• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPath.h"
9 #include "include/core/SkRegion.h"
10 #include "include/private/SkMacros.h"
11 #include "include/private/SkSafe32.h"
12 #include "include/private/SkTemplates.h"
13 #include "src/core/SkBlitter.h"
14 #include "src/core/SkEdge.h"
15 #include "src/core/SkEdgeBuilder.h"
16 #include "src/core/SkGeometry.h"
17 #include "src/core/SkQuadClipper.h"
18 #include "src/core/SkRasterClip.h"
19 #include "src/core/SkRectPriv.h"
20 #include "src/core/SkScanPriv.h"
21 #include "src/core/SkTSort.h"
22 
23 #include <utility>
24 
25 #define kEDGE_HEAD_Y    SK_MinS32
26 #define kEDGE_TAIL_Y    SK_MaxS32
27 
28 #ifdef SK_DEBUG
validate_sort(const SkEdge * edge)29     static void validate_sort(const SkEdge* edge) {
30         int y = kEDGE_HEAD_Y;
31 
32         while (edge->fFirstY != SK_MaxS32) {
33             edge->validate();
34             SkASSERT(y <= edge->fFirstY);
35 
36             y = edge->fFirstY;
37             edge = edge->fNext;
38         }
39     }
40 #else
41     #define validate_sort(edge)
42 #endif
43 
insert_new_edges(SkEdge * newEdge,int curr_y)44 static void insert_new_edges(SkEdge* newEdge, int curr_y) {
45     if (newEdge->fFirstY != curr_y) {
46         return;
47     }
48     SkEdge* prev = newEdge->fPrev;
49     if (prev->fX <= newEdge->fX) {
50         return;
51     }
52     // find first x pos to insert
53     SkEdge* start = backward_insert_start(prev, newEdge->fX);
54     // insert the lot, fixing up the links as we go
55     do {
56         SkEdge* next = newEdge->fNext;
57         do {
58             if (start->fNext == newEdge) {
59                 goto nextEdge;
60             }
61             SkEdge* after = start->fNext;
62             if (after->fX >= newEdge->fX) {
63                 break;
64             }
65             start = after;
66         } while (true);
67         remove_edge(newEdge);
68         insert_edge_after(newEdge, start);
69 nextEdge:
70         start = newEdge;
71         newEdge = next;
72     } while (newEdge->fFirstY == curr_y);
73 }
74 
75 #ifdef SK_DEBUG
validate_edges_for_y(const SkEdge * edge,int curr_y)76 static void validate_edges_for_y(const SkEdge* edge, int curr_y) {
77     while (edge->fFirstY <= curr_y) {
78         SkASSERT(edge->fPrev && edge->fNext);
79         SkASSERT(edge->fPrev->fNext == edge);
80         SkASSERT(edge->fNext->fPrev == edge);
81         SkASSERT(edge->fFirstY <= edge->fLastY);
82 
83         SkASSERT(edge->fPrev->fX <= edge->fX);
84         edge = edge->fNext;
85     }
86 }
87 #else
88     #define validate_edges_for_y(edge, curr_y)
89 #endif
90 
91 #if defined _WIN32  // disable warning : local variable used without having been initialized
92 #pragma warning ( push )
93 #pragma warning ( disable : 4701 )
94 #endif
95 
96 typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
97 #define PREPOST_START   true
98 #define PREPOST_END     false
99 
walk_edges(SkEdge * prevHead,SkPathFillType fillType,SkBlitter * blitter,int start_y,int stop_y,PrePostProc proc,int rightClip)100 static void walk_edges(SkEdge* prevHead, SkPathFillType fillType,
101                        SkBlitter* blitter, int start_y, int stop_y,
102                        PrePostProc proc, int rightClip) {
103     validate_sort(prevHead->fNext);
104 
105     int curr_y = start_y;
106     int windingMask = SkPathFillType_IsEvenOdd(fillType) ? 1 : -1;
107 
108     for (;;) {
109         int     w = 0;
110         int     left SK_INIT_TO_AVOID_WARNING;
111         SkEdge* currE = prevHead->fNext;
112         SkFixed prevX = prevHead->fX;
113 
114         validate_edges_for_y(currE, curr_y);
115 
116         if (proc) {
117             proc(blitter, curr_y, PREPOST_START);    // pre-proc
118         }
119 
120         while (currE->fFirstY <= curr_y) {
121             SkASSERT(currE->fLastY >= curr_y);
122 
123             int x = SkFixedRoundToInt(currE->fX);
124 
125             if ((w & windingMask) == 0) { // we're starting interval
126                 left = x;
127             }
128 
129             w += currE->fWinding;
130 
131             if ((w & windingMask) == 0) { // we finished an interval
132                 int width = x - left;
133                 SkASSERT(width >= 0);
134                 if (width > 0) {
135                     blitter->blitH(left, curr_y, width);
136                 }
137             }
138 
139             SkEdge* next = currE->fNext;
140             SkFixed newX;
141 
142             if (currE->fLastY == curr_y) {    // are we done with this edge?
143                 if (currE->fCurveCount > 0) {
144                     if (((SkQuadraticEdge*)currE)->updateQuadratic()) {
145                         newX = currE->fX;
146                         goto NEXT_X;
147                     }
148                 } else if (currE->fCurveCount < 0) {
149                     if (((SkCubicEdge*)currE)->updateCubic()) {
150                         SkASSERT(currE->fFirstY == curr_y + 1);
151 
152                         newX = currE->fX;
153                         goto NEXT_X;
154                     }
155                 }
156                 remove_edge(currE);
157             } else {
158                 SkASSERT(currE->fLastY > curr_y);
159                 newX = currE->fX + currE->fDX;
160                 currE->fX = newX;
161             NEXT_X:
162                 if (newX < prevX) { // ripple currE backwards until it is x-sorted
163                     backward_insert_edge_based_on_x(currE);
164                 } else {
165                     prevX = newX;
166                 }
167             }
168             currE = next;
169             SkASSERT(currE);
170         }
171 
172         if ((w & windingMask) != 0) { // was our right-edge culled away?
173             int width = rightClip - left;
174             if (width > 0) {
175                 blitter->blitH(left, curr_y, width);
176             }
177         }
178 
179         if (proc) {
180             proc(blitter, curr_y, PREPOST_END);    // post-proc
181         }
182 
183         curr_y += 1;
184         if (curr_y >= stop_y) {
185             break;
186         }
187         // now currE points to the first edge with a Yint larger than curr_y
188         insert_new_edges(currE, curr_y);
189     }
190 }
191 
192 // return true if we're NOT done with this edge
update_edge(SkEdge * edge,int last_y)193 static bool update_edge(SkEdge* edge, int last_y) {
194     SkASSERT(edge->fLastY >= last_y);
195     if (last_y == edge->fLastY) {
196         if (edge->fCurveCount < 0) {
197             if (((SkCubicEdge*)edge)->updateCubic()) {
198                 SkASSERT(edge->fFirstY == last_y + 1);
199                 return true;
200             }
201         } else if (edge->fCurveCount > 0) {
202             if (((SkQuadraticEdge*)edge)->updateQuadratic()) {
203                 SkASSERT(edge->fFirstY == last_y + 1);
204                 return true;
205             }
206         }
207         return false;
208     }
209     return true;
210 }
211 
212 // Unexpected conditions for which we need to return
213 #define ASSERT_RETURN(cond)     \
214     do {                        \
215         if (!(cond)) {          \
216             SkASSERT(false);    \
217             return;             \
218         }                       \
219     } while (0)
220 
221 // Needs Y to only change once (looser than convex in X)
walk_simple_edges(SkEdge * prevHead,SkBlitter * blitter,int start_y,int stop_y)222 static void walk_simple_edges(SkEdge* prevHead, SkBlitter* blitter, int start_y, int stop_y) {
223     validate_sort(prevHead->fNext);
224 
225     SkEdge* leftE = prevHead->fNext;
226     SkEdge* riteE = leftE->fNext;
227     SkEdge* currE = riteE->fNext;
228 
229     // our edge choppers for curves can result in the initial edges
230     // not lining up, so we take the max.
231     int local_top = std::max(leftE->fFirstY, riteE->fFirstY);
232     ASSERT_RETURN(local_top >= start_y);
233 
234     while (local_top < stop_y) {
235         SkASSERT(leftE->fFirstY <= stop_y);
236         SkASSERT(riteE->fFirstY <= stop_y);
237 
238         int local_bot = std::min(leftE->fLastY, riteE->fLastY);
239         local_bot = std::min(local_bot, stop_y - 1);
240         ASSERT_RETURN(local_top <= local_bot);
241 
242         SkFixed left = leftE->fX;
243         SkFixed dLeft = leftE->fDX;
244         SkFixed rite = riteE->fX;
245         SkFixed dRite = riteE->fDX;
246         int count = local_bot - local_top;
247         ASSERT_RETURN(count >= 0);
248 
249         if (0 == (dLeft | dRite)) {
250             int L = SkFixedRoundToInt(left);
251             int R = SkFixedRoundToInt(rite);
252             if (L > R) {
253                 std::swap(L, R);
254             }
255             if (L < R) {
256                 count += 1;
257                 blitter->blitRect(L, local_top, R - L, count);
258             }
259             local_top = local_bot + 1;
260         } else {
261             do {
262                 int L = SkFixedRoundToInt(left);
263                 int R = SkFixedRoundToInt(rite);
264                 if (L > R) {
265                     std::swap(L, R);
266                 }
267                 if (L < R) {
268                     blitter->blitH(L, local_top, R - L);
269                 }
270                 // Either/both of these might overflow, since we perform this step even if
271                 // (later) we determine that we are done with the edge, and so the computed
272                 // left or rite edge will not be used (see update_edge). Use this helper to
273                 // silence UBSAN when we perform the add.
274                 left = Sk32_can_overflow_add(left, dLeft);
275                 rite = Sk32_can_overflow_add(rite, dRite);
276                 local_top += 1;
277             } while (--count >= 0);
278         }
279 
280         leftE->fX = left;
281         riteE->fX = rite;
282 
283         if (!update_edge(leftE, local_bot)) {
284             if (currE->fFirstY >= stop_y) {
285                 return; // we're done
286             }
287             leftE = currE;
288             currE = currE->fNext;
289             ASSERT_RETURN(leftE->fFirstY == local_top);
290         }
291         if (!update_edge(riteE, local_bot)) {
292             if (currE->fFirstY >= stop_y) {
293                 return; // we're done
294             }
295             riteE = currE;
296             currE = currE->fNext;
297             ASSERT_RETURN(riteE->fFirstY == local_top);
298         }
299     }
300 }
301 
302 ///////////////////////////////////////////////////////////////////////////////
303 
304 // this guy overrides blitH, and will call its proxy blitter with the inverse
305 // of the spans it is given (clipped to the left/right of the cliprect)
306 //
307 // used to implement inverse filltypes on paths
308 //
309 class InverseBlitter : public SkBlitter {
310 public:
setBlitter(SkBlitter * blitter,const SkIRect & clip,int shift)311     void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
312         fBlitter = blitter;
313         fFirstX = clip.fLeft << shift;
314         fLastX = clip.fRight << shift;
315     }
prepost(int y,bool isStart)316     void prepost(int y, bool isStart) {
317         if (isStart) {
318             fPrevX = fFirstX;
319         } else {
320             int invWidth = fLastX - fPrevX;
321             if (invWidth > 0) {
322                 fBlitter->blitH(fPrevX, y, invWidth);
323             }
324         }
325     }
326 
327     // overrides
blitH(int x,int y,int width)328     void blitH(int x, int y, int width) override {
329         int invWidth = x - fPrevX;
330         if (invWidth > 0) {
331             fBlitter->blitH(fPrevX, y, invWidth);
332         }
333         fPrevX = x + width;
334     }
335 
336     // we do not expect to get called with these entrypoints
blitAntiH(int,int,const SkAlpha[],const int16_t runs[])337     void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) override {
338         SkDEBUGFAIL("blitAntiH unexpected");
339     }
blitV(int x,int y,int height,SkAlpha alpha)340     void blitV(int x, int y, int height, SkAlpha alpha) override {
341         SkDEBUGFAIL("blitV unexpected");
342     }
blitRect(int x,int y,int width,int height)343     void blitRect(int x, int y, int width, int height) override {
344         SkDEBUGFAIL("blitRect unexpected");
345     }
blitMask(const SkMask &,const SkIRect & clip)346     void blitMask(const SkMask&, const SkIRect& clip) override {
347         SkDEBUGFAIL("blitMask unexpected");
348     }
justAnOpaqueColor(uint32_t * value)349     const SkPixmap* justAnOpaqueColor(uint32_t* value) override {
350         SkDEBUGFAIL("justAnOpaqueColor unexpected");
351         return nullptr;
352     }
353 
354 private:
355     SkBlitter*  fBlitter;
356     int         fFirstX, fLastX, fPrevX;
357 };
358 
PrePostInverseBlitterProc(SkBlitter * blitter,int y,bool isStart)359 static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
360     ((InverseBlitter*)blitter)->prepost(y, isStart);
361 }
362 
363 ///////////////////////////////////////////////////////////////////////////////
364 
365 #if defined _WIN32
366 #pragma warning ( pop )
367 #endif
368 
operator <(const SkEdge & a,const SkEdge & b)369 static bool operator<(const SkEdge& a, const SkEdge& b) {
370     int valuea = a.fFirstY;
371     int valueb = b.fFirstY;
372 
373     if (valuea == valueb) {
374         valuea = a.fX;
375         valueb = b.fX;
376     }
377 
378     return valuea < valueb;
379 }
380 
sort_edges(SkEdge * list[],int count,SkEdge ** last)381 static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) {
382     SkTQSort(list, list + count - 1);
383 
384     // now make the edges linked in sorted order
385     for (int i = 1; i < count; i++) {
386         list[i - 1]->fNext = list[i];
387         list[i]->fPrev = list[i - 1];
388     }
389 
390     *last = list[count - 1];
391     return list[0];
392 }
393 
394 // clipRect has not been shifted up
sk_fill_path(const SkPath & path,const SkIRect & clipRect,SkBlitter * blitter,int start_y,int stop_y,int shiftEdgesUp,bool pathContainedInClip)395 void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitter,
396                   int start_y, int stop_y, int shiftEdgesUp, bool pathContainedInClip) {
397     SkASSERT(blitter);
398 
399     SkIRect shiftedClip = clipRect;
400     shiftedClip.fLeft = SkLeftShift(shiftedClip.fLeft, shiftEdgesUp);
401     shiftedClip.fRight = SkLeftShift(shiftedClip.fRight, shiftEdgesUp);
402     shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp);
403     shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp);
404 
405     SkBasicEdgeBuilder builder(shiftEdgesUp);
406     int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &shiftedClip);
407     SkEdge** list = builder.edgeList();
408 
409     if (0 == count) {
410         if (path.isInverseFillType()) {
411             /*
412              *  Since we are in inverse-fill, our caller has already drawn above
413              *  our top (start_y) and will draw below our bottom (stop_y). Thus
414              *  we need to restrict our drawing to the intersection of the clip
415              *  and those two limits.
416              */
417             SkIRect rect = clipRect;
418             if (rect.fTop < start_y) {
419                 rect.fTop = start_y;
420             }
421             if (rect.fBottom > stop_y) {
422                 rect.fBottom = stop_y;
423             }
424             if (!rect.isEmpty()) {
425                 blitter->blitRect(rect.fLeft << shiftEdgesUp,
426                                   rect.fTop << shiftEdgesUp,
427                                   rect.width() << shiftEdgesUp,
428                                   rect.height() << shiftEdgesUp);
429             }
430         }
431         return;
432     }
433 
434     SkEdge headEdge, tailEdge, *last;
435     // this returns the first and last edge after they're sorted into a dlink list
436     SkEdge* edge = sort_edges(list, count, &last);
437 
438     headEdge.fPrev = nullptr;
439     headEdge.fNext = edge;
440     headEdge.fFirstY = kEDGE_HEAD_Y;
441     headEdge.fX = SK_MinS32;
442     edge->fPrev = &headEdge;
443 
444     tailEdge.fPrev = last;
445     tailEdge.fNext = nullptr;
446     tailEdge.fFirstY = kEDGE_TAIL_Y;
447     last->fNext = &tailEdge;
448 
449     // now edge is the head of the sorted linklist
450 
451     start_y = SkLeftShift(start_y, shiftEdgesUp);
452     stop_y = SkLeftShift(stop_y, shiftEdgesUp);
453     if (!pathContainedInClip && start_y < shiftedClip.fTop) {
454         start_y = shiftedClip.fTop;
455     }
456     if (!pathContainedInClip && stop_y > shiftedClip.fBottom) {
457         stop_y = shiftedClip.fBottom;
458     }
459 
460     InverseBlitter  ib;
461     PrePostProc     proc = nullptr;
462 
463     if (path.isInverseFillType()) {
464         ib.setBlitter(blitter, clipRect, shiftEdgesUp);
465         blitter = &ib;
466         proc = PrePostInverseBlitterProc;
467     }
468 
469     // count >= 2 is required as the convex walker does not handle missing right edges
470     if (path.isConvex() && (nullptr == proc) && count >= 2) {
471         walk_simple_edges(&headEdge, blitter, start_y, stop_y);
472     } else {
473         walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc,
474                    shiftedClip.right());
475     }
476 }
477 
sk_blit_above(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)478 void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
479     const SkIRect& cr = clip.getBounds();
480     SkIRect tmp;
481 
482     tmp.fLeft = cr.fLeft;
483     tmp.fRight = cr.fRight;
484     tmp.fTop = cr.fTop;
485     tmp.fBottom = ir.fTop;
486     if (!tmp.isEmpty()) {
487         blitter->blitRectRegion(tmp, clip);
488     }
489 }
490 
sk_blit_below(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)491 void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
492     const SkIRect& cr = clip.getBounds();
493     SkIRect tmp;
494 
495     tmp.fLeft = cr.fLeft;
496     tmp.fRight = cr.fRight;
497     tmp.fTop = ir.fBottom;
498     tmp.fBottom = cr.fBottom;
499     if (!tmp.isEmpty()) {
500         blitter->blitRectRegion(tmp, clip);
501     }
502 }
503 
504 ///////////////////////////////////////////////////////////////////////////////
505 
506 /**
507  *  If the caller is drawing an inverse-fill path, then it pass true for
508  *  skipRejectTest, so we don't abort drawing just because the src bounds (ir)
509  *  is outside of the clip.
510  */
SkScanClipper(SkBlitter * blitter,const SkRegion * clip,const SkIRect & ir,bool skipRejectTest,bool irPreClipped)511 SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip,
512                              const SkIRect& ir, bool skipRejectTest, bool irPreClipped) {
513     fBlitter = nullptr;     // null means blit nothing
514     fClipRect = nullptr;
515 
516     if (clip) {
517         fClipRect = &clip->getBounds();
518         if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out
519             return;
520         }
521 
522         if (clip->isRect()) {
523             if (!irPreClipped && fClipRect->contains(ir)) {
524 #ifdef SK_DEBUG
525                 fRectClipCheckBlitter.init(blitter, *fClipRect);
526                 blitter = &fRectClipCheckBlitter;
527 #endif
528                 fClipRect = nullptr;
529             } else {
530                 // only need a wrapper blitter if we're horizontally clipped
531                 if (irPreClipped ||
532                     fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) {
533                     fRectBlitter.init(blitter, *fClipRect);
534                     blitter = &fRectBlitter;
535                 } else {
536 #ifdef SK_DEBUG
537                     fRectClipCheckBlitter.init(blitter, *fClipRect);
538                     blitter = &fRectClipCheckBlitter;
539 #endif
540                 }
541             }
542         } else {
543             fRgnBlitter.init(blitter, clip);
544             blitter = &fRgnBlitter;
545         }
546     }
547     fBlitter = blitter;
548 }
549 
550 ///////////////////////////////////////////////////////////////////////////////
551 
clip_to_limit(const SkRegion & orig,SkRegion * reduced)552 static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) {
553     // need to limit coordinates such that the width/height of our rect can be represented
554     // in SkFixed (16.16). See skbug.com/7998
555     const int32_t limit = 32767 >> 1;
556 
557     SkIRect limitR;
558     limitR.setLTRB(-limit, -limit, limit, limit);
559     if (limitR.contains(orig.getBounds())) {
560         return false;
561     }
562     reduced->op(orig, limitR, SkRegion::kIntersect_Op);
563     return true;
564 }
565 
566 // Bias used for conservative rounding of float rects to int rects, to nudge the irects a little
567 // larger, so we don't "think" a path's bounds are inside a clip, when (due to numeric drift in
568 // the scan-converter) we might walk beyond the predicted limits.
569 //
570 // This value has been determined trial and error: pick the smallest value (after the 0.5) that
571 // fixes any problematic cases (e.g. crbug.com/844457)
572 // NOTE: cubics appear to be the main reason for needing this slop. If we could (perhaps) have a
573 // more accurate walker for cubics, we may be able to reduce this fudge factor.
574 static const double kConservativeRoundBias = 0.5 + 1.5 / SK_FDot6One;
575 
576 /**
577  *  Round the value down. This is used to round the top and left of a rectangle,
578  *  and corresponds to the way the scan converter treats the top and left edges.
579  *  It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
580  *  conservative int-bounds (larger) from a float rect.
581  */
round_down_to_int(SkScalar x)582 static inline int round_down_to_int(SkScalar x) {
583     double xx = x;
584     xx -= kConservativeRoundBias;
585     return sk_double_saturate2int(ceil(xx));
586 }
587 
588 /**
589  *  Round the value up. This is used to round the right and bottom of a rectangle.
590  *  It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
591  *  conservative int-bounds (larger) from a float rect.
592   */
round_up_to_int(SkScalar x)593 static inline int round_up_to_int(SkScalar x) {
594     double xx = x;
595     xx += kConservativeRoundBias;
596     return sk_double_saturate2int(floor(xx));
597 }
598 
599 /*
600  *  Conservative rounding function, which effectively nudges the int-rect to be slightly larger
601  *  than SkRect::round() might have produced. This is a safety-net for the scan-converter, which
602  *  inspects the returned int-rect, and may disable clipping (for speed) if it thinks all of the
603  *  edges will fit inside the clip's bounds. The scan-converter introduces slight numeric errors
604  *  due to accumulated += of the slope, so this function is used to return a conservatively large
605  *  int-bounds, and thus we will only disable clipping if we're sure the edges will stay in-bounds.
606   */
conservative_round_to_int(const SkRect & src)607 static SkIRect conservative_round_to_int(const SkRect& src) {
608     return {
609         round_down_to_int(src.fLeft),
610         round_down_to_int(src.fTop),
611         round_up_to_int(src.fRight),
612         round_up_to_int(src.fBottom),
613     };
614 }
615 
FillPath(const SkPath & path,const SkRegion & origClip,SkBlitter * blitter)616 void SkScan::FillPath(const SkPath& path, const SkRegion& origClip,
617                       SkBlitter* blitter) {
618     if (origClip.isEmpty()) {
619         return;
620     }
621 
622     // Our edges are fixed-point, and don't like the bounds of the clip to
623     // exceed that. Here we trim the clip just so we don't overflow later on
624     const SkRegion* clipPtr = &origClip;
625     SkRegion finiteClip;
626     if (clip_to_limit(origClip, &finiteClip)) {
627         if (finiteClip.isEmpty()) {
628             return;
629         }
630         clipPtr = &finiteClip;
631     }
632     // don't reference "origClip" any more, just use clipPtr
633 
634 
635     SkRect bounds = path.getBounds();
636     bool irPreClipped = false;
637     if (!SkRectPriv::MakeLargeS32().contains(bounds)) {
638         if (!bounds.intersect(SkRectPriv::MakeLargeS32())) {
639             bounds.setEmpty();
640         }
641         irPreClipped = true;
642     }
643 
644     SkIRect ir = conservative_round_to_int(bounds);
645     if (ir.isEmpty()) {
646         if (path.isInverseFillType()) {
647             blitter->blitRegion(*clipPtr);
648         }
649         return;
650     }
651 
652     SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType(), irPreClipped);
653 
654     blitter = clipper.getBlitter();
655     if (blitter) {
656         // we have to keep our calls to blitter in sorted order, so we
657         // must blit the above section first, then the middle, then the bottom.
658         if (path.isInverseFillType()) {
659             sk_blit_above(blitter, ir, *clipPtr);
660         }
661         SkASSERT(clipper.getClipRect() == nullptr ||
662                 *clipper.getClipRect() == clipPtr->getBounds());
663         sk_fill_path(path, clipPtr->getBounds(), blitter, ir.fTop, ir.fBottom,
664                      0, clipper.getClipRect() == nullptr);
665         if (path.isInverseFillType()) {
666             sk_blit_below(blitter, ir, *clipPtr);
667         }
668     } else {
669         // what does it mean to not have a blitter if path.isInverseFillType???
670     }
671 }
672 
FillPath(const SkPath & path,const SkIRect & ir,SkBlitter * blitter)673 void SkScan::FillPath(const SkPath& path, const SkIRect& ir,
674                       SkBlitter* blitter) {
675     SkRegion rgn(ir);
676     FillPath(path, rgn, blitter);
677 }
678 
679 ///////////////////////////////////////////////////////////////////////////////
680 
build_tri_edges(SkEdge edge[],const SkPoint pts[],const SkIRect * clipRect,SkEdge * list[])681 static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
682                            const SkIRect* clipRect, SkEdge* list[]) {
683     SkEdge** start = list;
684 
685     if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
686         *list++ = edge;
687         edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
688     }
689     if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
690         *list++ = edge;
691         edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
692     }
693     if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
694         *list++ = edge;
695     }
696     return (int)(list - start);
697 }
698 
699 
sk_fill_triangle(const SkPoint pts[],const SkIRect * clipRect,SkBlitter * blitter,const SkIRect & ir)700 static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
701                              SkBlitter* blitter, const SkIRect& ir) {
702     SkASSERT(pts && blitter);
703 
704     SkEdge edgeStorage[3];
705     SkEdge* list[3];
706 
707     int count = build_tri_edges(edgeStorage, pts, clipRect, list);
708     if (count < 2) {
709         return;
710     }
711 
712     SkEdge headEdge, tailEdge, *last;
713 
714     // this returns the first and last edge after they're sorted into a dlink list
715     SkEdge* edge = sort_edges(list, count, &last);
716 
717     headEdge.fPrev = nullptr;
718     headEdge.fNext = edge;
719     headEdge.fFirstY = kEDGE_HEAD_Y;
720     headEdge.fX = SK_MinS32;
721     edge->fPrev = &headEdge;
722 
723     tailEdge.fPrev = last;
724     tailEdge.fNext = nullptr;
725     tailEdge.fFirstY = kEDGE_TAIL_Y;
726     last->fNext = &tailEdge;
727 
728     // now edge is the head of the sorted linklist
729     int stop_y = ir.fBottom;
730     if (clipRect && stop_y > clipRect->fBottom) {
731         stop_y = clipRect->fBottom;
732     }
733     int start_y = ir.fTop;
734     if (clipRect && start_y < clipRect->fTop) {
735         start_y = clipRect->fTop;
736     }
737     walk_simple_edges(&headEdge, blitter, start_y, stop_y);
738 }
739 
FillTriangle(const SkPoint pts[],const SkRasterClip & clip,SkBlitter * blitter)740 void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip,
741                           SkBlitter* blitter) {
742     if (clip.isEmpty()) {
743         return;
744     }
745 
746     SkRect  r;
747     r.setBounds(pts, 3);
748     // If r is too large (larger than can easily fit in SkFixed) then we need perform geometric
749     // clipping. This is a bit of work, so we just call the general FillPath() to handle it.
750     // Use FixedMax/2 as the limit so we can subtract two edges and still store that in Fixed.
751     const SkScalar limit = SK_MaxS16 >> 1;
752     if (!SkRect::MakeLTRB(-limit, -limit, limit, limit).contains(r)) {
753         SkPath path;
754         path.addPoly(pts, 3, false);
755         FillPath(path, clip, blitter);
756         return;
757     }
758 
759     SkIRect ir = conservative_round_to_int(r);
760     if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) {
761         return;
762     }
763 
764     SkAAClipBlitterWrapper wrap;
765     const SkRegion* clipRgn;
766     if (clip.isBW()) {
767         clipRgn = &clip.bwRgn();
768     } else {
769         wrap.init(clip, blitter);
770         clipRgn = &wrap.getRgn();
771         blitter = wrap.getBlitter();
772     }
773 
774     SkScanClipper clipper(blitter, clipRgn, ir);
775     blitter = clipper.getBlitter();
776     if (blitter) {
777         sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
778     }
779 }
780