• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/codec/SkCodec.h"
9 #include "include/core/SkData.h"
10 #include "include/core/SkRefCnt.h"
11 #include "include/core/SkStream.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/SkColorData.h"
14 #include "include/private/SkMutex.h"
15 #include "include/private/SkTArray.h"
16 #include "include/private/SkTemplates.h"
17 #include "src/codec/SkCodecPriv.h"
18 #include "src/codec/SkJpegCodec.h"
19 #include "src/codec/SkRawCodec.h"
20 #include "src/core/SkColorSpacePriv.h"
21 #include "src/core/SkStreamPriv.h"
22 #include "src/core/SkTaskGroup.h"
23 
24 #include "dng_area_task.h"
25 #include "dng_color_space.h"
26 #include "dng_errors.h"
27 #include "dng_exceptions.h"
28 #include "dng_host.h"
29 #include "dng_info.h"
30 #include "dng_memory.h"
31 #include "dng_render.h"
32 #include "dng_stream.h"
33 
34 #include "src/piex.h"
35 
36 #include <cmath>  // for std::round,floor,ceil
37 #include <limits>
38 
39 namespace {
40 
41 // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
42 // directions.
num_tiles_in_area(const dng_point & areaSize,const dng_point_real64 & tileSize)43 dng_point num_tiles_in_area(const dng_point &areaSize,
44                             const dng_point_real64 &tileSize) {
45   // FIXME: Add a ceil_div() helper in SkCodecPriv.h
46   return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
47                    static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
48 }
49 
num_tasks_required(const dng_point & tilesInTask,const dng_point & tilesInArea)50 int num_tasks_required(const dng_point& tilesInTask,
51                          const dng_point& tilesInArea) {
52   return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
53          ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
54 }
55 
56 // Calculate the number of tiles to process per task, taking into account the maximum number of
57 // tasks. It prefers to increase horizontally for better locality of reference.
num_tiles_per_task(const int maxTasks,const dng_point & tilesInArea)58 dng_point num_tiles_per_task(const int maxTasks,
59                              const dng_point &tilesInArea) {
60   dng_point tilesInTask = {1, 1};
61   while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
62       if (tilesInTask.h < tilesInArea.h) {
63           ++tilesInTask.h;
64       } else if (tilesInTask.v < tilesInArea.v) {
65           ++tilesInTask.v;
66       } else {
67           ThrowProgramError("num_tiles_per_task calculation is wrong.");
68       }
69   }
70   return tilesInTask;
71 }
72 
compute_task_areas(const int maxTasks,const dng_rect & area,const dng_point & tileSize)73 std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
74                                          const dng_point& tileSize) {
75   std::vector<dng_rect> taskAreas;
76   const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
77   const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
78   const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
79                                     tilesPerTask.h * tileSize.h};
80   for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
81     for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
82       dng_rect taskArea;
83       taskArea.t = area.t + v * tileSize.v;
84       taskArea.l = area.l + h * tileSize.h;
85       taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
86       taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
87 
88       taskAreas.push_back(taskArea);
89     }
90   }
91   return taskAreas;
92 }
93 
94 class SkDngHost : public dng_host {
95 public:
SkDngHost(dng_memory_allocator * allocater)96     explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
97 
PerformAreaTask(dng_area_task & task,const dng_rect & area)98     void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
99         SkTaskGroup taskGroup;
100 
101         // tileSize is typically 256x256
102         const dng_point tileSize(task.FindTileSize(area));
103         const std::vector<dng_rect> taskAreas = compute_task_areas(this->PerformAreaTaskThreads(),
104                                                                    area, tileSize);
105         const int numTasks = static_cast<int>(taskAreas.size());
106 
107         SkMutex mutex;
108         SkTArray<dng_exception> exceptions;
109         task.Start(numTasks, tileSize, &Allocator(), Sniffer());
110         for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
111             taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
112                 try {
113                     task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
114                 } catch (dng_exception& exception) {
115                     SkAutoMutexExclusive lock(mutex);
116                     exceptions.push_back(exception);
117                 } catch (...) {
118                     SkAutoMutexExclusive lock(mutex);
119                     exceptions.push_back(dng_exception(dng_error_unknown));
120                 }
121             });
122         }
123 
124         taskGroup.wait();
125         task.Finish(numTasks);
126 
127         // We only re-throw the first exception.
128         if (!exceptions.empty()) {
129             Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
130         }
131     }
132 
PerformAreaTaskThreads()133     uint32 PerformAreaTaskThreads() override {
134 #ifdef SK_BUILD_FOR_ANDROID
135         // Only use 1 thread. DNGs with the warp effect require a lot of memory,
136         // and the amount of memory required scales linearly with the number of
137         // threads. The sample used in CTS requires over 500 MB, so even two
138         // threads is significantly expensive. There is no good way to tell
139         // whether the image has the warp effect.
140         return 1;
141 #else
142         return kMaxMPThreads;
143 #endif
144     }
145 
146 private:
147     typedef dng_host INHERITED;
148 };
149 
150 // T must be unsigned type.
151 template <class T>
safe_add_to_size_t(T arg1,T arg2,size_t * result)152 bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
153     SkASSERT(arg1 >= 0);
154     SkASSERT(arg2 >= 0);
155     if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
156         T sum = arg1 + arg2;
157         if (sum <= std::numeric_limits<size_t>::max()) {
158             *result = static_cast<size_t>(sum);
159             return true;
160         }
161     }
162     return false;
163 }
164 
is_asset_stream(const SkStream & stream)165 bool is_asset_stream(const SkStream& stream) {
166     return stream.hasLength() && stream.hasPosition();
167 }
168 
169 }  // namespace
170 
171 class SkRawStream {
172 public:
~SkRawStream()173     virtual ~SkRawStream() {}
174 
175    /*
176     * Gets the length of the stream. Depending on the type of stream, this may require reading to
177     * the end of the stream.
178     */
179    virtual uint64 getLength() = 0;
180 
181    virtual bool read(void* data, size_t offset, size_t length) = 0;
182 
183     /*
184      * Creates an SkMemoryStream from the offset with size.
185      * Note: for performance reason, this function is destructive to the SkRawStream. One should
186      *       abandon current object after the function call.
187      */
188    virtual std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) = 0;
189 };
190 
191 class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
192 public:
~SkRawLimitedDynamicMemoryWStream()193     ~SkRawLimitedDynamicMemoryWStream() override {}
194 
write(const void * buffer,size_t size)195     bool write(const void* buffer, size_t size) override {
196         size_t newSize;
197         if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
198             newSize > kMaxStreamSize)
199         {
200             SkCodecPrintf("Error: Stream size exceeds the limit.\n");
201             return false;
202         }
203         return this->INHERITED::write(buffer, size);
204     }
205 
206 private:
207     // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
208     // streaming too large data chunk. We can always adjust the limit here if we need.
209     const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB
210 
211     typedef SkDynamicMemoryWStream INHERITED;
212 };
213 
214 // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
215 class SkRawBufferedStream : public SkRawStream {
216 public:
SkRawBufferedStream(std::unique_ptr<SkStream> stream)217     explicit SkRawBufferedStream(std::unique_ptr<SkStream> stream)
218         : fStream(std::move(stream))
219         , fWholeStreamRead(false)
220     {
221         // Only use SkRawBufferedStream when the stream is not an asset stream.
222         SkASSERT(!is_asset_stream(*fStream));
223     }
224 
~SkRawBufferedStream()225     ~SkRawBufferedStream() override {}
226 
getLength()227     uint64 getLength() override {
228         if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
229             ThrowReadFile();
230         }
231         return fStreamBuffer.bytesWritten();
232     }
233 
read(void * data,size_t offset,size_t length)234     bool read(void* data, size_t offset, size_t length) override {
235         if (length == 0) {
236             return true;
237         }
238 
239         size_t sum;
240         if (!safe_add_to_size_t(offset, length, &sum)) {
241             return false;
242         }
243 
244         return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
245     }
246 
transferBuffer(size_t offset,size_t size)247     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override {
248         sk_sp<SkData> data(SkData::MakeUninitialized(size));
249         if (offset > fStreamBuffer.bytesWritten()) {
250             // If the offset is not buffered, read from fStream directly and skip the buffering.
251             const size_t skipLength = offset - fStreamBuffer.bytesWritten();
252             if (fStream->skip(skipLength) != skipLength) {
253                 return nullptr;
254             }
255             const size_t bytesRead = fStream->read(data->writable_data(), size);
256             if (bytesRead < size) {
257                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
258             }
259         } else {
260             const size_t alreadyBuffered = std::min(fStreamBuffer.bytesWritten() - offset, size);
261             if (alreadyBuffered > 0 &&
262                 !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
263                 return nullptr;
264             }
265 
266             const size_t remaining = size - alreadyBuffered;
267             if (remaining) {
268                 auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
269                 const size_t bytesRead = fStream->read(dst, remaining);
270                 size_t newSize;
271                 if (bytesRead < remaining) {
272                     if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
273                         return nullptr;
274                     }
275                     data = SkData::MakeSubset(data.get(), 0, newSize);
276                 }
277             }
278         }
279         return SkMemoryStream::Make(data);
280     }
281 
282 private:
283     // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
bufferMoreData(size_t newSize)284     bool bufferMoreData(size_t newSize) {
285         if (newSize == kReadToEnd) {
286             if (fWholeStreamRead) {  // already read-to-end.
287                 return true;
288             }
289 
290             // TODO: optimize for the special case when the input is SkMemoryStream.
291             return SkStreamCopy(&fStreamBuffer, fStream.get());
292         }
293 
294         if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
295             return true;
296         }
297         if (fWholeStreamRead) {  // newSize is larger than the whole stream.
298             return false;
299         }
300 
301         // Try to read at least 8192 bytes to avoid to many small reads.
302         const size_t kMinSizeToRead = 8192;
303         const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
304         const size_t sizeToRead = std::max(kMinSizeToRead, sizeRequested);
305         SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
306         const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
307         if (bytesRead < sizeRequested) {
308             return false;
309         }
310         return fStreamBuffer.write(tempBuffer.get(), bytesRead);
311     }
312 
313     std::unique_ptr<SkStream> fStream;
314     bool fWholeStreamRead;
315 
316     // Use a size-limited stream to avoid holding too huge buffer.
317     SkRawLimitedDynamicMemoryWStream fStreamBuffer;
318 
319     const size_t kReadToEnd = 0;
320 };
321 
322 class SkRawAssetStream : public SkRawStream {
323 public:
SkRawAssetStream(std::unique_ptr<SkStream> stream)324     explicit SkRawAssetStream(std::unique_ptr<SkStream> stream)
325         : fStream(std::move(stream))
326     {
327         // Only use SkRawAssetStream when the stream is an asset stream.
328         SkASSERT(is_asset_stream(*fStream));
329     }
330 
~SkRawAssetStream()331     ~SkRawAssetStream() override {}
332 
getLength()333     uint64 getLength() override {
334         return fStream->getLength();
335     }
336 
337 
read(void * data,size_t offset,size_t length)338     bool read(void* data, size_t offset, size_t length) override {
339         if (length == 0) {
340             return true;
341         }
342 
343         size_t sum;
344         if (!safe_add_to_size_t(offset, length, &sum)) {
345             return false;
346         }
347 
348         return fStream->seek(offset) && (fStream->read(data, length) == length);
349     }
350 
transferBuffer(size_t offset,size_t size)351     std::unique_ptr<SkMemoryStream> transferBuffer(size_t offset, size_t size) override {
352         if (fStream->getLength() < offset) {
353             return nullptr;
354         }
355 
356         size_t sum;
357         if (!safe_add_to_size_t(offset, size, &sum)) {
358             return nullptr;
359         }
360 
361         // This will allow read less than the requested "size", because the JPEG codec wants to
362         // handle also a partial JPEG file.
363         const size_t bytesToRead = std::min(sum, fStream->getLength()) - offset;
364         if (bytesToRead == 0) {
365             return nullptr;
366         }
367 
368         if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available.
369             sk_sp<SkData> data(SkData::MakeWithCopy(
370                 static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
371             fStream.reset();
372             return SkMemoryStream::Make(data);
373         } else {
374             sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead));
375             if (!fStream->seek(offset)) {
376                 return nullptr;
377             }
378             const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
379             if (bytesRead < bytesToRead) {
380                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
381             }
382             return SkMemoryStream::Make(data);
383         }
384     }
385 private:
386     std::unique_ptr<SkStream> fStream;
387 };
388 
389 class SkPiexStream : public ::piex::StreamInterface {
390 public:
391     // Will NOT take the ownership of the stream.
SkPiexStream(SkRawStream * stream)392     explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
393 
~SkPiexStream()394     ~SkPiexStream() override {}
395 
GetData(const size_t offset,const size_t length,uint8 * data)396     ::piex::Error GetData(const size_t offset, const size_t length,
397                           uint8* data) override {
398         return fStream->read(static_cast<void*>(data), offset, length) ?
399             ::piex::Error::kOk : ::piex::Error::kFail;
400     }
401 
402 private:
403     SkRawStream* fStream;
404 };
405 
406 class SkDngStream : public dng_stream {
407 public:
408     // Will NOT take the ownership of the stream.
SkDngStream(SkRawStream * stream)409     SkDngStream(SkRawStream* stream) : fStream(stream) {}
410 
~SkDngStream()411     ~SkDngStream() override {}
412 
DoGetLength()413     uint64 DoGetLength() override { return fStream->getLength(); }
414 
DoRead(void * data,uint32 count,uint64 offset)415     void DoRead(void* data, uint32 count, uint64 offset) override {
416         size_t sum;
417         if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
418             !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
419             ThrowReadFile();
420         }
421     }
422 
423 private:
424     SkRawStream* fStream;
425 };
426 
427 class SkDngImage {
428 public:
429     /*
430      * Initializes the object with the information from Piex in a first attempt. This way it can
431      * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
432      * which is essential for the demosaicing of the sensor image.
433      * Note: this will take the ownership of the stream.
434      */
NewFromStream(SkRawStream * stream)435     static SkDngImage* NewFromStream(SkRawStream* stream) {
436         std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream));
437 #if defined(IS_FUZZING_WITH_LIBFUZZER)
438         // Libfuzzer easily runs out of memory after here. To avoid that
439         // We just pretend all streams are invalid. Our AFL-fuzzer
440         // should still exercise this code; it's more resistant to OOM.
441         return nullptr;
442 #endif
443         if (!dngImage->initFromPiex() && !dngImage->readDng()) {
444             return nullptr;
445         }
446 
447         return dngImage.release();
448     }
449 
450     /*
451      * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
452      * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
453      * but there is no guarantee that any of the edges will match the requested size. E.g.
454      *   100% size:              4000 x 3000
455      *   requested size:         1600 x 1200
456      *   returned size could be: 2000 x 1500
457      */
render(int width,int height)458     dng_image* render(int width, int height) {
459         if (!fHost || !fInfo || !fNegative || !fDngStream) {
460             if (!this->readDng()) {
461                 return nullptr;
462             }
463         }
464 
465         // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
466         const int preferredSize = std::max(width, height);
467         try {
468             // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
469             std::unique_ptr<dng_host> host(fHost.release());
470             std::unique_ptr<dng_info> info(fInfo.release());
471             std::unique_ptr<dng_negative> negative(fNegative.release());
472             std::unique_ptr<dng_stream> dngStream(fDngStream.release());
473 
474             host->SetPreferredSize(preferredSize);
475             host->ValidateSizes();
476 
477             negative->ReadStage1Image(*host, *dngStream, *info);
478 
479             if (info->fMaskIndex != -1) {
480                 negative->ReadTransparencyMask(*host, *dngStream, *info);
481             }
482 
483             negative->ValidateRawImageDigest(*host);
484             if (negative->IsDamaged()) {
485                 return nullptr;
486             }
487 
488             const int32 kMosaicPlane = -1;
489             negative->BuildStage2Image(*host);
490             negative->BuildStage3Image(*host, kMosaicPlane);
491 
492             dng_render render(*host, *negative);
493             render.SetFinalSpace(dng_space_sRGB::Get());
494             render.SetFinalPixelType(ttByte);
495 
496             dng_point stage3_size = negative->Stage3Image()->Size();
497             render.SetMaximumSize(std::max(stage3_size.h, stage3_size.v));
498 
499             return render.Render();
500         } catch (...) {
501             return nullptr;
502         }
503     }
504 
width() const505     int width() const {
506         return fWidth;
507     }
508 
height() const509     int height() const {
510         return fHeight;
511     }
512 
isScalable() const513     bool isScalable() const {
514         return fIsScalable;
515     }
516 
isXtransImage() const517     bool isXtransImage() const {
518         return fIsXtransImage;
519     }
520 
521     // Quick check if the image contains a valid TIFF header as requested by DNG format.
522     // Does not affect ownership of stream.
IsTiffHeaderValid(SkRawStream * stream)523     static bool IsTiffHeaderValid(SkRawStream* stream) {
524         const size_t kHeaderSize = 4;
525         unsigned char header[kHeaderSize];
526         if (!stream->read(header, 0 /* offset */, kHeaderSize)) {
527             return false;
528         }
529 
530         // Check if the header is valid (endian info and magic number "42").
531         bool littleEndian;
532         if (!is_valid_endian_marker(header, &littleEndian)) {
533             return false;
534         }
535 
536         return 0x2A == get_endian_short(header + 2, littleEndian);
537     }
538 
539 private:
init(int width,int height,const dng_point & cfaPatternSize)540     bool init(int width, int height, const dng_point& cfaPatternSize) {
541         fWidth = width;
542         fHeight = height;
543 
544         // The DNG SDK scales only during demosaicing, so scaling is only possible when
545         // a mosaic info is available.
546         fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
547         fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
548 
549         return width > 0 && height > 0;
550     }
551 
initFromPiex()552     bool initFromPiex() {
553         // Does not take the ownership of rawStream.
554         SkPiexStream piexStream(fStream.get());
555         ::piex::PreviewImageData imageData;
556         if (::piex::IsRaw(&piexStream)
557             && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
558         {
559             dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
560             return this->init(static_cast<int>(imageData.full_width),
561                               static_cast<int>(imageData.full_height), cfaPatternSize);
562         }
563         return false;
564     }
565 
readDng()566     bool readDng() {
567         try {
568             // Due to the limit of DNG SDK, we need to reset host and info.
569             fHost.reset(new SkDngHost(&fAllocator));
570             fInfo.reset(new dng_info);
571             fDngStream.reset(new SkDngStream(fStream.get()));
572 
573             fHost->ValidateSizes();
574             fInfo->Parse(*fHost, *fDngStream);
575             fInfo->PostParse(*fHost);
576             if (!fInfo->IsValidDNG()) {
577                 return false;
578             }
579 
580             fNegative.reset(fHost->Make_dng_negative());
581             fNegative->Parse(*fHost, *fDngStream, *fInfo);
582             fNegative->PostParse(*fHost, *fDngStream, *fInfo);
583             fNegative->SynchronizeMetadata();
584 
585             dng_point cfaPatternSize(0, 0);
586             if (fNegative->GetMosaicInfo() != nullptr) {
587                 cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
588             }
589             return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
590                               static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
591                               cfaPatternSize);
592         } catch (...) {
593             return false;
594         }
595     }
596 
SkDngImage(SkRawStream * stream)597     SkDngImage(SkRawStream* stream)
598         : fStream(stream)
599     {}
600 
601     dng_memory_allocator fAllocator;
602     std::unique_ptr<SkRawStream> fStream;
603     std::unique_ptr<dng_host> fHost;
604     std::unique_ptr<dng_info> fInfo;
605     std::unique_ptr<dng_negative> fNegative;
606     std::unique_ptr<dng_stream> fDngStream;
607 
608     int fWidth;
609     int fHeight;
610     bool fIsScalable;
611     bool fIsXtransImage;
612 };
613 
614 /*
615  * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
616  * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
617  * fallback to create SkRawCodec for DNG images.
618  */
MakeFromStream(std::unique_ptr<SkStream> stream,Result * result)619 std::unique_ptr<SkCodec> SkRawCodec::MakeFromStream(std::unique_ptr<SkStream> stream,
620                                                     Result* result) {
621     std::unique_ptr<SkRawStream> rawStream;
622     if (is_asset_stream(*stream)) {
623         rawStream.reset(new SkRawAssetStream(std::move(stream)));
624     } else {
625         rawStream.reset(new SkRawBufferedStream(std::move(stream)));
626     }
627 
628     // Does not take the ownership of rawStream.
629     SkPiexStream piexStream(rawStream.get());
630     ::piex::PreviewImageData imageData;
631     if (::piex::IsRaw(&piexStream)) {
632         ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
633         if (error == ::piex::Error::kFail) {
634             *result = kInvalidInput;
635             return nullptr;
636         }
637 
638         std::unique_ptr<SkEncodedInfo::ICCProfile> profile;
639         if (imageData.color_space == ::piex::PreviewImageData::kAdobeRgb) {
640             skcms_ICCProfile skcmsProfile;
641             skcms_Init(&skcmsProfile);
642             skcms_SetTransferFunction(&skcmsProfile, &SkNamedTransferFn::k2Dot2);
643             skcms_SetXYZD50(&skcmsProfile, &SkNamedGamut::kAdobeRGB);
644             profile = SkEncodedInfo::ICCProfile::Make(skcmsProfile);
645         }
646 
647         //  Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
648         //  handle the JPEG compressed preview image here.
649         if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
650             imageData.preview.format == ::piex::Image::kJpegCompressed)
651         {
652             // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
653             // function call.
654             // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
655             auto memoryStream = rawStream->transferBuffer(imageData.preview.offset,
656                                                           imageData.preview.length);
657             if (!memoryStream) {
658                 *result = kInvalidInput;
659                 return nullptr;
660             }
661             return SkJpegCodec::MakeFromStream(std::move(memoryStream), result,
662                                                std::move(profile));
663         }
664     }
665 
666     if (!SkDngImage::IsTiffHeaderValid(rawStream.get())) {
667         *result = kUnimplemented;
668         return nullptr;
669     }
670 
671     // Takes the ownership of the rawStream.
672     std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
673     if (!dngImage) {
674         *result = kInvalidInput;
675         return nullptr;
676     }
677 
678     *result = kSuccess;
679     return std::unique_ptr<SkCodec>(new SkRawCodec(dngImage.release()));
680 }
681 
onGetPixels(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes,const Options & options,int * rowsDecoded)682 SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst,
683                                         size_t dstRowBytes, const Options& options,
684                                         int* rowsDecoded) {
685     const int width = dstInfo.width();
686     const int height = dstInfo.height();
687     std::unique_ptr<dng_image> image(fDngImage->render(width, height));
688     if (!image) {
689         return kInvalidInput;
690     }
691 
692     // Because the DNG SDK can not guarantee to render to requested size, we allow a small
693     // difference. Only the overlapping region will be converted.
694     const float maxDiffRatio = 1.03f;
695     const dng_point& imageSize = image->Size();
696     if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width ||
697         imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) {
698         return SkCodec::kInvalidScale;
699     }
700 
701     void* dstRow = dst;
702     SkAutoTMalloc<uint8_t> srcRow(width * 3);
703 
704     dng_pixel_buffer buffer;
705     buffer.fData = &srcRow[0];
706     buffer.fPlane = 0;
707     buffer.fPlanes = 3;
708     buffer.fColStep = buffer.fPlanes;
709     buffer.fPlaneStep = 1;
710     buffer.fPixelType = ttByte;
711     buffer.fPixelSize = sizeof(uint8_t);
712     buffer.fRowStep = width * 3;
713 
714     constexpr auto srcFormat = skcms_PixelFormat_RGB_888;
715     skcms_PixelFormat dstFormat;
716     if (!sk_select_xform_format(dstInfo.colorType(), false, &dstFormat)) {
717         return kInvalidConversion;
718     }
719 
720     const skcms_ICCProfile* const srcProfile = this->getEncodedInfo().profile();
721     skcms_ICCProfile dstProfileStorage;
722     const skcms_ICCProfile* dstProfile = nullptr;
723     if (auto cs = dstInfo.colorSpace()) {
724         cs->toProfile(&dstProfileStorage);
725         dstProfile = &dstProfileStorage;
726     }
727 
728     for (int i = 0; i < height; ++i) {
729         buffer.fArea = dng_rect(i, 0, i + 1, width);
730 
731         try {
732             image->Get(buffer, dng_image::edge_zero);
733         } catch (...) {
734             *rowsDecoded = i;
735             return kIncompleteInput;
736         }
737 
738         if (!skcms_Transform(&srcRow[0], srcFormat, skcms_AlphaFormat_Unpremul, srcProfile,
739                              dstRow,     dstFormat, skcms_AlphaFormat_Unpremul, dstProfile,
740                              dstInfo.width())) {
741             SkDebugf("failed to transform\n");
742             *rowsDecoded = i;
743             return kInternalError;
744         }
745 
746         dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
747     }
748     return kSuccess;
749 }
750 
onGetScaledDimensions(float desiredScale) const751 SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
752     SkASSERT(desiredScale <= 1.f);
753 
754     const SkISize dim = this->dimensions();
755     SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
756 
757     if (!fDngImage->isScalable()) {
758         return dim;
759     }
760 
761     // Limits the minimum size to be 80 on the short edge.
762     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight));
763     if (desiredScale < 80.f / shortEdge) {
764         desiredScale = 80.f / shortEdge;
765     }
766 
767     // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
768     // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
769     if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
770         desiredScale = 1.f / 3.f;
771     }
772 
773     // Round to integer-factors.
774     const float finalScale = std::floor(1.f/ desiredScale);
775     return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
776                          static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
777 }
778 
onDimensionsSupported(const SkISize & dim)779 bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
780     const SkISize fullDim = this->dimensions();
781     const float fullShortEdge = static_cast<float>(std::min(fullDim.fWidth, fullDim.fHeight));
782     const float shortEdge = static_cast<float>(std::min(dim.fWidth, dim.fHeight));
783 
784     SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
785     SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
786     return sizeFloor == dim || sizeCeil == dim;
787 }
788 
~SkRawCodec()789 SkRawCodec::~SkRawCodec() {}
790 
SkRawCodec(SkDngImage * dngImage)791 SkRawCodec::SkRawCodec(SkDngImage* dngImage)
792     : INHERITED(SkEncodedInfo::Make(dngImage->width(), dngImage->height(),
793                                     SkEncodedInfo::kRGB_Color,
794                                     SkEncodedInfo::kOpaque_Alpha, 8),
795                 skcms_PixelFormat_RGBA_8888, nullptr)
796     , fDngImage(dngImage) {}
797