• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 ARM Ltd.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkDistanceFieldGen.h"
9 #include "src/gpu/GrDistanceFieldGenFromVector.h"
10 
11 #include "include/core/SkMatrix.h"
12 #include "include/gpu/GrConfig.h"
13 #include "include/pathops/SkPathOps.h"
14 #include "src/core/SkAutoMalloc.h"
15 #include "src/core/SkGeometry.h"
16 #include "src/core/SkPointPriv.h"
17 #include "src/core/SkRectPriv.h"
18 #include "src/gpu/geometry/GrPathUtils.h"
19 
20 #include "src/pathops/SkPathOpsPoint.h"
21 
22 /**
23  * If a scanline (a row of texel) cross from the kRight_SegSide
24  * of a segment to the kLeft_SegSide, the winding score should
25  * add 1.
26  * And winding score should subtract 1 if the scanline cross
27  * from kLeft_SegSide to kRight_SegSide.
28  * Always return kNA_SegSide if the scanline does not cross over
29  * the segment. Winding score should be zero in this case.
30  * You can get the winding number for each texel of the scanline
31  * by adding the winding score from left to right.
32  * Assuming we always start from outside, so the winding number
33  * should always start from zero.
34  *      ________         ________
35  *     |        |       |        |
36  * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
37  *     |+1      |-1     |-1      |+1     <= Winding score
38  *   0 |   1    ^   0   ^  -1    |0      <= Winding number
39  *     |________|       |________|
40  *
41  * .......NA................NA..........
42  *         0                 0
43  */
44 enum SegSide {
45     kLeft_SegSide  = -1,
46     kOn_SegSide    =  0,
47     kRight_SegSide =  1,
48     kNA_SegSide    =  2,
49 };
50 
51 struct DFData {
52     float fDistSq;            // distance squared to nearest (so far) edge
53     int   fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
54 };
55 
56 ///////////////////////////////////////////////////////////////////////////////
57 
58 /*
59  * Type definition for double precision DAffineMatrix
60  */
61 
62 // Matrix with double precision for affine transformation.
63 // We don't store row 3 because its always (0, 0, 1).
64 class DAffineMatrix {
65 public:
operator [](int index) const66     double operator[](int index) const {
67         SkASSERT((unsigned)index < 6);
68         return fMat[index];
69     }
70 
operator [](int index)71     double& operator[](int index) {
72         SkASSERT((unsigned)index < 6);
73         return fMat[index];
74     }
75 
setAffine(double m11,double m12,double m13,double m21,double m22,double m23)76     void setAffine(double m11, double m12, double m13,
77                    double m21, double m22, double m23) {
78         fMat[0] = m11;
79         fMat[1] = m12;
80         fMat[2] = m13;
81         fMat[3] = m21;
82         fMat[4] = m22;
83         fMat[5] = m23;
84     }
85 
86     /** Set the matrix to identity
87     */
reset()88     void reset() {
89         fMat[0] = fMat[4] = 1.0;
90         fMat[1] = fMat[3] =
91         fMat[2] = fMat[5] = 0.0;
92     }
93 
94     // alias for reset()
setIdentity()95     void setIdentity() { this->reset(); }
96 
mapPoint(const SkPoint & src) const97     SkDPoint mapPoint(const SkPoint& src) const {
98         SkDPoint pt = {src.fX, src.fY};
99         return this->mapPoint(pt);
100     }
101 
mapPoint(const SkDPoint & src) const102     SkDPoint mapPoint(const SkDPoint& src) const {
103         return { fMat[0] * src.fX + fMat[1] * src.fY + fMat[2],
104                  fMat[3] * src.fX + fMat[4] * src.fY + fMat[5] };
105     }
106 private:
107     double fMat[6];
108 };
109 
110 ///////////////////////////////////////////////////////////////////////////////
111 
112 static const double kClose = (SK_Scalar1 / 16.0);
113 static const double kCloseSqd = kClose * kClose;
114 static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
115 static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
116 static const float  kConicTolerance = 0.25f;
117 
118 // returns true if a >= min(b,c) && a < max(b,c)
between_closed_open(double a,double b,double c,double tolerance=0.0,bool xformToleranceToX=false)119 static inline bool between_closed_open(double a, double b, double c,
120                                        double tolerance = 0.0,
121                                        bool xformToleranceToX = false) {
122     SkASSERT(tolerance >= 0.0);
123     double tolB = tolerance;
124     double tolC = tolerance;
125 
126     if (xformToleranceToX) {
127         // Canonical space is y = x^2 and the derivative of x^2 is 2x.
128         // So the slope of the tangent line at point (x, x^2) is 2x.
129         //
130         //                          /|
131         //  sqrt(2x * 2x + 1 * 1)  / | 2x
132         //                        /__|
133         //                         1
134         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
135         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
136     }
137     return b < c ? (a >= b - tolB && a < c - tolC) :
138                    (a >= c - tolC && a < b - tolB);
139 }
140 
141 // returns true if a >= min(b,c) && a <= max(b,c)
between_closed(double a,double b,double c,double tolerance=0.0,bool xformToleranceToX=false)142 static inline bool between_closed(double a, double b, double c,
143                                   double tolerance = 0.0,
144                                   bool xformToleranceToX = false) {
145     SkASSERT(tolerance >= 0.0);
146     double tolB = tolerance;
147     double tolC = tolerance;
148 
149     if (xformToleranceToX) {
150         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
151         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
152     }
153     return b < c ? (a >= b - tolB && a <= c + tolC) :
154                    (a >= c - tolC && a <= b + tolB);
155 }
156 
nearly_zero(double x,double tolerance=kNearlyZero)157 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
158     SkASSERT(tolerance >= 0.0);
159     return fabs(x) <= tolerance;
160 }
161 
nearly_equal(double x,double y,double tolerance=kNearlyZero,bool xformToleranceToX=false)162 static inline bool nearly_equal(double x, double y,
163                                 double tolerance = kNearlyZero,
164                                 bool xformToleranceToX = false) {
165     SkASSERT(tolerance >= 0.0);
166     if (xformToleranceToX) {
167         tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
168     }
169     return fabs(x - y) <= tolerance;
170 }
171 
sign_of(const double & val)172 static inline double sign_of(const double &val) {
173     return std::copysign(1, val);
174 }
175 
is_colinear(const SkPoint pts[3])176 static bool is_colinear(const SkPoint pts[3]) {
177     return nearly_zero((pts[1].fY - pts[0].fY) * (pts[1].fX - pts[2].fX) -
178                        (pts[1].fY - pts[2].fY) * (pts[1].fX - pts[0].fX), kCloseSqd);
179 }
180 
181 class PathSegment {
182 public:
183     enum {
184         // These enum values are assumed in member functions below.
185         kLine = 0,
186         kQuad = 1,
187     } fType;
188 
189     // line uses 2 pts, quad uses 3 pts
190     SkPoint fPts[3];
191 
192     SkDPoint  fP0T, fP2T;
193     DAffineMatrix fXformMatrix;  // transforms the segment into canonical space
194     double fScalingFactor;
195     double fScalingFactorSqd;
196     double fNearlyZeroScaled;
197     double fTangentTolScaledSqd;
198     SkRect  fBoundingBox;
199 
200     void init();
201 
countPoints()202     int countPoints() {
203         static_assert(0 == kLine && 1 == kQuad);
204         return fType + 2;
205     }
206 
endPt() const207     const SkPoint& endPt() const {
208         static_assert(0 == kLine && 1 == kQuad);
209         return fPts[fType + 1];
210     }
211 };
212 
213 typedef SkTArray<PathSegment, true> PathSegmentArray;
214 
init()215 void PathSegment::init() {
216     const SkDPoint p0 = { fPts[0].fX, fPts[0].fY };
217     const SkDPoint p2 = { this->endPt().fX, this->endPt().fY };
218     const double p0x = p0.fX;
219     const double p0y = p0.fY;
220     const double p2x = p2.fX;
221     const double p2y = p2.fY;
222 
223     fBoundingBox.set(fPts[0], this->endPt());
224 
225     if (fType == PathSegment::kLine) {
226         fScalingFactorSqd = fScalingFactor = 1.0;
227         double hypotenuse = p0.distance(p2);
228 
229         const double cosTheta = (p2x - p0x) / hypotenuse;
230         const double sinTheta = (p2y - p0y) / hypotenuse;
231 
232         // rotates the segment to the x-axis, with p0 at the origin
233         fXformMatrix.setAffine(
234             cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
235             -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
236         );
237     } else {
238         SkASSERT(fType == PathSegment::kQuad);
239 
240         // Calculate bounding box
241         const SkPoint _P1mP0 = fPts[1] - fPts[0];
242         SkPoint t = _P1mP0 - fPts[2] + fPts[1];
243         t.fX = _P1mP0.fX / t.fX;
244         t.fY = _P1mP0.fY / t.fY;
245         t.fX = SkTPin(t.fX, 0.0f, 1.0f);
246         t.fY = SkTPin(t.fY, 0.0f, 1.0f);
247         t.fX = _P1mP0.fX * t.fX;
248         t.fY = _P1mP0.fY * t.fY;
249         const SkPoint m = fPts[0] + t;
250         SkRectPriv::GrowToInclude(&fBoundingBox, m);
251 
252         const double p1x = fPts[1].fX;
253         const double p1y = fPts[1].fY;
254 
255         const double p0xSqd = p0x * p0x;
256         const double p0ySqd = p0y * p0y;
257         const double p2xSqd = p2x * p2x;
258         const double p2ySqd = p2y * p2y;
259         const double p1xSqd = p1x * p1x;
260         const double p1ySqd = p1y * p1y;
261 
262         const double p01xProd = p0x * p1x;
263         const double p02xProd = p0x * p2x;
264         const double b12xProd = p1x * p2x;
265         const double p01yProd = p0y * p1y;
266         const double p02yProd = p0y * p2y;
267         const double b12yProd = p1y * p2y;
268 
269         // calculate quadratic params
270         const double sqrtA = p0y - (2.0 * p1y) + p2y;
271         const double a = sqrtA * sqrtA;
272         const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
273         const double sqrtB = p0x - (2.0 * p1x) + p2x;
274         const double b = sqrtB * sqrtB;
275         const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
276                 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
277                 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
278                 + (p2xSqd * p0ySqd);
279         const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
280                 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
281                 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
282                 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
283                 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
284                 - (2.0 * p2x * p1ySqd);
285         const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
286                 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
287                 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
288                 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
289                 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
290                 + (p2xSqd * p0y));
291 
292         const double cosTheta = sqrt(a / (a + b));
293         const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
294 
295         const double gDef = cosTheta * g - sinTheta * f;
296         const double fDef = sinTheta * g + cosTheta * f;
297 
298 
299         const double x0 = gDef / (a + b);
300         const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
301 
302 
303         const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
304         fScalingFactor = fabs(1.0 / lambda);
305         fScalingFactorSqd = fScalingFactor * fScalingFactor;
306 
307         const double lambda_cosTheta = lambda * cosTheta;
308         const double lambda_sinTheta = lambda * sinTheta;
309 
310         // transforms to lie on a canonical y = x^2 parabola
311         fXformMatrix.setAffine(
312             lambda_cosTheta, -lambda_sinTheta, lambda * x0,
313             lambda_sinTheta, lambda_cosTheta, lambda * y0
314         );
315     }
316 
317     fNearlyZeroScaled = kNearlyZero / fScalingFactor;
318     fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
319 
320     fP0T = fXformMatrix.mapPoint(p0);
321     fP2T = fXformMatrix.mapPoint(p2);
322 }
323 
init_distances(DFData * data,int size)324 static void init_distances(DFData* data, int size) {
325     DFData* currData = data;
326 
327     for (int i = 0; i < size; ++i) {
328         // init distance to "far away"
329         currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
330         currData->fDeltaWindingScore = 0;
331         ++currData;
332     }
333 }
334 
add_line(const SkPoint pts[2],PathSegmentArray * segments)335 static inline void add_line(const SkPoint pts[2], PathSegmentArray* segments) {
336     segments->push_back();
337     segments->back().fType = PathSegment::kLine;
338     segments->back().fPts[0] = pts[0];
339     segments->back().fPts[1] = pts[1];
340 
341     segments->back().init();
342 }
343 
add_quad(const SkPoint pts[3],PathSegmentArray * segments)344 static inline void add_quad(const SkPoint pts[3], PathSegmentArray* segments) {
345     if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd ||
346         SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd ||
347         is_colinear(pts)) {
348         if (pts[0] != pts[2]) {
349             SkPoint line_pts[2];
350             line_pts[0] = pts[0];
351             line_pts[1] = pts[2];
352             add_line(line_pts, segments);
353         }
354     } else {
355         segments->push_back();
356         segments->back().fType = PathSegment::kQuad;
357         segments->back().fPts[0] = pts[0];
358         segments->back().fPts[1] = pts[1];
359         segments->back().fPts[2] = pts[2];
360 
361         segments->back().init();
362     }
363 }
364 
add_cubic(const SkPoint pts[4],PathSegmentArray * segments)365 static inline void add_cubic(const SkPoint pts[4],
366                              PathSegmentArray* segments) {
367     SkSTArray<15, SkPoint, true> quads;
368     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
369     int count = quads.count();
370     for (int q = 0; q < count; q += 3) {
371         add_quad(&quads[q], segments);
372     }
373 }
374 
calculate_nearest_point_for_quad(const PathSegment & segment,const SkDPoint & xFormPt)375 static float calculate_nearest_point_for_quad(
376                 const PathSegment& segment,
377                 const SkDPoint &xFormPt) {
378     static const float kThird = 0.33333333333f;
379     static const float kTwentySeventh = 0.037037037f;
380 
381     const float a = 0.5f - (float)xFormPt.fY;
382     const float b = -0.5f * (float)xFormPt.fX;
383 
384     const float a3 = a * a * a;
385     const float b2 = b * b;
386 
387     const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
388 
389     if (c >= 0.f) {
390         const float sqrtC = sqrt(c);
391         const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
392         return result;
393     } else {
394         const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
395         const float phi = (float)acos(cosPhi);
396         float result;
397         if (xFormPt.fX > 0.f) {
398             result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
399             if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) {
400                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
401             }
402         } else {
403             result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
404             if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) {
405                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
406             }
407         }
408         return result;
409     }
410 }
411 
412 // This structure contains some intermediate values shared by the same row.
413 // It is used to calculate segment side of a quadratic bezier.
414 struct RowData {
415     // The intersection type of a scanline and y = x * x parabola in canonical space.
416     enum IntersectionType {
417         kNoIntersection,
418         kVerticalLine,
419         kTangentLine,
420         kTwoPointsIntersect
421     } fIntersectionType;
422 
423     // The direction of the quadratic segment/scanline in the canonical space.
424     //  1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
425     //  0: The scanline is a vertical line in the canonical space.
426     // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
427     int fQuadXDirection;
428     int fScanlineXDirection;
429 
430     // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
431     double fYAtIntersection;
432 
433     // The x-value for two intersection points.
434     double fXAtIntersection1;
435     double fXAtIntersection2;
436 };
437 
precomputation_for_row(RowData * rowData,const PathSegment & segment,const SkPoint & pointLeft,const SkPoint & pointRight)438 void precomputation_for_row(RowData *rowData, const PathSegment& segment,
439                             const SkPoint& pointLeft, const SkPoint& pointRight) {
440     if (segment.fType != PathSegment::kQuad) {
441         return;
442     }
443 
444     const SkDPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
445     const SkDPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);
446 
447     rowData->fQuadXDirection = (int)sign_of(segment.fP2T.fX - segment.fP0T.fX);
448     rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.fX - xFormPtLeft.fX);
449 
450     const double x1 = xFormPtLeft.fX;
451     const double y1 = xFormPtLeft.fY;
452     const double x2 = xFormPtRight.fX;
453     const double y2 = xFormPtRight.fY;
454 
455     if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
456         rowData->fIntersectionType = RowData::kVerticalLine;
457         rowData->fYAtIntersection = x1 * x1;
458         rowData->fScanlineXDirection = 0;
459         return;
460     }
461 
462     // Line y = mx + b
463     const double m = (y2 - y1) / (x2 - x1);
464     const double b = -m * x1 + y1;
465 
466     const double m2 = m * m;
467     const double c = m2 + 4.0 * b;
468 
469     const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
470 
471     // Check if the scanline is the tangent line of the curve,
472     // and the curve start or end at the same y-coordinate of the scanline
473     if ((rowData->fScanlineXDirection == 1 &&
474          (segment.fPts[0].fY == pointLeft.fY ||
475          segment.fPts[2].fY == pointLeft.fY)) &&
476          nearly_zero(c, tol)) {
477         rowData->fIntersectionType = RowData::kTangentLine;
478         rowData->fXAtIntersection1 = m / 2.0;
479         rowData->fXAtIntersection2 = m / 2.0;
480     } else if (c <= 0.0) {
481         rowData->fIntersectionType = RowData::kNoIntersection;
482         return;
483     } else {
484         rowData->fIntersectionType = RowData::kTwoPointsIntersect;
485         const double d = sqrt(c);
486         rowData->fXAtIntersection1 = (m + d) / 2.0;
487         rowData->fXAtIntersection2 = (m - d) / 2.0;
488     }
489 }
490 
calculate_side_of_quad(const PathSegment & segment,const SkPoint & point,const SkDPoint & xFormPt,const RowData & rowData)491 SegSide calculate_side_of_quad(
492             const PathSegment& segment,
493             const SkPoint& point,
494             const SkDPoint& xFormPt,
495             const RowData& rowData) {
496     SegSide side = kNA_SegSide;
497 
498     if (RowData::kVerticalLine == rowData.fIntersectionType) {
499         side = (SegSide)(int)(sign_of(xFormPt.fY - rowData.fYAtIntersection) * rowData.fQuadXDirection);
500     }
501     else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
502         const double p1 = rowData.fXAtIntersection1;
503         const double p2 = rowData.fXAtIntersection2;
504 
505         int signP1 = (int)sign_of(p1 - xFormPt.fX);
506         bool includeP1 = true;
507         bool includeP2 = true;
508 
509         if (rowData.fScanlineXDirection == 1) {
510             if ((rowData.fQuadXDirection == -1 && segment.fPts[0].fY <= point.fY &&
511                  nearly_equal(segment.fP0T.fX, p1, segment.fNearlyZeroScaled, true)) ||
512                  (rowData.fQuadXDirection == 1 && segment.fPts[2].fY <= point.fY &&
513                  nearly_equal(segment.fP2T.fX, p1, segment.fNearlyZeroScaled, true))) {
514                 includeP1 = false;
515             }
516             if ((rowData.fQuadXDirection == -1 && segment.fPts[2].fY <= point.fY &&
517                  nearly_equal(segment.fP2T.fX, p2, segment.fNearlyZeroScaled, true)) ||
518                  (rowData.fQuadXDirection == 1 && segment.fPts[0].fY <= point.fY &&
519                  nearly_equal(segment.fP0T.fX, p2, segment.fNearlyZeroScaled, true))) {
520                 includeP2 = false;
521             }
522         }
523 
524         if (includeP1 && between_closed(p1, segment.fP0T.fX, segment.fP2T.fX,
525                                         segment.fNearlyZeroScaled, true)) {
526             side = (SegSide)(signP1 * rowData.fQuadXDirection);
527         }
528         if (includeP2 && between_closed(p2, segment.fP0T.fX, segment.fP2T.fX,
529                                         segment.fNearlyZeroScaled, true)) {
530             int signP2 = (int)sign_of(p2 - xFormPt.fX);
531             if (side == kNA_SegSide || signP2 == 1) {
532                 side = (SegSide)(-signP2 * rowData.fQuadXDirection);
533             }
534         }
535     } else if (RowData::kTangentLine == rowData.fIntersectionType) {
536         // The scanline is the tangent line of current quadratic segment.
537 
538         const double p = rowData.fXAtIntersection1;
539         int signP = (int)sign_of(p - xFormPt.fX);
540         if (rowData.fScanlineXDirection == 1) {
541             // The path start or end at the tangent point.
542             if (segment.fPts[0].fY == point.fY) {
543                 side = (SegSide)(signP);
544             } else if (segment.fPts[2].fY == point.fY) {
545                 side = (SegSide)(-signP);
546             }
547         }
548     }
549 
550     return side;
551 }
552 
distance_to_segment(const SkPoint & point,const PathSegment & segment,const RowData & rowData,SegSide * side)553 static float distance_to_segment(const SkPoint& point,
554                                  const PathSegment& segment,
555                                  const RowData& rowData,
556                                  SegSide* side) {
557     SkASSERT(side);
558 
559     const SkDPoint xformPt = segment.fXformMatrix.mapPoint(point);
560 
561     if (segment.fType == PathSegment::kLine) {
562         float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
563 
564         if (between_closed(xformPt.fX, segment.fP0T.fX, segment.fP2T.fX)) {
565             result = (float)(xformPt.fY * xformPt.fY);
566         } else if (xformPt.fX < segment.fP0T.fX) {
567             result = (float)(xformPt.fX * xformPt.fX + xformPt.fY * xformPt.fY);
568         } else {
569             result = (float)((xformPt.fX - segment.fP2T.fX) * (xformPt.fX - segment.fP2T.fX)
570                      + xformPt.fY * xformPt.fY);
571         }
572 
573         if (between_closed_open(point.fY, segment.fBoundingBox.fTop,
574                                 segment.fBoundingBox.fBottom)) {
575             *side = (SegSide)(int)sign_of(xformPt.fY);
576         } else {
577             *side = kNA_SegSide;
578         }
579         return result;
580     } else {
581         SkASSERT(segment.fType == PathSegment::kQuad);
582 
583         const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
584 
585         float dist;
586 
587         if (between_closed(nearestPoint, segment.fP0T.fX, segment.fP2T.fX)) {
588             SkDPoint x = { nearestPoint, nearestPoint * nearestPoint };
589             dist = (float)xformPt.distanceSquared(x);
590         } else {
591             const float distToB0T = (float)xformPt.distanceSquared(segment.fP0T);
592             const float distToB2T = (float)xformPt.distanceSquared(segment.fP2T);
593 
594             if (distToB0T < distToB2T) {
595                 dist = distToB0T;
596             } else {
597                 dist = distToB2T;
598             }
599         }
600 
601         if (between_closed_open(point.fY, segment.fBoundingBox.fTop,
602                                 segment.fBoundingBox.fBottom)) {
603             *side = calculate_side_of_quad(segment, point, xformPt, rowData);
604         } else {
605             *side = kNA_SegSide;
606         }
607 
608         return (float)(dist * segment.fScalingFactorSqd);
609     }
610 }
611 
calculate_distance_field_data(PathSegmentArray * segments,DFData * dataPtr,int width,int height)612 static void calculate_distance_field_data(PathSegmentArray* segments,
613                                           DFData* dataPtr,
614                                           int width, int height) {
615     int count = segments->count();
616     // for each segment
617     for (int a = 0; a < count; ++a) {
618         PathSegment& segment = (*segments)[a];
619         const SkRect& segBB = segment.fBoundingBox;
620         // get the bounding box, outset by distance field pad, and clip to total bounds
621         const SkRect& paddedBB = segBB.makeOutset(SK_DistanceFieldPad, SK_DistanceFieldPad);
622         int startColumn = (int)paddedBB.fLeft;
623         int endColumn = SkScalarCeilToInt(paddedBB.fRight);
624 
625         int startRow = (int)paddedBB.fTop;
626         int endRow = SkScalarCeilToInt(paddedBB.fBottom);
627 
628         SkASSERT((startColumn >= 0) && "StartColumn < 0!");
629         SkASSERT((endColumn <= width) && "endColumn > width!");
630         SkASSERT((startRow >= 0) && "StartRow < 0!");
631         SkASSERT((endRow <= height) && "EndRow > height!");
632 
633         // Clip inside the distance field to avoid overflow
634         startColumn = std::max(startColumn, 0);
635         endColumn   = std::min(endColumn,   width);
636         startRow    = std::max(startRow,    0);
637         endRow      = std::min(endRow,      height);
638 
639         // for each row in the padded bounding box
640         for (int row = startRow; row < endRow; ++row) {
641             SegSide prevSide = kNA_SegSide;   // track side for winding count
642             const float pY = row + 0.5f;      // offset by 1/2? why?
643             RowData rowData;
644 
645             const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
646             const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
647 
648             // if this is a row inside the original segment bounding box
649             if (between_closed_open(pY, segBB.fTop, segBB.fBottom)) {
650                 // compute intersections with the row
651                 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
652             }
653 
654             // adjust distances and windings in each column based on the row calculation
655             for (int col = startColumn; col < endColumn; ++col) {
656                 int idx = (row * width) + col;
657 
658                 const float pX = col + 0.5f;
659                 const SkPoint point = SkPoint::Make(pX, pY);
660 
661                 const float distSq = dataPtr[idx].fDistSq;
662 
663                  // Optimization for not calculating some points.
664                 int dilation = distSq < 1.5f * 1.5f ? 1 :
665                                distSq < 2.5f * 2.5f ? 2 :
666                                distSq < 3.5f * 3.5f ? 3 : SK_DistanceFieldPad;
667                 if (dilation < SK_DistanceFieldPad &&
668                     !segBB.roundOut().makeOutset(dilation, dilation).contains(col, row)) {
669                     continue;
670                 }
671 
672                 SegSide side = kNA_SegSide;
673                 int     deltaWindingScore = 0;
674                 float   currDistSq = distance_to_segment(point, segment, rowData, &side);
675                 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
676                     deltaWindingScore = -1;
677                 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
678                     deltaWindingScore = 1;
679                 }
680 
681                 prevSide = side;
682 
683                 if (currDistSq < distSq) {
684                     dataPtr[idx].fDistSq = currDistSq;
685                 }
686 
687                 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
688             }
689         }
690     }
691 }
692 
693 template <int distanceMagnitude>
pack_distance_field_val(float dist)694 static unsigned char pack_distance_field_val(float dist) {
695     // The distance field is constructed as unsigned char values, so that the zero value is at 128,
696     // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
697     // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
698     dist = SkTPin<float>(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
699 
700     // Scale into the positive range for unsigned distance.
701     dist += distanceMagnitude;
702 
703     // Scale into unsigned char range.
704     // Round to place negative and positive values as equally as possible around 128
705     // (which represents zero).
706     return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
707 }
708 
GrGenerateDistanceFieldFromPath(unsigned char * distanceField,const SkPath & path,const SkMatrix & drawMatrix,int width,int height,size_t rowBytes)709 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
710                                      const SkPath& path, const SkMatrix& drawMatrix,
711                                      int width, int height, size_t rowBytes) {
712     SkASSERT(distanceField);
713 
714     // transform to device space, then:
715     // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
716     SkMatrix dfMatrix(drawMatrix);
717     dfMatrix.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
718 
719 #ifdef SK_DEBUG
720     SkPath xformPath;
721     path.transform(dfMatrix, &xformPath);
722     SkIRect pathBounds = xformPath.getBounds().roundOut();
723     SkIRect expectPathBounds = SkIRect::MakeWH(width, height);
724 #endif
725 
726     SkASSERT(expectPathBounds.isEmpty() ||
727              expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop));
728     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
729              expectPathBounds.contains(pathBounds));
730 
731 // TODO: restore when Simplify() is working correctly
732 //       see https://bugs.chromium.org/p/skia/issues/detail?id=9732
733 //    SkPath simplifiedPath;
734     SkPath workingPath;
735 //    if (Simplify(path, &simplifiedPath)) {
736 //        workingPath = simplifiedPath;
737 //    } else {
738         workingPath = path;
739 //    }
740     // only even-odd and inverse even-odd supported
741     if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
742         return false;
743     }
744 
745     // transform to device space + SDF offset
746     workingPath.transform(dfMatrix);
747 
748     SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
749     SkASSERT(expectPathBounds.isEmpty() ||
750              expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop));
751     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
752              expectPathBounds.contains(pathBounds));
753 
754     // create temp data
755     size_t dataSize = width * height * sizeof(DFData);
756     SkAutoSMalloc<1024> dfStorage(dataSize);
757     DFData* dataPtr = (DFData*) dfStorage.get();
758 
759     // create initial distance data (init to "far away")
760     init_distances(dataPtr, width * height);
761 
762     // polygonize path into line and quad segments
763     SkPathEdgeIter iter(workingPath);
764     SkSTArray<15, PathSegment, true> segments;
765     while (auto e = iter.next()) {
766         switch (e.fEdge) {
767             case SkPathEdgeIter::Edge::kLine: {
768                 add_line(e.fPts, &segments);
769                 break;
770             }
771             case SkPathEdgeIter::Edge::kQuad:
772                 add_quad(e.fPts, &segments);
773                 break;
774             case SkPathEdgeIter::Edge::kConic: {
775                 SkScalar weight = iter.conicWeight();
776                 SkAutoConicToQuads converter;
777                 const SkPoint* quadPts = converter.computeQuads(e.fPts, weight, kConicTolerance);
778                 for (int i = 0; i < converter.countQuads(); ++i) {
779                     add_quad(quadPts + 2*i, &segments);
780                 }
781                 break;
782             }
783             case SkPathEdgeIter::Edge::kCubic: {
784                 add_cubic(e.fPts, &segments);
785                 break;
786             }
787         }
788     }
789 
790     // do all the work
791     calculate_distance_field_data(&segments, dataPtr, width, height);
792 
793     // adjust distance based on winding
794     for (int row = 0; row < height; ++row) {
795         int windingNumber = 0; // Winding number start from zero for each scanline
796         for (int col = 0; col < width; ++col) {
797             int idx = (row * width) + col;
798             windingNumber += dataPtr[idx].fDeltaWindingScore;
799 
800             enum DFSign {
801                 kInside = -1,
802                 kOutside = 1
803             } dfSign;
804 
805             switch (workingPath.getFillType()) {
806                 case SkPathFillType::kWinding:
807                     dfSign = windingNumber ? kInside : kOutside;
808                     break;
809                 case SkPathFillType::kInverseWinding:
810                     dfSign = windingNumber ? kOutside : kInside;
811                     break;
812                 case SkPathFillType::kEvenOdd:
813                     dfSign = (windingNumber % 2) ? kInside : kOutside;
814                     break;
815                 case SkPathFillType::kInverseEvenOdd:
816                     dfSign = (windingNumber % 2) ? kOutside : kInside;
817                     break;
818             }
819 
820             // The winding number at the end of a scanline should be zero.
821             SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
822                     "Winding number should be zero at the end of a scan line.");
823             // Fallback to use SkPath::contains to determine the sign of pixel in release build.
824             if (col == width - 1 && windingNumber != 0) {
825                 for (int col = 0; col < width; ++col) {
826                     int idx = (row * width) + col;
827                     dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
828                     const float miniDist = sqrt(dataPtr[idx].fDistSq);
829                     const float dist = dfSign * miniDist;
830 
831                     unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
832 
833                     distanceField[(row * rowBytes) + col] = pixelVal;
834                 }
835                 continue;
836             }
837 
838             const float miniDist = sqrt(dataPtr[idx].fDistSq);
839             const float dist = dfSign * miniDist;
840 
841             unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
842 
843             distanceField[(row * rowBytes) + col] = pixelVal;
844         }
845     }
846     return true;
847 }
848