1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/tracing/core/trace_writer_impl.h"
18
19 #include <string.h>
20
21 #include <algorithm>
22 #include <type_traits>
23 #include <utility>
24
25 #include "perfetto/base/logging.h"
26 #include "perfetto/ext/base/thread_annotations.h"
27 #include "perfetto/protozero/proto_utils.h"
28 #include "src/tracing/core/shared_memory_arbiter_impl.h"
29
30 #include "protos/perfetto/trace/trace_packet.pbzero.h"
31
32 using protozero::proto_utils::kMessageLengthFieldSize;
33 using protozero::proto_utils::WriteRedundantVarInt;
34 using ChunkHeader = perfetto::SharedMemoryABI::ChunkHeader;
35
36 namespace perfetto {
37
38 namespace {
39 constexpr size_t kPacketHeaderSize = SharedMemoryABI::kPacketHeaderSize;
40 uint8_t g_garbage_chunk[1024];
41 } // namespace
42
TraceWriterImpl(SharedMemoryArbiterImpl * shmem_arbiter,WriterID id,MaybeUnboundBufferID target_buffer,BufferExhaustedPolicy buffer_exhausted_policy)43 TraceWriterImpl::TraceWriterImpl(SharedMemoryArbiterImpl* shmem_arbiter,
44 WriterID id,
45 MaybeUnboundBufferID target_buffer,
46 BufferExhaustedPolicy buffer_exhausted_policy)
47 : shmem_arbiter_(shmem_arbiter),
48 id_(id),
49 target_buffer_(target_buffer),
50 buffer_exhausted_policy_(buffer_exhausted_policy),
51 protobuf_stream_writer_(this),
52 process_id_(base::GetProcessId()) {
53 // TODO(primiano): we could handle the case of running out of TraceWriterID(s)
54 // more gracefully and always return a no-op TracePacket in NewTracePacket().
55 PERFETTO_CHECK(id_ != 0);
56
57 cur_packet_.reset(new protos::pbzero::TracePacket());
58 cur_packet_->Finalize(); // To avoid the DCHECK in NewTracePacket().
59 }
60
~TraceWriterImpl()61 TraceWriterImpl::~TraceWriterImpl() {
62 if (cur_chunk_.is_valid()) {
63 cur_packet_->Finalize();
64 Flush();
65 }
66 shmem_arbiter_->ReleaseWriterID(id_);
67 }
68
Flush(std::function<void ()> callback)69 void TraceWriterImpl::Flush(std::function<void()> callback) {
70 // Flush() cannot be called in the middle of a TracePacket.
71 PERFETTO_CHECK(cur_packet_->is_finalized());
72
73 if (cur_chunk_.is_valid()) {
74 shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_), target_buffer_,
75 &patch_list_);
76 } else {
77 PERFETTO_DCHECK(patch_list_.empty());
78 }
79 // Always issue the Flush request, even if there is nothing to flush, just
80 // for the sake of getting the callback posted back.
81 shmem_arbiter_->FlushPendingCommitDataRequests(callback);
82 protobuf_stream_writer_.Reset({nullptr, nullptr});
83
84 // |last_packet_size_field_| might have pointed into the chunk we returned.
85 last_packet_size_field_ = nullptr;
86 }
87
NewTracePacket()88 TraceWriterImpl::TracePacketHandle TraceWriterImpl::NewTracePacket() {
89 // If we hit this, the caller is calling NewTracePacket() without having
90 // finalized the previous packet.
91 PERFETTO_CHECK(cur_packet_->is_finalized());
92 // If we hit this, this trace writer was created in a different process. This
93 // likely means that the process forked while tracing was active, and the
94 // forked child process tried to emit a trace event. This is not supported, as
95 // it would lead to two processes writing to the same tracing SMB.
96 PERFETTO_DCHECK(process_id_ == base::GetProcessId());
97
98 fragmenting_packet_ = false;
99
100 // Reserve space for the size of the message. Note: this call might re-enter
101 // into this class invoking GetNewBuffer() if there isn't enough space or if
102 // this is the very first call to NewTracePacket().
103 static_assert(kPacketHeaderSize == kMessageLengthFieldSize,
104 "The packet header must match the Message header size");
105
106 bool was_dropping_packets = drop_packets_;
107
108 // It doesn't make sense to begin a packet that is going to fragment
109 // immediately after (8 is just an arbitrary estimation on the minimum size of
110 // a realistic packet).
111 bool chunk_too_full =
112 protobuf_stream_writer_.bytes_available() < kPacketHeaderSize + 8;
113 if (chunk_too_full || reached_max_packets_per_chunk_ ||
114 retry_new_chunk_after_packet_) {
115 protobuf_stream_writer_.Reset(GetNewBuffer());
116 }
117
118 // Send any completed patches to the service to facilitate trace data
119 // recovery by the service. This should only happen when we're completing
120 // the first packet in a chunk which was a continuation from the previous
121 // chunk, i.e. at most once per chunk.
122 if (!patch_list_.empty() && patch_list_.front().is_patched()) {
123 shmem_arbiter_->SendPatches(id_, target_buffer_, &patch_list_);
124 }
125
126 cur_packet_->Reset(&protobuf_stream_writer_);
127 uint8_t* header = protobuf_stream_writer_.ReserveBytes(kPacketHeaderSize);
128 memset(header, 0, kPacketHeaderSize);
129 cur_packet_->set_size_field(header);
130 last_packet_size_field_ = header;
131
132 TracePacketHandle handle(cur_packet_.get());
133 cur_fragment_start_ = protobuf_stream_writer_.write_ptr();
134 fragmenting_packet_ = true;
135
136 if (PERFETTO_LIKELY(!drop_packets_)) {
137 uint16_t new_packet_count = cur_chunk_.IncrementPacketCount();
138 reached_max_packets_per_chunk_ =
139 new_packet_count == ChunkHeader::Packets::kMaxCount;
140
141 if (PERFETTO_UNLIKELY(was_dropping_packets)) {
142 // We've succeeded to get a new chunk from the SMB after we entered
143 // drop_packets_ mode. Record a marker into the new packet to indicate the
144 // data loss.
145 cur_packet_->set_previous_packet_dropped(true);
146 }
147 }
148
149 return handle;
150 }
151
152 // Called by the Message. We can get here in two cases:
153 // 1. In the middle of writing a Message,
154 // when |fragmenting_packet_| == true. In this case we want to update the
155 // chunk header with a partial packet and start a new partial packet in the
156 // new chunk.
157 // 2. While calling ReserveBytes() for the packet header in NewTracePacket().
158 // In this case |fragmenting_packet_| == false and we just want a new chunk
159 // without creating any fragments.
GetNewBuffer()160 protozero::ContiguousMemoryRange TraceWriterImpl::GetNewBuffer() {
161 if (fragmenting_packet_ && drop_packets_) {
162 // We can't write the remaining data of the fragmenting packet to a new
163 // chunk, because we have already lost some of its data in the garbage
164 // chunk. Thus, we will wrap around in the garbage chunk, wait until the
165 // current packet was completed, and then attempt to get a new chunk from
166 // the SMB again. Instead, if |drop_packets_| is true and
167 // |fragmenting_packet_| is false, we try to acquire a valid chunk because
168 // the SMB exhaustion might be resolved.
169 retry_new_chunk_after_packet_ = true;
170 return protozero::ContiguousMemoryRange{
171 &g_garbage_chunk[0], &g_garbage_chunk[0] + sizeof(g_garbage_chunk)};
172 }
173
174 // Attempt to grab the next chunk before finalizing the current one, so that
175 // we know whether we need to start dropping packets before writing the
176 // current packet fragment's header.
177 ChunkHeader::Packets packets = {};
178 if (fragmenting_packet_) {
179 packets.count = 1;
180 packets.flags = ChunkHeader::kFirstPacketContinuesFromPrevChunk;
181 }
182
183 // The memory order of the stores below doesn't really matter. This |header|
184 // is just a local temporary object. The GetNewChunk() call below will copy it
185 // into the shared buffer with the proper barriers.
186 ChunkHeader header = {};
187 header.writer_id.store(id_, std::memory_order_relaxed);
188 header.chunk_id.store(next_chunk_id_, std::memory_order_relaxed);
189 header.packets.store(packets, std::memory_order_relaxed);
190
191 SharedMemoryABI::Chunk new_chunk =
192 shmem_arbiter_->GetNewChunk(header, buffer_exhausted_policy_);
193 if (!new_chunk.is_valid()) {
194 // Shared memory buffer exhausted, switch into |drop_packets_| mode. We'll
195 // drop data until the garbage chunk has been filled once and then retry.
196
197 // If we started a packet in one of the previous (valid) chunks, we need to
198 // tell the service to discard it.
199 if (fragmenting_packet_) {
200 // We can only end up here if the previous chunk was a valid chunk,
201 // because we never try to acquire a new chunk in |drop_packets_| mode
202 // while fragmenting.
203 PERFETTO_DCHECK(!drop_packets_);
204
205 // Backfill the last fragment's header with an invalid size (too large),
206 // so that the service's TraceBuffer throws out the incomplete packet.
207 // It'll restart reading from the next chunk we submit.
208 WriteRedundantVarInt(SharedMemoryABI::kPacketSizeDropPacket,
209 cur_packet_->size_field());
210
211 // Reset the size field, since we should not write the current packet's
212 // size anymore after this.
213 cur_packet_->set_size_field(nullptr);
214
215 // We don't set kLastPacketContinuesOnNextChunk or kChunkNeedsPatching on
216 // the last chunk, because its last fragment will be discarded anyway.
217 // However, the current packet fragment points to a valid |cur_chunk_| and
218 // may have non-finalized nested messages which will continue in the
219 // garbage chunk and currently still point into |cur_chunk_|. As we are
220 // about to return |cur_chunk_|, we need to invalidate the size fields of
221 // those nested messages. Normally we move them in the |patch_list_| (see
222 // below) but in this case, it doesn't make sense to send patches for a
223 // fragment that will be discarded for sure. Thus, we clean up any size
224 // field references into |cur_chunk_|.
225 for (auto* nested_msg = cur_packet_->nested_message(); nested_msg;
226 nested_msg = nested_msg->nested_message()) {
227 uint8_t* const cur_hdr = nested_msg->size_field();
228
229 // If this is false the protozero Message has already been instructed to
230 // write, upon Finalize(), its size into the patch list.
231 bool size_field_points_within_chunk =
232 cur_hdr >= cur_chunk_.payload_begin() &&
233 cur_hdr + kMessageLengthFieldSize <= cur_chunk_.end();
234
235 if (size_field_points_within_chunk)
236 nested_msg->set_size_field(nullptr);
237 }
238 } else if (!drop_packets_ && last_packet_size_field_) {
239 // If we weren't dropping packets before, we should indicate to the
240 // service that we're about to lose data. We do this by invalidating the
241 // size of the last packet in |cur_chunk_|. The service will record
242 // statistics about packets with kPacketSizeDropPacket size.
243 PERFETTO_DCHECK(cur_packet_->is_finalized());
244 PERFETTO_DCHECK(cur_chunk_.is_valid());
245
246 // |last_packet_size_field_| should point within |cur_chunk_|'s payload.
247 PERFETTO_DCHECK(last_packet_size_field_ >= cur_chunk_.payload_begin() &&
248 last_packet_size_field_ + kMessageLengthFieldSize <=
249 cur_chunk_.end());
250
251 WriteRedundantVarInt(SharedMemoryABI::kPacketSizeDropPacket,
252 last_packet_size_field_);
253 }
254
255 if (cur_chunk_.is_valid()) {
256 shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_),
257 target_buffer_, &patch_list_);
258 }
259
260 drop_packets_ = true;
261 cur_chunk_ = SharedMemoryABI::Chunk(); // Reset to an invalid chunk.
262 reached_max_packets_per_chunk_ = false;
263 retry_new_chunk_after_packet_ = false;
264 last_packet_size_field_ = nullptr;
265
266 PERFETTO_ANNOTATE_BENIGN_RACE_SIZED(&g_garbage_chunk,
267 sizeof(g_garbage_chunk),
268 "nobody reads the garbage chunk")
269 return protozero::ContiguousMemoryRange{
270 &g_garbage_chunk[0], &g_garbage_chunk[0] + sizeof(g_garbage_chunk)};
271 } // if (!new_chunk.is_valid())
272
273 PERFETTO_DCHECK(new_chunk.is_valid());
274
275 if (fragmenting_packet_) {
276 // We should not be fragmenting a packet after we exited drop_packets_ mode,
277 // because we only retry to get a new chunk when a fresh packet is started.
278 PERFETTO_DCHECK(!drop_packets_);
279
280 uint8_t* const wptr = protobuf_stream_writer_.write_ptr();
281 PERFETTO_DCHECK(wptr >= cur_fragment_start_);
282 uint32_t partial_size = static_cast<uint32_t>(wptr - cur_fragment_start_);
283 PERFETTO_DCHECK(partial_size < cur_chunk_.size());
284
285 // Backfill the packet header with the fragment size.
286 PERFETTO_DCHECK(partial_size > 0);
287 cur_packet_->inc_size_already_written(partial_size);
288 cur_chunk_.SetFlag(ChunkHeader::kLastPacketContinuesOnNextChunk);
289 WriteRedundantVarInt(partial_size, cur_packet_->size_field());
290
291 // Descend in the stack of non-finalized nested submessages (if any) and
292 // detour their |size_field| into the |patch_list_|. At this point we have
293 // to release the chunk and they cannot write anymore into that.
294 // TODO(primiano): add tests to cover this logic.
295 bool chunk_needs_patching = false;
296 for (auto* nested_msg = cur_packet_->nested_message(); nested_msg;
297 nested_msg = nested_msg->nested_message()) {
298 uint8_t* const cur_hdr = nested_msg->size_field();
299
300 // If this is false the protozero Message has already been instructed to
301 // write, upon Finalize(), its size into the patch list.
302 bool size_field_points_within_chunk =
303 cur_hdr >= cur_chunk_.payload_begin() &&
304 cur_hdr + kMessageLengthFieldSize <= cur_chunk_.end();
305
306 if (size_field_points_within_chunk) {
307 auto offset =
308 static_cast<uint16_t>(cur_hdr - cur_chunk_.payload_begin());
309 const ChunkID cur_chunk_id =
310 cur_chunk_.header()->chunk_id.load(std::memory_order_relaxed);
311 Patch* patch = patch_list_.emplace_back(cur_chunk_id, offset);
312 nested_msg->set_size_field(&patch->size_field[0]);
313 chunk_needs_patching = true;
314 } else {
315 #if PERFETTO_DCHECK_IS_ON()
316 // Ensure that the size field of the message points to an element of the
317 // patch list.
318 auto patch_it = std::find_if(
319 patch_list_.begin(), patch_list_.end(),
320 [cur_hdr](const Patch& p) { return &p.size_field[0] == cur_hdr; });
321 PERFETTO_DCHECK(patch_it != patch_list_.end());
322 #endif
323 }
324 } // for(nested_msg
325
326 if (chunk_needs_patching)
327 cur_chunk_.SetFlag(ChunkHeader::kChunkNeedsPatching);
328 } // if(fragmenting_packet)
329
330 if (cur_chunk_.is_valid()) {
331 // ReturnCompletedChunk will consume the first patched entries from
332 // |patch_list_| and shrink it.
333 shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_), target_buffer_,
334 &patch_list_);
335 }
336
337 // Switch to the new chunk.
338 drop_packets_ = false;
339 reached_max_packets_per_chunk_ = false;
340 retry_new_chunk_after_packet_ = false;
341 next_chunk_id_++;
342 cur_chunk_ = std::move(new_chunk);
343 last_packet_size_field_ = nullptr;
344
345 uint8_t* payload_begin = cur_chunk_.payload_begin();
346 if (fragmenting_packet_) {
347 cur_packet_->set_size_field(payload_begin);
348 last_packet_size_field_ = payload_begin;
349 memset(payload_begin, 0, kPacketHeaderSize);
350 payload_begin += kPacketHeaderSize;
351 cur_fragment_start_ = payload_begin;
352 }
353
354 return protozero::ContiguousMemoryRange{payload_begin, cur_chunk_.end()};
355 }
356
writer_id() const357 WriterID TraceWriterImpl::writer_id() const {
358 return id_;
359 }
360
361 // Base class definitions.
362 TraceWriter::TraceWriter() = default;
363 TraceWriter::~TraceWriter() = default;
364
365 } // namespace perfetto
366