizeof(bool[3]));
2052 memcpy(new_instr->neg, neg, sizeof(bool[3]));
2053 new_instr->clamp = clamp;
2054 new_instr->omod = omod;
2055 new_instr->opsel = opsel;
2056 new_instr->operands[0] = operands[0];
2057 new_instr->operands[1] = operands[1];
2058 new_instr->operands[2] = operands[2];
2059 new_instr->definitions[0] = instr->definitions[0];
2060 ctx.info[instr->definitions[0].tempId()].label = 0;
2061
2062 instr.reset(new_instr);
2063 }
2064
combine_three_valu_op(opt_ctx & ctx,aco_ptr<Instruction> & instr,aco_opcode op2,aco_opcode new_op,const char * shuffle,uint8_t ops)2065 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
2066 {
2067 for (unsigned swap = 0; swap < 2; swap++) {
2068 if (!((1 << swap) & ops))
2069 continue;
2070
2071 Operand operands[3];
2072 bool neg[3], abs[3], clamp, precise;
2073 uint8_t opsel = 0, omod = 0;
2074 if (match_op3_for_vop3(ctx, instr->opcode, op2,
2075 instr.get(), swap, shuffle,
2076 operands, neg, abs, &opsel,
2077 &clamp, &omod, NULL, NULL, NULL, &precise)) {
2078 ctx.uses[instr->operands[swap].tempId()]--;
2079 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
2080 return true;
2081 }
2082 }
2083 return false;
2084 }
2085
combine_minmax(opt_ctx & ctx,aco_ptr<Instruction> & instr,aco_opcode opposite,aco_opcode minmax3)2086 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
2087 {
2088 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
2089 return true;
2090
2091 /* min(-max(a, b), c) -> min3(c, -a, -b) *
2092 * max(-min(a, b), c) -> max3(c, -a, -b) */
2093 for (unsigned swap = 0; swap < 2; swap++) {
2094 Operand operands[3];
2095 bool neg[3], abs[3], clamp, precise;
2096 uint8_t opsel = 0, omod = 0;
2097 bool inbetween_neg;
2098 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
2099 instr.get(), swap, "012",
2100 operands, neg, abs, &opsel,
2101 &clamp, &omod, &inbetween_neg, NULL, NULL, &precise) &&
2102 inbetween_neg) {
2103 ctx.uses[instr->operands[swap].tempId()]--;
2104 neg[1] = !neg[1];
2105 neg[2] = !neg[2];
2106 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
2107 return true;
2108 }
2109 }
2110 return false;
2111 }
2112
2113 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
2114 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
2115 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
2116 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
2117 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
2118 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
combine_salu_not_bitwise(opt_ctx & ctx,aco_ptr<Instruction> & instr)2119 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2120 {
2121 /* checks */
2122 if (!instr->operands[0].isTemp())
2123 return false;
2124 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
2125 return false;
2126
2127 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
2128 if (!op2_instr)
2129 return false;
2130 switch (op2_instr->opcode) {
2131 case aco_opcode::s_and_b32:
2132 case aco_opcode::s_or_b32:
2133 case aco_opcode::s_xor_b32:
2134 case aco_opcode::s_and_b64:
2135 case aco_opcode::s_or_b64:
2136 case aco_opcode::s_xor_b64:
2137 break;
2138 default:
2139 return false;
2140 }
2141
2142 /* create instruction */
2143 std::swap(instr->definitions[0], op2_instr->definitions[0]);
2144 std::swap(instr->definitions[1], op2_instr->definitions[1]);
2145 ctx.uses[instr->operands[0].tempId()]--;
2146 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
2147
2148 switch (op2_instr->opcode) {
2149 case aco_opcode::s_and_b32:
2150 op2_instr->opcode = aco_opcode::s_nand_b32;
2151 break;
2152 case aco_opcode::s_or_b32:
2153 op2_instr->opcode = aco_opcode::s_nor_b32;
2154 break;
2155 case aco_opcode::s_xor_b32:
2156 op2_instr->opcode = aco_opcode::s_xnor_b32;
2157 break;
2158 case aco_opcode::s_and_b64:
2159 op2_instr->opcode = aco_opcode::s_nand_b64;
2160 break;
2161 case aco_opcode::s_or_b64:
2162 op2_instr->opcode = aco_opcode::s_nor_b64;
2163 break;
2164 case aco_opcode::s_xor_b64:
2165 op2_instr->opcode = aco_opcode::s_xnor_b64;
2166 break;
2167 default:
2168 break;
2169 }
2170
2171 return true;
2172 }
2173
2174 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
2175 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
2176 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
2177 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
combine_salu_n2(opt_ctx & ctx,aco_ptr<Instruction> & instr)2178 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2179 {
2180 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
2181 return false;
2182
2183 for (unsigned i = 0; i < 2; i++) {
2184 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2185 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
2186 continue;
2187 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
2188 continue;
2189
2190 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2191 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2192 continue;
2193
2194 ctx.uses[instr->operands[i].tempId()]--;
2195 instr->operands[0] = instr->operands[!i];
2196 instr->operands[1] = op2_instr->operands[0];
2197 ctx.info[instr->definitions[0].tempId()].label = 0;
2198
2199 switch (instr->opcode) {
2200 case aco_opcode::s_and_b32:
2201 instr->opcode = aco_opcode::s_andn2_b32;
2202 break;
2203 case aco_opcode::s_or_b32:
2204 instr->opcode = aco_opcode::s_orn2_b32;
2205 break;
2206 case aco_opcode::s_and_b64:
2207 instr->opcode = aco_opcode::s_andn2_b64;
2208 break;
2209 case aco_opcode::s_or_b64:
2210 instr->opcode = aco_opcode::s_orn2_b64;
2211 break;
2212 default:
2213 break;
2214 }
2215
2216 return true;
2217 }
2218 return false;
2219 }
2220
2221 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
combine_salu_lshl_add(opt_ctx & ctx,aco_ptr<Instruction> & instr)2222 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2223 {
2224 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
2225 return false;
2226
2227 for (unsigned i = 0; i < 2; i++) {
2228 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2229 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
2230 ctx.uses[op2_instr->definitions[1].tempId()])
2231 continue;
2232 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
2233 continue;
2234
2235 uint32_t shift = op2_instr->operands[1].constantValue();
2236 if (shift < 1 || shift > 4)
2237 continue;
2238
2239 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2240 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2241 continue;
2242
2243 ctx.uses[instr->operands[i].tempId()]--;
2244 instr->operands[1] = instr->operands[!i];
2245 instr->operands[0] = op2_instr->operands[0];
2246 ctx.info[instr->definitions[0].tempId()].label = 0;
2247
2248 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
2249 aco_opcode::s_lshl2_add_u32,
2250 aco_opcode::s_lshl3_add_u32,
2251 aco_opcode::s_lshl4_add_u32})[shift - 1];
2252
2253 return true;
2254 }
2255 return false;
2256 }
2257
combine_add_sub_b2i(opt_ctx & ctx,aco_ptr<Instruction> & instr,aco_opcode new_op,uint8_t ops)2258 bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops)
2259 {
2260 if (instr->usesModifiers())
2261 return false;
2262
2263 for (unsigned i = 0; i < 2; i++) {
2264 if (!((1 << i) & ops))
2265 continue;
2266 if (instr->operands[i].isTemp() &&
2267 ctx.info[instr->operands[i].tempId()].is_b2i() &&
2268 ctx.uses[instr->operands[i].tempId()] == 1) {
2269
2270 aco_ptr<Instruction> new_instr;
2271 if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2272 new_instr.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 2));
2273 } else if (ctx.program->chip_class >= GFX10 ||
2274 (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
2275 new_instr.reset(create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOP2), 3, 2));
2276 } else {
2277 return false;
2278 }
2279 ctx.uses[instr->operands[i].tempId()]--;
2280 new_instr->definitions[0] = instr->definitions[0];
2281 if (instr->definitions.size() == 2) {
2282 new_instr->definitions[1] = instr->definitions[1];
2283 } else {
2284 new_instr->definitions[1] =
2285 Definition(ctx.program->allocateTmp(ctx.program->lane_mask));
2286 /* Make sure the uses vector is large enough and the number of
2287 * uses properly initialized to 0.
2288 */
2289 ctx.uses.push_back(0);
2290 }
2291 new_instr->definitions[1].setHint(vcc);
2292 new_instr->operands[0] = Operand(0u);
2293 new_instr->operands[1] = instr->operands[!i];
2294 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2295 instr = std::move(new_instr);
2296 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
2297 return true;
2298 }
2299 }
2300
2301 return false;
2302 }
2303
get_minmax_info(aco_opcode op,aco_opcode * min,aco_opcode * max,aco_opcode * min3,aco_opcode * max3,aco_opcode * med3,bool * some_gfx9_only)2304 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
2305 {
2306 switch (op) {
2307 #define MINMAX(type, gfx9) \
2308 case aco_opcode::v_min_##type:\
2309 case aco_opcode::v_max_##type:\
2310 case aco_opcode::v_med3_##type:\
2311 *min = aco_opcode::v_min_##type;\
2312 *max = aco_opcode::v_max_##type;\
2313 *med3 = aco_opcode::v_med3_##type;\
2314 *min3 = aco_opcode::v_min3_##type;\
2315 *max3 = aco_opcode::v_max3_##type;\
2316 *some_gfx9_only = gfx9;\
2317 return true;
2318 MINMAX(f32, false)
2319 MINMAX(u32, false)
2320 MINMAX(i32, false)
2321 MINMAX(f16, true)
2322 MINMAX(u16, true)
2323 MINMAX(i16, true)
2324 #undef MINMAX
2325 default:
2326 return false;
2327 }
2328 }
2329
2330 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
2331 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
combine_clamp(opt_ctx & ctx,aco_ptr<Instruction> & instr,aco_opcode min,aco_opcode max,aco_opcode med)2332 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
2333 aco_opcode min, aco_opcode max, aco_opcode med)
2334 {
2335 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
2336 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
2337 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
2338 aco_opcode other_op;
2339 if (instr->opcode == min)
2340 other_op = max;
2341 else if (instr->opcode == max)
2342 other_op = min;
2343 else
2344 return false;
2345
2346 for (unsigned swap = 0; swap < 2; swap++) {
2347 Operand operands[3];
2348 bool neg[3], abs[3], clamp, precise;
2349 uint8_t opsel = 0, omod = 0;
2350 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2351 "012", operands, neg, abs, &opsel,
2352 &clamp, &omod, NULL, NULL, NULL, &precise)) {
2353 /* max(min(src, upper), lower) returns upper if src is NaN, but
2354 * med3(src, lower, upper) returns lower.
2355 */
2356 if (precise && instr->opcode != min)
2357 continue;
2358
2359 int const0_idx = -1, const1_idx = -1;
2360 uint32_t const0 = 0, const1 = 0;
2361 for (int i = 0; i < 3; i++) {
2362 uint32_t val;
2363 if (operands[i].isConstant()) {
2364 val = operands[i].constantValue();
2365 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
2366 val = ctx.info[operands[i].tempId()].val;
2367 } else {
2368 continue;
2369 }
2370 if (const0_idx >= 0) {
2371 const1_idx = i;
2372 const1 = val;
2373 } else {
2374 const0_idx = i;
2375 const0 = val;
2376 }
2377 }
2378 if (const0_idx < 0 || const1_idx < 0)
2379 continue;
2380
2381 if (opsel & (1 << const0_idx))
2382 const0 >>= 16;
2383 if (opsel & (1 << const1_idx))
2384 const1 >>= 16;
2385
2386 int lower_idx = const0_idx;
2387 switch (min) {
2388 case aco_opcode::v_min_f32:
2389 case aco_opcode::v_min_f16: {
2390 float const0_f, const1_f;
2391 if (min == aco_opcode::v_min_f32) {
2392 memcpy(&const0_f, &const0, 4);
2393 memcpy(&const1_f, &const1, 4);
2394 } else {
2395 const0_f = _mesa_half_to_float(const0);
2396 const1_f = _mesa_half_to_float(const1);
2397 }
2398 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2399 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2400 if (neg[const0_idx]) const0_f = -const0_f;
2401 if (neg[const1_idx]) const1_f = -const1_f;
2402 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2403 break;
2404 }
2405 case aco_opcode::v_min_u32: {
2406 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2407 break;
2408 }
2409 case aco_opcode::v_min_u16: {
2410 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2411 break;
2412 }
2413 case aco_opcode::v_min_i32: {
2414 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2415 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2416 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2417 break;
2418 }
2419 case aco_opcode::v_min_i16: {
2420 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2421 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2422 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2423 break;
2424 }
2425 default:
2426 break;
2427 }
2428 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2429
2430 if (instr->opcode == min) {
2431 if (upper_idx != 0 || lower_idx == 0)
2432 return false;
2433 } else {
2434 if (upper_idx == 0 || lower_idx != 0)
2435 return false;
2436 }
2437
2438 ctx.uses[instr->operands[swap].tempId()]--;
2439 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2440
2441 return true;
2442 }
2443 }
2444
2445 return false;
2446 }
2447
2448
apply_sgprs(opt_ctx & ctx,aco_ptr<Instruction> & instr)2449 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2450 {
2451 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2452 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2453 instr->opcode == aco_opcode::v_ashrrev_i64;
2454
2455 /* find candidates and create the set of sgprs already read */
2456 unsigned sgpr_ids[2] = {0, 0};
2457 uint32_t operand_mask = 0;
2458 bool has_literal = false;
2459 for (unsigned i = 0; i < instr->operands.size(); i++) {
2460 if (instr->operands[i].isLiteral())
2461 has_literal = true;
2462 if (!instr->operands[i].isTemp())
2463 continue;
2464 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2465 if (instr->operands[i].tempId() != sgpr_ids[0])
2466 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2467 }
2468 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2469 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2470 operand_mask |= 1u << i;
2471 }
2472 unsigned max_sgprs = 1;
2473 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2474 max_sgprs = 2;
2475 if (has_literal)
2476 max_sgprs--;
2477
2478 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2479
2480 /* keep on applying sgprs until there is nothing left to be done */
2481 while (operand_mask) {
2482 uint32_t sgpr_idx = 0;
2483 uint32_t sgpr_info_id = 0;
2484 uint32_t mask = operand_mask;
2485 /* choose a sgpr */
2486 while (mask) {
2487 unsigned i = u_bit_scan(&mask);
2488 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2489 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2490 sgpr_idx = i;
2491 sgpr_info_id = instr->operands[i].tempId();
2492 }
2493 }
2494 operand_mask &= ~(1u << sgpr_idx);
2495
2496 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2497 * definitively beneficial.
2498 * TODO: this is too conservative because later the use count could be reduced to 1 */
2499 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3() && !instr->isSDWA())
2500 break;
2501
2502 Temp sgpr = ctx.info[sgpr_info_id].temp;
2503 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2504 if (new_sgpr && num_sgprs >= max_sgprs)
2505 continue;
2506
2507 if (sgpr_idx == 0 || instr->isVOP3() || instr->isSDWA()) {
2508 instr->operands[sgpr_idx] = Operand(sgpr);
2509 } else if (can_swap_operands(instr)) {
2510 instr->operands[sgpr_idx] = instr->operands[0];
2511 instr->operands[0] = Operand(sgpr);
2512 /* swap bits using a 4-entry LUT */
2513 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2514 operand_mask = (operand_mask & ~0x3) | swapped;
2515 } else if (can_use_VOP3(ctx, instr)) {
2516 to_VOP3(ctx, instr);
2517 instr->operands[sgpr_idx] = Operand(sgpr);
2518 } else {
2519 continue;
2520 }
2521
2522 if (new_sgpr)
2523 sgpr_ids[num_sgprs++] = sgpr.id();
2524 ctx.uses[sgpr_info_id]--;
2525 ctx.uses[sgpr.id()]++;
2526 }
2527 }
2528
2529 template <typename T>
apply_omod_clamp_helper(opt_ctx & ctx,T * instr,ssa_info & def_info)2530 bool apply_omod_clamp_helper(opt_ctx &ctx, T *instr, ssa_info& def_info)
2531 {
2532 if (!def_info.is_clamp() && (instr->clamp || instr->omod))
2533 return false;
2534
2535 if (def_info.is_omod2())
2536 instr->omod = 1;
2537 else if (def_info.is_omod4())
2538 instr->omod = 2;
2539 else if (def_info.is_omod5())
2540 instr->omod = 3;
2541 else if (def_info.is_clamp())
2542 instr->clamp = true;
2543
2544 return true;
2545 }
2546
2547 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
apply_omod_clamp(opt_ctx & ctx,Block & block,aco_ptr<Instruction> & instr)2548 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2549 {
2550 if (instr->definitions.empty() || ctx.uses[instr->definitions[0].tempId()] != 1 ||
2551 !instr_info.can_use_output_modifiers[(int)instr->opcode])
2552 return false;
2553
2554 bool can_vop3 = can_use_VOP3(ctx, instr);
2555 if (!instr->isSDWA() && !can_vop3)
2556 return false;
2557
2558 /* omod flushes -0 to +0 and has no effect if denormals are enabled */
2559 bool can_use_omod = (can_vop3 || ctx.program->chip_class >= GFX9); /* SDWA omod is GFX9+ */
2560 if (instr->definitions[0].bytes() == 4)
2561 can_use_omod = can_use_omod && block.fp_mode.denorm32 == 0 &&
2562 !block.fp_mode.preserve_signed_zero_inf_nan32;
2563 else
2564 can_use_omod = can_use_omod && block.fp_mode.denorm16_64 == 0 &&
2565 !block.fp_mode.preserve_signed_zero_inf_nan16_64;
2566
2567 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2568
2569 uint64_t omod_labels = label_omod2 | label_omod4 | label_omod5;
2570 if (!def_info.is_clamp() && !(can_use_omod && (def_info.label & omod_labels)))
2571 return false;
2572 /* if the omod/clamp instruction is dead, then the single user of this
2573 * instruction is a different instruction */
2574 if (!ctx.uses[def_info.instr->definitions[0].tempId()])
2575 return false;
2576
2577 /* MADs/FMAs are created later, so we don't have to update the original add */
2578 assert(!ctx.info[instr->definitions[0].tempId()].is_mad());
2579
2580 if (instr->isSDWA()) {
2581 if (!apply_omod_clamp_helper(ctx, static_cast<SDWA_instruction *>(instr.get()), def_info))
2582 return false;
2583 } else {
2584 to_VOP3(ctx, instr);
2585 if (!apply_omod_clamp_helper(ctx, static_cast<VOP3A_instruction *>(instr.get()), def_info))
2586 return false;
2587 }
2588
2589 std::swap(instr->definitions[0], def_info.instr->definitions[0]);
2590 ctx.info[instr->definitions[0].tempId()].label &= label_clamp;
2591 ctx.uses[def_info.instr->definitions[0].tempId()]--;
2592
2593 return true;
2594 }
2595
2596 /* v_and(a, v_subbrev_co(0, 0, vcc)) -> v_cndmask(0, a, vcc) */
combine_and_subbrev(opt_ctx & ctx,aco_ptr<Instruction> & instr)2597 bool combine_and_subbrev(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2598 {
2599 if (instr->usesModifiers())
2600 return false;
2601
2602 for (unsigned i = 0; i < 2; i++) {
2603 Instruction *op_instr = follow_operand(ctx, instr->operands[i], true);
2604 if (op_instr &&
2605 op_instr->opcode == aco_opcode::v_subbrev_co_u32 &&
2606 op_instr->operands[0].constantEquals(0) &&
2607 op_instr->operands[1].constantEquals(0) &&
2608 !op_instr->usesModifiers()) {
2609
2610 aco_ptr<Instruction> new_instr;
2611 if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2612 new_instr.reset(create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1));
2613 } else if (ctx.program->chip_class >= GFX10 ||
2614 (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
2615 new_instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_cndmask_b32, asVOP3(Format::VOP2), 3, 1));
2616 } else {
2617 return false;
2618 }
2619
2620 ctx.uses[instr->operands[i].tempId()]--;
2621 if (ctx.uses[instr->operands[i].tempId()])
2622 ctx.uses[op_instr->operands[2].tempId()]++;
2623
2624 new_instr->operands[0] = Operand(0u);
2625 new_instr->operands[1] = instr->operands[!i];
2626 new_instr->operands[2] = Operand(op_instr->operands[2]);
2627 new_instr->definitions[0] = instr->definitions[0];
2628 instr = std::move(new_instr);
2629 ctx.info[instr->definitions[0].tempId()].label = 0;
2630 return true;
2631 }
2632 }
2633
2634 return false;
2635 }
2636
2637 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2638 // this would mean that we'd have to fix the instruction uses while value propagation
2639
combine_instruction(opt_ctx & ctx,Block & block,aco_ptr<Instruction> & instr)2640 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2641 {
2642 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2643 return;
2644
2645 if (instr->isVALU()) {
2646 if (can_apply_sgprs(ctx, instr))
2647 apply_sgprs(ctx, instr);
2648 while (apply_omod_clamp(ctx, block, instr)) ;
2649 }
2650
2651 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2652 instr->definitions[0].setHint(vcc);
2653 }
2654
2655 if (instr->isSDWA())
2656 return;
2657
2658 /* TODO: There are still some peephole optimizations that could be done:
2659 * - abs(a - b) -> s_absdiff_i32
2660 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2661 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2662 * These aren't probably too interesting though.
2663 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2664 * probably more useful than the previously mentioned optimizations.
2665 * The various comparison optimizations also currently only work with 32-bit
2666 * floats. */
2667
2668 /* neg(mul(a, b)) -> mul(neg(a), b) */
2669 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2670 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2671
2672 if (!ctx.info[val.id()].is_mul())
2673 return;
2674
2675 Instruction* mul_instr = ctx.info[val.id()].instr;
2676
2677 if (mul_instr->operands[0].isLiteral())
2678 return;
2679 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2680 return;
2681 if (mul_instr->isSDWA())
2682 return;
2683
2684 /* convert to mul(neg(a), b) */
2685 ctx.uses[mul_instr->definitions[0].tempId()]--;
2686 Definition def = instr->definitions[0];
2687 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2688 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2689 instr.reset(create_instruction<VOP3A_instruction>(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1));
2690 instr->operands[0] = mul_instr->operands[0];
2691 instr->operands[1] = mul_instr->operands[1];
2692 instr->definitions[0] = def;
2693 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2694 if (mul_instr->isVOP3()) {
2695 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2696 new_mul->neg[0] = mul->neg[0] && !is_abs;
2697 new_mul->neg[1] = mul->neg[1] && !is_abs;
2698 new_mul->abs[0] = mul->abs[0] || is_abs;
2699 new_mul->abs[1] = mul->abs[1] || is_abs;
2700 new_mul->omod = mul->omod;
2701 }
2702 new_mul->neg[0] ^= true;
2703 new_mul->clamp = false;
2704
2705 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2706 return;
2707 }
2708
2709 /* combine mul+add -> mad */
2710 bool mad32 = instr->opcode == aco_opcode::v_add_f32 ||
2711 instr->opcode == aco_opcode::v_sub_f32 ||
2712 instr->opcode == aco_opcode::v_subrev_f32;
2713 bool mad16 = instr->opcode == aco_opcode::v_add_f16 ||
2714 instr->opcode == aco_opcode::v_sub_f16 ||
2715 instr->opcode == aco_opcode::v_subrev_f16;
2716 if (mad16 || mad32) {
2717 bool need_fma = mad32 ? (block.fp_mode.denorm32 != 0 || ctx.program->chip_class >= GFX10_3) :
2718 (block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10);
2719 if (need_fma && instr->definitions[0].isPrecise())
2720 return;
2721 if (need_fma && mad32 && !ctx.program->has_fast_fma32)
2722 return;
2723
2724 uint32_t uses_src0 = UINT32_MAX;
2725 uint32_t uses_src1 = UINT32_MAX;
2726 Instruction* mul_instr = nullptr;
2727 unsigned add_op_idx;
2728 /* check if any of the operands is a multiplication */
2729 ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL;
2730 ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL;
2731 if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise()))
2732 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2733 if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise()))
2734 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2735
2736 /* find the 'best' mul instruction to combine with the add */
2737 if (uses_src0 < uses_src1) {
2738 mul_instr = op0_info->instr;
2739 add_op_idx = 1;
2740 } else if (uses_src1 < uses_src0) {
2741 mul_instr = op1_info->instr;
2742 add_op_idx = 0;
2743 } else if (uses_src0 != UINT32_MAX) {
2744 /* tiebreaker: quite random what to pick */
2745 if (op0_info->instr->operands[0].isLiteral()) {
2746 mul_instr = op1_info->instr;
2747 add_op_idx = 0;
2748 } else {
2749 mul_instr = op0_info->instr;
2750 add_op_idx = 1;
2751 }
2752 }
2753 if (mul_instr) {
2754 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2755 bool neg[3] = {false, false, false};
2756 bool abs[3] = {false, false, false};
2757 unsigned omod = 0;
2758 bool clamp = false;
2759 op[0] = mul_instr->operands[0];
2760 op[1] = mul_instr->operands[1];
2761 op[2] = instr->operands[add_op_idx];
2762 // TODO: would be better to check this before selecting a mul instr?
2763 if (!check_vop3_operands(ctx, 3, op))
2764 return;
2765 if (mul_instr->isSDWA())
2766 return;
2767
2768 if (mul_instr->isVOP3()) {
2769 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2770 neg[0] = vop3->neg[0];
2771 neg[1] = vop3->neg[1];
2772 abs[0] = vop3->abs[0];
2773 abs[1] = vop3->abs[1];
2774 /* we cannot use these modifiers between mul and add */
2775 if (vop3->clamp || vop3->omod)
2776 return;
2777 }
2778
2779 /* convert to mad */
2780 ctx.uses[mul_instr->definitions[0].tempId()]--;
2781 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2782 if (op[0].isTemp())
2783 ctx.uses[op[0].tempId()]++;
2784 if (op[1].isTemp())
2785 ctx.uses[op[1].tempId()]++;
2786 }
2787
2788 if (instr->isVOP3()) {
2789 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2790 neg[2] = vop3->neg[add_op_idx];
2791 abs[2] = vop3->abs[add_op_idx];
2792 omod = vop3->omod;
2793 clamp = vop3->clamp;
2794 /* abs of the multiplication result */
2795 if (vop3->abs[1 - add_op_idx]) {
2796 neg[0] = false;
2797 neg[1] = false;
2798 abs[0] = true;
2799 abs[1] = true;
2800 }
2801 /* neg of the multiplication result */
2802 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2803 }
2804 if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16)
2805 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2806 else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16)
2807 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2808
2809 aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
2810 if (mad16)
2811 mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) :
2812 (ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16);
2813
2814 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(mad_op, Format::VOP3A, 3, 1)};
2815 for (unsigned i = 0; i < 3; i++)
2816 {
2817 mad->operands[i] = op[i];
2818 mad->neg[i] = neg[i];
2819 mad->abs[i] = abs[i];
2820 }
2821 mad->omod = omod;
2822 mad->clamp = clamp;
2823 mad->definitions[0] = instr->definitions[0];
2824
2825 /* mark this ssa_def to be re-checked for profitability and literals */
2826 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2827 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2828 instr.reset(mad.release());
2829 return;
2830 }
2831 }
2832 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2833 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2834 for (unsigned i = 0; i < 2; i++) {
2835 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2836 ctx.uses[instr->operands[i].tempId()] == 1 &&
2837 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2838 ctx.uses[instr->operands[i].tempId()]--;
2839 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2840
2841 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2842 new_instr->operands[0] = Operand(0u);
2843 new_instr->operands[1] = instr->operands[!i];
2844 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2845 new_instr->definitions[0] = instr->definitions[0];
2846 instr.reset(new_instr.release());
2847 ctx.info[instr->definitions[0].tempId()].label = 0;
2848 return;
2849 }
2850 }
2851 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2852 if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2853 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2854 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2855 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2856 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
2857 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2858 } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) {
2859 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ;
2860 else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2);
2861 } else if (instr->opcode == aco_opcode::v_add_u32) {
2862 if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ;
2863 else if (ctx.program->chip_class >= GFX9 && !instr->usesModifiers()) {
2864 if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2865 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2866 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2867 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2868 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2869 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
2870 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2871 }
2872 } else if (instr->opcode == aco_opcode::v_add_co_u32 ||
2873 instr->opcode == aco_opcode::v_add_co_u32_e64) {
2874 combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2);
2875 } else if (instr->opcode == aco_opcode::v_sub_u32 ||
2876 instr->opcode == aco_opcode::v_sub_co_u32 ||
2877 instr->opcode == aco_opcode::v_sub_co_u32_e64) {
2878 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2);
2879 } else if (instr->opcode == aco_opcode::v_subrev_u32 ||
2880 instr->opcode == aco_opcode::v_subrev_co_u32 ||
2881 instr->opcode == aco_opcode::v_subrev_co_u32_e64) {
2882 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1);
2883 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2884 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2885 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2886 combine_salu_lshl_add(ctx, instr);
2887 } else if (instr->opcode == aco_opcode::s_not_b32 || instr->opcode == aco_opcode::s_not_b64) {
2888 combine_salu_not_bitwise(ctx, instr);
2889 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2890 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2891 if (combine_ordering_test(ctx, instr)) ;
2892 else if (combine_comparison_ordering(ctx, instr)) ;
2893 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2894 else combine_salu_n2(ctx, instr);
2895 } else if (instr->opcode == aco_opcode::v_and_b32) {
2896 combine_and_subbrev(ctx, instr);
2897 } else {
2898 aco_opcode min, max, min3, max3, med3;
2899 bool some_gfx9_only;
2900 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2901 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2902 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2903 else combine_clamp(ctx, instr, min, max, med3);
2904 }
2905 }
2906
2907 /* do this after combine_salu_n2() */
2908 if (instr->opcode == aco_opcode::s_andn2_b32 || instr->opcode == aco_opcode::s_andn2_b64)
2909 combine_inverse_comparison(ctx, instr);
2910 }
2911
to_uniform_bool_instr(opt_ctx & ctx,aco_ptr<Instruction> & instr)2912 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2913 {
2914 switch (instr->opcode) {
2915 case aco_opcode::s_and_b32:
2916 case aco_opcode::s_and_b64:
2917 instr->opcode = aco_opcode::s_and_b32;
2918 break;
2919 case aco_opcode::s_or_b32:
2920 case aco_opcode::s_or_b64:
2921 instr->opcode = aco_opcode::s_or_b32;
2922 break;
2923 case aco_opcode::s_xor_b32:
2924 case aco_opcode::s_xor_b64:
2925 instr->opcode = aco_opcode::s_absdiff_i32;
2926 break;
2927 default:
2928 /* Don't transform other instructions. They are very unlikely to appear here. */
2929 return false;
2930 }
2931
2932 for (Operand &op : instr->operands) {
2933 ctx.uses[op.tempId()]--;
2934
2935 if (ctx.info[op.tempId()].is_uniform_bool()) {
2936 /* Just use the uniform boolean temp. */
2937 op.setTemp(ctx.info[op.tempId()].temp);
2938 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2939 /* Use the SCC definition of the predecessor instruction.
2940 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2941 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2942 */
2943 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2944 assert(pred_instr->definitions.size() >= 2);
2945 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2946 op.setTemp(pred_instr->definitions[1].getTemp());
2947 } else {
2948 unreachable("Invalid operand on uniform bitwise instruction.");
2949 }
2950
2951 ctx.uses[op.tempId()]++;
2952 }
2953
2954 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2955 assert(instr->operands[0].regClass() == s1);
2956 assert(instr->operands[1].regClass() == s1);
2957 return true;
2958 }
2959
select_instruction(opt_ctx & ctx,aco_ptr<Instruction> & instr)2960 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2961 {
2962 const uint32_t threshold = 4;
2963
2964 if (is_dead(ctx.uses, instr.get())) {
2965 instr.reset();
2966 return;
2967 }
2968
2969 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2970 if (instr->opcode == aco_opcode::p_split_vector) {
2971 unsigned num_used = 0;
2972 unsigned idx = 0;
2973 unsigned split_offset = 0;
2974 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2975 if (ctx.uses[instr->definitions[i].tempId()]) {
2976 num_used++;
2977 idx = i;
2978 split_offset = offset;
2979 }
2980 }
2981 bool done = false;
2982 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2983 ctx.uses[instr->operands[0].tempId()] == 1) {
2984 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2985
2986 unsigned off = 0;
2987 Operand op;
2988 for (Operand& vec_op : vec->operands) {
2989 if (off == split_offset) {
2990 op = vec_op;
2991 break;
2992 }
2993 off += vec_op.bytes();
2994 }
2995 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2996 ctx.uses[instr->operands[0].tempId()]--;
2997 for (Operand& vec_op : vec->operands) {
2998 if (vec_op.isTemp())
2999 ctx.uses[vec_op.tempId()]--;
3000 }
3001 if (op.isTemp())
3002 ctx.uses[op.tempId()]++;
3003
3004 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
3005 extract->operands[0] = op;
3006 extract->definitions[0] = instr->definitions[idx];
3007 instr.reset(extract.release());
3008
3009 done = true;
3010 }
3011 }
3012
3013 if (!done && num_used == 1 &&
3014 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
3015 split_offset % instr->definitions[idx].bytes() == 0) {
3016 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
3017 extract->operands[0] = instr->operands[0];
3018 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
3019 extract->definitions[0] = instr->definitions[idx];
3020 instr.reset(extract.release());
3021 }
3022 }
3023
3024 mad_info* mad_info = NULL;
3025 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
3026 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
3027 /* re-check mad instructions */
3028 if (ctx.uses[mad_info->mul_temp_id]) {
3029 ctx.uses[mad_info->mul_temp_id]++;
3030 if (instr->operands[0].isTemp())
3031 ctx.uses[instr->operands[0].tempId()]--;
3032 if (instr->operands[1].isTemp())
3033 ctx.uses[instr->operands[1].tempId()]--;
3034 instr.swap(mad_info->add_instr);
3035 mad_info = NULL;
3036 }
3037 /* check literals */
3038 else if (!instr->usesModifiers()) {
3039 /* FMA can only take literals on GFX10+ */
3040 if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) &&
3041 ctx.program->chip_class < GFX10)
3042 return;
3043
3044 bool sgpr_used = false;
3045 uint32_t literal_idx = 0;
3046 uint32_t literal_uses = UINT32_MAX;
3047 for (unsigned i = 0; i < instr->operands.size(); i++)
3048 {
3049 if (instr->operands[i].isConstant() && i > 0) {
3050 literal_uses = UINT32_MAX;
3051 break;
3052 }
3053 if (!instr->operands[i].isTemp())
3054 continue;
3055 unsigned bits = get_operand_size(instr, i);
3056 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
3057 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
3058 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
3059 literal_uses = ctx.uses[instr->operands[i].tempId()];
3060 literal_idx = i;
3061 } else {
3062 literal_uses = UINT32_MAX;
3063 }
3064 sgpr_used = true;
3065 /* don't break because we still need to check constants */
3066 } else if (!sgpr_used &&
3067 ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
3068 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
3069 literal_uses = ctx.uses[instr->operands[i].tempId()];
3070 literal_idx = i;
3071 }
3072 }
3073
3074 /* Limit the number of literals to apply to not increase the code
3075 * size too much, but always apply literals for v_mad->v_madak
3076 * because both instructions are 64-bit and this doesn't increase
3077 * code size.
3078 * TODO: try to apply the literals earlier to lower the number of
3079 * uses below threshold
3080 */
3081 if (literal_uses < threshold || literal_idx == 2) {
3082 ctx.uses[instr->operands[literal_idx].tempId()]--;
3083 mad_info->check_literal = true;
3084 mad_info->literal_idx = literal_idx;
3085 return;
3086 }
3087 }
3088 }
3089
3090 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
3091 if (instr->format == Format::PSEUDO_BRANCH &&
3092 instr->operands.size() &&
3093 instr->operands[0].isTemp() &&
3094 instr->operands[0].isFixed() &&
3095 instr->operands[0].physReg() == scc) {
3096 ctx.info[instr->operands[0].tempId()].set_scc_needed();
3097 return;
3098 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
3099 instr->opcode == aco_opcode::s_cselect_b32) &&
3100 instr->operands[2].isTemp()) {
3101 ctx.info[instr->operands[2].tempId()].set_scc_needed();
3102 }
3103
3104 /* check for literals */
3105 if (!instr->isSALU() && !instr->isVALU())
3106 return;
3107
3108 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
3109 if (instr->definitions.size() &&
3110 ctx.uses[instr->definitions[0].tempId()] == 0 &&
3111 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
3112 bool transform_done = to_uniform_bool_instr(ctx, instr);
3113
3114 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
3115 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
3116 uint32_t def0_id = instr->definitions[0].getTemp().id();
3117 uint32_t def1_id = instr->definitions[1].getTemp().id();
3118 instr->definitions[0].setTemp(Temp(def1_id, s1));
3119 instr->definitions[1].setTemp(Temp(def0_id, s1));
3120 }
3121
3122 return;
3123 }
3124
3125 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
3126 return; /* some encodings can't ever take literals */
3127
3128 /* we do not apply the literals yet as we don't know if it is profitable */
3129 Operand current_literal(s1);
3130
3131 unsigned literal_id = 0;
3132 unsigned literal_uses = UINT32_MAX;
3133 Operand literal(s1);
3134 unsigned num_operands = 1;
3135 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
3136 num_operands = instr->operands.size();
3137 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
3138 else if (instr->isVALU() && instr->operands.size() >= 3)
3139 return;
3140
3141 unsigned sgpr_ids[2] = {0, 0};
3142 bool is_literal_sgpr = false;
3143 uint32_t mask = 0;
3144
3145 /* choose a literal to apply */
3146 for (unsigned i = 0; i < num_operands; i++) {
3147 Operand op = instr->operands[i];
3148 unsigned bits = get_operand_size(instr, i);
3149
3150 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
3151 op.tempId() != sgpr_ids[0])
3152 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
3153
3154 if (op.isLiteral()) {
3155 current_literal = op;
3156 continue;
3157 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
3158 continue;
3159 }
3160
3161 if (!alu_can_accept_constant(instr->opcode, i))
3162 continue;
3163
3164 if (ctx.uses[op.tempId()] < literal_uses) {
3165 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
3166 mask = 0;
3167 literal = Operand(ctx.info[op.tempId()].val);
3168 literal_uses = ctx.uses[op.tempId()];
3169 literal_id = op.tempId();
3170 }
3171
3172 mask |= (op.tempId() == literal_id) << i;
3173 }
3174
3175
3176 /* don't go over the constant bus limit */
3177 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
3178 instr->opcode == aco_opcode::v_lshrrev_b64 ||
3179 instr->opcode == aco_opcode::v_ashrrev_i64;
3180 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
3181 if (ctx.program->chip_class >= GFX10 && !is_shift64)
3182 const_bus_limit = 2;
3183
3184 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
3185 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
3186 return;
3187
3188 if (literal_id && literal_uses < threshold &&
3189 (current_literal.isUndefined() ||
3190 (current_literal.size() == literal.size() &&
3191 current_literal.constantValue() == literal.constantValue()))) {
3192 /* mark the literal to be applied */
3193 while (mask) {
3194 unsigned i = u_bit_scan(&mask);
3195 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
3196 ctx.uses[instr->operands[i].tempId()]--;
3197 }
3198 }
3199 }
3200
3201
apply_literals(opt_ctx & ctx,aco_ptr<Instruction> & instr)3202 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
3203 {
3204 /* Cleanup Dead Instructions */
3205 if (!instr)
3206 return;
3207
3208 /* apply literals on MAD */
3209 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
3210 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
3211 if (info->check_literal &&
3212 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
3213 aco_ptr<Instruction> new_mad;
3214
3215 aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32;
3216 if (instr->opcode == aco_opcode::v_fma_f32)
3217 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
3218 else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16)
3219 new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16;
3220 else if (instr->opcode == aco_opcode::v_fma_f16)
3221 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16;
3222
3223 new_mad.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 1));
3224 if (info->literal_idx == 2) { /* add literal -> madak */
3225 new_mad->operands[0] = instr->operands[0];
3226 new_mad->operands[1] = instr->operands[1];
3227 } else { /* mul literal -> madmk */
3228 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
3229 new_mad->operands[1] = instr->operands[2];
3230 }
3231 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
3232 new_mad->definitions[0] = instr->definitions[0];
3233 ctx.instructions.emplace_back(std::move(new_mad));
3234 return;
3235 }
3236 }
3237
3238 /* apply literals on other SALU/VALU */
3239 if (instr->isSALU() || instr->isVALU()) {
3240 for (unsigned i = 0; i < instr->operands.size(); i++) {
3241 Operand op = instr->operands[i];
3242 unsigned bits = get_operand_size(instr, i);
3243 if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
3244 Operand literal(ctx.info[op.tempId()].val);
3245 if (instr->isVALU() && i > 0)
3246 to_VOP3(ctx, instr);
3247 instr->operands[i] = literal;
3248 }
3249 }
3250 }
3251
3252 ctx.instructions.emplace_back(std::move(instr));
3253 }
3254
3255
optimize(Program * program)3256 void optimize(Program* program)
3257 {
3258 opt_ctx ctx;
3259 ctx.program = program;
3260 std::vector<ssa_info> info(program->peekAllocationId());
3261 ctx.info = info.data();
3262
3263 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
3264 for (Block& block : program->blocks) {
3265 for (aco_ptr<Instruction>& instr : block.instructions)
3266 label_instruction(ctx, block, instr);
3267 }
3268
3269 ctx.uses = dead_code_analysis(program);
3270
3271 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
3272 for (Block& block : program->blocks) {
3273 for (aco_ptr<Instruction>& instr : block.instructions)
3274 combine_instruction(ctx, block, instr);
3275 }
3276
3277 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
3278 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
3279 Block* block = &(*it);
3280 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
3281 select_instruction(ctx, *it);
3282 }
3283
3284 /* 4. Add literals to instructions */
3285 for (Block& block : program->blocks) {
3286 ctx.instructions.clear();
3287 for (aco_ptr<Instruction>& instr : block.instructions)
3288 apply_literals(ctx, instr);
3289 block.instructions.swap(ctx.instructions);
3290 }
3291
3292 }
3293
3294 }
3295