• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGeometry_DEFINED
9 #define SkGeometry_DEFINED
10 
11 #include "include/core/SkMatrix.h"
12 #include "include/private/SkNx.h"
13 
from_point(const SkPoint & point)14 static inline Sk2s from_point(const SkPoint& point) {
15     return Sk2s::Load(&point);
16 }
17 
to_point(const Sk2s & x)18 static inline SkPoint to_point(const Sk2s& x) {
19     SkPoint point;
20     x.store(&point);
21     return point;
22 }
23 
times_2(const Sk2s & value)24 static Sk2s times_2(const Sk2s& value) {
25     return value + value;
26 }
27 
28 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
29     equation.
30 */
31 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
32 
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
36 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
37 
38 /** Set pt to the point on the src quadratic specified by t. t must be
39     0 <= t <= 1.0
40 */
41 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
42 
43 /** Given a src quadratic bezier, chop it at the specified t value,
44     where 0 < t < 1, and return the two new quadratics in dst:
45     dst[0..2] and dst[2..4]
46 */
47 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
48 
49 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
50     The new quads are returned in dst[0..2] and dst[2..4]
51 */
52 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
53 
54 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
55     for extrema, and return the number of t-values that are found that represent
56     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
57     function returns 0.
58     Returned count      tValues[]
59     0                   ignored
60     1                   0 < tValues[0] < 1
61 */
62 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
63 
64 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
65     the resulting beziers are monotonic in Y. This is called by the scan converter.
66     Depending on what is returned, dst[] is treated as follows
67     0   dst[0..2] is the original quad
68     1   dst[0..2] and dst[2..4] are the two new quads
69 */
70 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
71 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
72 
73 /** Given 3 points on a quadratic bezier, if the point of maximum
74     curvature exists on the segment, returns the t value for this
75     point along the curve. Otherwise it will return a value of 0.
76 */
77 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
78 
79 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
80     if the point of maximum curvature exists on the quad segment.
81     Depending on what is returned, dst[] is treated as follows
82     1   dst[0..2] is the original quad
83     2   dst[0..2] and dst[2..4] are the two new quads
84     If dst == null, it is ignored and only the count is returned.
85 */
86 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
87 
88 /** Given 3 points on a quadratic bezier, use degree elevation to
89     convert it into the cubic fitting the same curve. The new cubic
90     curve is returned in dst[0..3].
91 */
92 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
93 
94 ///////////////////////////////////////////////////////////////////////////////
95 
96 /** Set pt to the point on the src cubic specified by t. t must be
97     0 <= t <= 1.0
98 */
99 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
100                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
101 
102 /** Given a src cubic bezier, chop it at the specified t value,
103     where 0 < t < 1, and return the two new cubics in dst:
104     dst[0..3] and dst[3..6]
105 */
106 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
107 
108 /** Given a src cubic bezier, chop it at the specified t values,
109     where 0 < t < 1, and return the new cubics in dst:
110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
111 */
112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
113                    int t_count);
114 
115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
116     The new cubics are returned in dst[0..3] and dst[3..6]
117 */
118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
119 
120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
121     for extrema, and return the number of t-values that are found that represent
122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
123     function returns 0.
124     Returned count      tValues[]
125     0                   ignored
126     1                   0 < tValues[0] < 1
127     2                   0 < tValues[0] < tValues[1] < 1
128 */
129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
130                        SkScalar tValues[2]);
131 
132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
133     the resulting beziers are monotonic in Y. This is called by the scan converter.
134     Depending on what is returned, dst[] is treated as follows
135     0   dst[0..3] is the original cubic
136     1   dst[0..3] and dst[3..6] are the two new cubics
137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
138     If dst == null, it is ignored and only the count is returned.
139 */
140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
142 
143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
144     inflection points.
145 */
146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
147 
148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
149     inflection point, 3 for having chopped at 2 inflection points.
150     dst will hold the resulting 1, 2, or 3 cubics.
151 */
152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
153 
154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
156                               SkScalar tValues[3] = nullptr);
157 /** Returns t value of cusp if cubic has one; returns -1 otherwise.
158  */
159 SkScalar SkFindCubicCusp(const SkPoint src[4]);
160 
161 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
162 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
163 
164 enum class SkCubicType {
165     kSerpentine,
166     kLoop,
167     kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity.
168     kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection.
169     kQuadratic,
170     kLineOrPoint
171 };
172 
SkCubicIsDegenerate(SkCubicType type)173 static inline bool SkCubicIsDegenerate(SkCubicType type) {
174     switch (type) {
175         case SkCubicType::kSerpentine:
176         case SkCubicType::kLoop:
177         case SkCubicType::kLocalCusp:
178         case SkCubicType::kCuspAtInfinity:
179             return false;
180         case SkCubicType::kQuadratic:
181         case SkCubicType::kLineOrPoint:
182             return true;
183     }
184     SK_ABORT("Invalid SkCubicType");
185 }
186 
SkCubicTypeName(SkCubicType type)187 static inline const char* SkCubicTypeName(SkCubicType type) {
188     switch (type) {
189         case SkCubicType::kSerpentine: return "kSerpentine";
190         case SkCubicType::kLoop: return "kLoop";
191         case SkCubicType::kLocalCusp: return "kLocalCusp";
192         case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity";
193         case SkCubicType::kQuadratic: return "kQuadratic";
194         case SkCubicType::kLineOrPoint: return "kLineOrPoint";
195     }
196     SK_ABORT("Invalid SkCubicType");
197 }
198 
199 /** Returns the cubic classification.
200 
201     t[],s[] are set to the two homogeneous parameter values at which points the lines L & M
202     intersect with K, sorted from smallest to largest and oriented so positive values of the
203     implicit are on the "left" side. For a serpentine curve they are the inflection points. For a
204     loop they are the double point. For a local cusp, they are both equal and denote the cusp point.
205     For a cusp at an infinite parameter value, one will be the local inflection point and the other
206     +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a
207     parameter value of +inf (t,s = 1,0).
208 
209     d[] is filled with the cubic inflection function coefficients. See "Resolution Independent
210     Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization:
211 
212     If the input points contain infinities or NaN, the return values are undefined.
213 
214     https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
215 */
216 SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr,
217                             double d[4] = nullptr);
218 
219 ///////////////////////////////////////////////////////////////////////////////
220 
221 enum SkRotationDirection {
222     kCW_SkRotationDirection,
223     kCCW_SkRotationDirection
224 };
225 
226 struct SkConic {
SkConicSkConic227     SkConic() {}
SkConicSkConic228     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
229         fPts[0] = p0;
230         fPts[1] = p1;
231         fPts[2] = p2;
232         fW = w;
233     }
SkConicSkConic234     SkConic(const SkPoint pts[3], SkScalar w) {
235         memcpy(fPts, pts, sizeof(fPts));
236         fW = w;
237     }
238 
239     SkPoint  fPts[3];
240     SkScalar fW;
241 
setSkConic242     void set(const SkPoint pts[3], SkScalar w) {
243         memcpy(fPts, pts, 3 * sizeof(SkPoint));
244         fW = w;
245     }
246 
setSkConic247     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
248         fPts[0] = p0;
249         fPts[1] = p1;
250         fPts[2] = p2;
251         fW = w;
252     }
253 
254     /**
255      *  Given a t-value [0...1] return its position and/or tangent.
256      *  If pos is not null, return its position at the t-value.
257      *  If tangent is not null, return its tangent at the t-value. NOTE the
258      *  tangent value's length is arbitrary, and only its direction should
259      *  be used.
260      */
261     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
262     bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const;
263     void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
264     void chop(SkConic dst[2]) const;
265 
266     SkPoint evalAt(SkScalar t) const;
267     SkVector evalTangentAt(SkScalar t) const;
268 
269     void computeAsQuadError(SkVector* err) const;
270     bool asQuadTol(SkScalar tol) const;
271 
272     /**
273      *  return the power-of-2 number of quads needed to approximate this conic
274      *  with a sequence of quads. Will be >= 0.
275      */
276     int SK_SPI computeQuadPOW2(SkScalar tol) const;
277 
278     /**
279      *  Chop this conic into N quads, stored continguously in pts[], where
280      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
281      */
282     int SK_SPI SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
283 
284     bool findXExtrema(SkScalar* t) const;
285     bool findYExtrema(SkScalar* t) const;
286     bool chopAtXExtrema(SkConic dst[2]) const;
287     bool chopAtYExtrema(SkConic dst[2]) const;
288 
289     void computeTightBounds(SkRect* bounds) const;
290     void computeFastBounds(SkRect* bounds) const;
291 
292     /** Find the parameter value where the conic takes on its maximum curvature.
293      *
294      *  @param t   output scalar for max curvature.  Will be unchanged if
295      *             max curvature outside 0..1 range.
296      *
297      *  @return  true if max curvature found inside 0..1 range, false otherwise
298      */
299 //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented
300 
301     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
302 
303     enum {
304         kMaxConicsForArc = 5
305     };
306     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
307                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
308 };
309 
310 // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
311 namespace {  // NOLINT(google-build-namespaces)
312 
313 /**
314  *  use for : eval(t) == A * t^2 + B * t + C
315  */
316 struct SkQuadCoeff {
SkQuadCoeffSkQuadCoeff317     SkQuadCoeff() {}
318 
SkQuadCoeffSkQuadCoeff319     SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
320         : fA(A)
321         , fB(B)
322         , fC(C)
323     {
324     }
325 
SkQuadCoeffSkQuadCoeff326     SkQuadCoeff(const SkPoint src[3]) {
327         fC = from_point(src[0]);
328         Sk2s P1 = from_point(src[1]);
329         Sk2s P2 = from_point(src[2]);
330         fB = times_2(P1 - fC);
331         fA = P2 - times_2(P1) + fC;
332     }
333 
evalSkQuadCoeff334     Sk2s eval(SkScalar t) {
335         Sk2s tt(t);
336         return eval(tt);
337     }
338 
evalSkQuadCoeff339     Sk2s eval(const Sk2s& tt) {
340         return (fA * tt + fB) * tt + fC;
341     }
342 
343     Sk2s fA;
344     Sk2s fB;
345     Sk2s fC;
346 };
347 
348 struct SkConicCoeff {
SkConicCoeffSkConicCoeff349     SkConicCoeff(const SkConic& conic) {
350         Sk2s p0 = from_point(conic.fPts[0]);
351         Sk2s p1 = from_point(conic.fPts[1]);
352         Sk2s p2 = from_point(conic.fPts[2]);
353         Sk2s ww(conic.fW);
354 
355         Sk2s p1w = p1 * ww;
356         fNumer.fC = p0;
357         fNumer.fA = p2 - times_2(p1w) + p0;
358         fNumer.fB = times_2(p1w - p0);
359 
360         fDenom.fC = Sk2s(1);
361         fDenom.fB = times_2(ww - fDenom.fC);
362         fDenom.fA = Sk2s(0) - fDenom.fB;
363     }
364 
evalSkConicCoeff365     Sk2s eval(SkScalar t) {
366         Sk2s tt(t);
367         Sk2s numer = fNumer.eval(tt);
368         Sk2s denom = fDenom.eval(tt);
369         return numer / denom;
370     }
371 
372     SkQuadCoeff fNumer;
373     SkQuadCoeff fDenom;
374 };
375 
376 struct SkCubicCoeff {
SkCubicCoeffSkCubicCoeff377     SkCubicCoeff(const SkPoint src[4]) {
378         Sk2s P0 = from_point(src[0]);
379         Sk2s P1 = from_point(src[1]);
380         Sk2s P2 = from_point(src[2]);
381         Sk2s P3 = from_point(src[3]);
382         Sk2s three(3);
383         fA = P3 + three * (P1 - P2) - P0;
384         fB = three * (P2 - times_2(P1) + P0);
385         fC = three * (P1 - P0);
386         fD = P0;
387     }
388 
evalSkCubicCoeff389     Sk2s eval(SkScalar t) {
390         Sk2s tt(t);
391         return eval(tt);
392     }
393 
evalSkCubicCoeff394     Sk2s eval(const Sk2s& t) {
395         return ((fA * t + fB) * t + fC) * t + fD;
396     }
397 
398     Sk2s fA;
399     Sk2s fB;
400     Sk2s fC;
401     Sk2s fD;
402 };
403 
404 }
405 
406 #include "include/private/SkTemplates.h"
407 
408 /**
409  *  Help class to allocate storage for approximating a conic with N quads.
410  */
411 class SkAutoConicToQuads {
412 public:
SkAutoConicToQuads()413     SkAutoConicToQuads() : fQuadCount(0) {}
414 
415     /**
416      *  Given a conic and a tolerance, return the array of points for the
417      *  approximating quad(s). Call countQuads() to know the number of quads
418      *  represented in these points.
419      *
420      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
421      *  there will be 9 points allocated as follows
422      *      quad[0] == pts[0..2]
423      *      quad[1] == pts[2..4]
424      *      quad[2] == pts[4..6]
425      *      quad[3] == pts[6..8]
426      */
computeQuads(const SkConic & conic,SkScalar tol)427     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
428         int pow2 = conic.computeQuadPOW2(tol);
429         fQuadCount = 1 << pow2;
430         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
431         fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2);
432         return pts;
433     }
434 
computeQuads(const SkPoint pts[3],SkScalar weight,SkScalar tol)435     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
436                                 SkScalar tol) {
437         SkConic conic;
438         conic.set(pts, weight);
439         return computeQuads(conic, tol);
440     }
441 
countQuads()442     int countQuads() const { return fQuadCount; }
443 
444 private:
445     enum {
446         kQuadCount = 8, // should handle most conics
447         kPointCount = 1 + 2 * kQuadCount,
448     };
449     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
450     int fQuadCount; // #quads for current usage
451 };
452 
453 #endif
454