• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/GrDrawingManager.h"
9 
10 #include "include/gpu/GrBackendSemaphore.h"
11 #include "include/gpu/GrTexture.h"
12 #include "include/private/GrRecordingContext.h"
13 #include "include/private/SkDeferredDisplayList.h"
14 #include "src/core/SkTTopoSort.h"
15 #include "src/gpu/GrAuditTrail.h"
16 #include "src/gpu/GrClientMappedBufferManager.h"
17 #include "src/gpu/GrContextPriv.h"
18 #include "src/gpu/GrCopyRenderTask.h"
19 #include "src/gpu/GrGpu.h"
20 #include "src/gpu/GrMemoryPool.h"
21 #include "src/gpu/GrOnFlushResourceProvider.h"
22 #include "src/gpu/GrRecordingContextPriv.h"
23 #include "src/gpu/GrRenderTargetContext.h"
24 #include "src/gpu/GrRenderTargetProxy.h"
25 #include "src/gpu/GrRenderTask.h"
26 #include "src/gpu/GrResourceAllocator.h"
27 #include "src/gpu/GrResourceProvider.h"
28 #include "src/gpu/GrSoftwarePathRenderer.h"
29 #include "src/gpu/GrSurfaceContext.h"
30 #include "src/gpu/GrSurfaceProxyPriv.h"
31 #include "src/gpu/GrTexturePriv.h"
32 #include "src/gpu/GrTextureProxy.h"
33 #include "src/gpu/GrTextureProxyPriv.h"
34 #include "src/gpu/GrTextureResolveRenderTask.h"
35 #include "src/gpu/GrTracing.h"
36 #include "src/gpu/GrTransferFromRenderTask.h"
37 #include "src/gpu/GrWaitRenderTask.h"
38 #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
39 #include "src/gpu/text/GrTextContext.h"
40 #include "src/image/SkSurface_Gpu.h"
41 
RenderTaskDAG(bool sortRenderTasks)42 GrDrawingManager::RenderTaskDAG::RenderTaskDAG(bool sortRenderTasks)
43         : fSortRenderTasks(sortRenderTasks) {}
44 
~RenderTaskDAG()45 GrDrawingManager::RenderTaskDAG::~RenderTaskDAG() {}
46 
gatherIDs(SkSTArray<8,uint32_t,true> * idArray) const47 void GrDrawingManager::RenderTaskDAG::gatherIDs(SkSTArray<8, uint32_t, true>* idArray) const {
48     idArray->reset(fRenderTasks.count());
49     for (int i = 0; i < fRenderTasks.count(); ++i) {
50         if (fRenderTasks[i]) {
51             (*idArray)[i] = fRenderTasks[i]->uniqueID();
52         }
53     }
54 }
55 
reset()56 void GrDrawingManager::RenderTaskDAG::reset() {
57     fRenderTasks.reset();
58 }
59 
removeRenderTask(int index)60 void GrDrawingManager::RenderTaskDAG::removeRenderTask(int index) {
61     if (!fRenderTasks[index]->unique()) {
62         // TODO: Eventually this should be guaranteed unique: http://skbug.com/7111
63         fRenderTasks[index]->endFlush();
64     }
65 
66     fRenderTasks[index] = nullptr;
67 }
68 
removeRenderTasks(int startIndex,int stopIndex)69 void GrDrawingManager::RenderTaskDAG::removeRenderTasks(int startIndex, int stopIndex) {
70     for (int i = startIndex; i < stopIndex; ++i) {
71         if (!fRenderTasks[i]) {
72             continue;
73         }
74         this->removeRenderTask(i);
75     }
76 }
77 
isUsed(GrSurfaceProxy * proxy) const78 bool GrDrawingManager::RenderTaskDAG::isUsed(GrSurfaceProxy* proxy) const {
79     for (int i = 0; i < fRenderTasks.count(); ++i) {
80         if (fRenderTasks[i] && fRenderTasks[i]->isUsed(proxy)) {
81             return true;
82         }
83     }
84 
85     return false;
86 }
87 
add(sk_sp<GrRenderTask> renderTask)88 GrRenderTask* GrDrawingManager::RenderTaskDAG::add(sk_sp<GrRenderTask> renderTask) {
89     if (renderTask) {
90         return fRenderTasks.emplace_back(std::move(renderTask)).get();
91     }
92     return nullptr;
93 }
94 
addBeforeLast(sk_sp<GrRenderTask> renderTask)95 GrRenderTask* GrDrawingManager::RenderTaskDAG::addBeforeLast(sk_sp<GrRenderTask> renderTask) {
96     SkASSERT(!fRenderTasks.empty());
97     if (renderTask) {
98         // Release 'fRenderTasks.back()' and grab the raw pointer, in case the SkTArray grows
99         // and reallocates during emplace_back.
100         fRenderTasks.emplace_back(fRenderTasks.back().release());
101         return (fRenderTasks[fRenderTasks.count() - 2] = std::move(renderTask)).get();
102     }
103     return nullptr;
104 }
105 
add(const SkTArray<sk_sp<GrRenderTask>> & renderTasks)106 void GrDrawingManager::RenderTaskDAG::add(const SkTArray<sk_sp<GrRenderTask>>& renderTasks) {
107     fRenderTasks.push_back_n(renderTasks.count(), renderTasks.begin());
108 }
109 
swap(SkTArray<sk_sp<GrRenderTask>> * renderTasks)110 void GrDrawingManager::RenderTaskDAG::swap(SkTArray<sk_sp<GrRenderTask>>* renderTasks) {
111     SkASSERT(renderTasks->empty());
112     renderTasks->swap(fRenderTasks);
113 }
114 
prepForFlush()115 void GrDrawingManager::RenderTaskDAG::prepForFlush() {
116     if (fSortRenderTasks) {
117         SkDEBUGCODE(bool result =) SkTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(
118                 &fRenderTasks);
119         SkASSERT(result);
120     }
121 
122 #ifdef SK_DEBUG
123     // This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks
124     // share the same backing GrSurfaceProxy it means the opsTask was artificially split.
125     if (fRenderTasks.count()) {
126         GrOpsTask* prevOpsTask = fRenderTasks[0]->asOpsTask();
127         for (int i = 1; i < fRenderTasks.count(); ++i) {
128             GrOpsTask* curOpsTask = fRenderTasks[i]->asOpsTask();
129 
130             if (prevOpsTask && curOpsTask) {
131                 SkASSERT(prevOpsTask->fTargetView != curOpsTask->fTargetView);
132             }
133 
134             prevOpsTask = curOpsTask;
135         }
136     }
137 #endif
138 }
139 
closeAll(const GrCaps * caps)140 void GrDrawingManager::RenderTaskDAG::closeAll(const GrCaps* caps) {
141     for (int i = 0; i < fRenderTasks.count(); ++i) {
142         if (fRenderTasks[i]) {
143             fRenderTasks[i]->makeClosed(*caps);
144         }
145     }
146 }
147 
cleanup(const GrCaps * caps)148 void GrDrawingManager::RenderTaskDAG::cleanup(const GrCaps* caps) {
149     for (int i = 0; i < fRenderTasks.count(); ++i) {
150         if (!fRenderTasks[i]) {
151             continue;
152         }
153 
154         // no renderTask should receive a dependency
155         fRenderTasks[i]->makeClosed(*caps);
156 
157         // We shouldn't need to do this, but it turns out some clients still hold onto opsTasks
158         // after a cleanup.
159         // MDB TODO: is this still true?
160         if (!fRenderTasks[i]->unique()) {
161             // TODO: Eventually this should be guaranteed unique.
162             // https://bugs.chromium.org/p/skia/issues/detail?id=7111
163             fRenderTasks[i]->endFlush();
164         }
165     }
166 
167     fRenderTasks.reset();
168 }
169 
170 ///////////////////////////////////////////////////////////////////////////////////////////////////
GrDrawingManager(GrRecordingContext * context,const GrPathRendererChain::Options & optionsForPathRendererChain,const GrTextContext::Options & optionsForTextContext,bool sortRenderTasks,bool reduceOpsTaskSplitting)171 GrDrawingManager::GrDrawingManager(GrRecordingContext* context,
172                                    const GrPathRendererChain::Options& optionsForPathRendererChain,
173                                    const GrTextContext::Options& optionsForTextContext,
174                                    bool sortRenderTasks,
175                                    bool reduceOpsTaskSplitting)
176         : fContext(context)
177         , fOptionsForPathRendererChain(optionsForPathRendererChain)
178         , fOptionsForTextContext(optionsForTextContext)
179         , fDAG(sortRenderTasks)
180         , fTextContext(nullptr)
181         , fPathRendererChain(nullptr)
182         , fSoftwarePathRenderer(nullptr)
183         , fFlushing(false)
184         , fReduceOpsTaskSplitting(reduceOpsTaskSplitting) {
185 }
186 
cleanup()187 void GrDrawingManager::cleanup() {
188     fDAG.cleanup(fContext->priv().caps());
189 
190     fPathRendererChain = nullptr;
191     fSoftwarePathRenderer = nullptr;
192 
193     fOnFlushCBObjects.reset();
194 }
195 
~GrDrawingManager()196 GrDrawingManager::~GrDrawingManager() {
197     this->cleanup();
198 }
199 
wasAbandoned() const200 bool GrDrawingManager::wasAbandoned() const {
201     return fContext->priv().abandoned();
202 }
203 
freeGpuResources()204 void GrDrawingManager::freeGpuResources() {
205     for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) {
206         if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) {
207             // it's safe to just do this because we're iterating in reverse
208             fOnFlushCBObjects.removeShuffle(i);
209         }
210     }
211 
212     // a path renderer may be holding onto resources
213     fPathRendererChain = nullptr;
214     fSoftwarePathRenderer = nullptr;
215 }
216 
217 // MDB TODO: make use of the 'proxy' parameter.
flush(GrSurfaceProxy * proxies[],int numProxies,SkSurface::BackendSurfaceAccess access,const GrFlushInfo & info,const GrPrepareForExternalIORequests & externalRequests)218 GrSemaphoresSubmitted GrDrawingManager::flush(GrSurfaceProxy* proxies[], int numProxies,
219         SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info,
220         const GrPrepareForExternalIORequests& externalRequests) {
221     SkASSERT(numProxies >= 0);
222     SkASSERT(!numProxies || proxies);
223     GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext);
224 
225     if (fFlushing || this->wasAbandoned()) {
226         if (info.fFinishedProc) {
227             info.fFinishedProc(info.fFinishedContext);
228         }
229         return GrSemaphoresSubmitted::kNo;
230     }
231 
232     SkDEBUGCODE(this->validate());
233 
234     if (kNone_GrFlushFlags == info.fFlags && !info.fNumSemaphores && !info.fFinishedProc &&
235             !externalRequests.hasRequests()) {
236         bool canSkip = numProxies > 0;
237         for (int i = 0; i < numProxies && canSkip; ++i) {
238             canSkip = !fDAG.isUsed(proxies[i]) && !this->isDDLTarget(proxies[i]);
239         }
240         if (canSkip) {
241             return GrSemaphoresSubmitted::kNo;
242         }
243     }
244 
245     auto direct = fContext->priv().asDirectContext();
246     if (!direct) {
247         if (info.fFinishedProc) {
248             info.fFinishedProc(info.fFinishedContext);
249         }
250         return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
251     }
252     direct->priv().clientMappedBufferManager()->process();
253 
254     GrGpu* gpu = direct->priv().getGpu();
255     if (!gpu) {
256         if (info.fFinishedProc) {
257             info.fFinishedProc(info.fFinishedContext);
258         }
259         return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
260     }
261 
262     fFlushing = true;
263 
264     auto resourceProvider = direct->priv().resourceProvider();
265     auto resourceCache = direct->priv().getResourceCache();
266 
267     // Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs
268     // to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be
269     // flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them
270     // if the SkGpuDevice(s) write to them again.
271     fDAG.closeAll(fContext->priv().caps());
272     fActiveOpsTask = nullptr;
273 
274     fDAG.prepForFlush();
275     if (!fCpuBufferCache) {
276         // We cache more buffers when the backend is using client side arrays. Otherwise, we
277         // expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU
278         // buffer object. Each pool only requires one staging buffer at a time.
279         int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6;
280         fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers);
281     }
282 
283     GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache);
284 
285     GrOnFlushResourceProvider onFlushProvider(this);
286     // TODO: AFAICT the only reason fFlushState is on GrDrawingManager rather than on the
287     // stack here is to preserve the flush tokens.
288 
289     // Prepare any onFlush op lists (e.g. atlases).
290     if (!fOnFlushCBObjects.empty()) {
291         fDAG.gatherIDs(&fFlushingRenderTaskIDs);
292 
293         for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
294             onFlushCBObject->preFlush(&onFlushProvider, fFlushingRenderTaskIDs.begin(),
295                                       fFlushingRenderTaskIDs.count());
296         }
297         for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
298             onFlushRenderTask->makeClosed(*fContext->priv().caps());
299 #ifdef SK_DEBUG
300             // OnFlush callbacks are invoked during flush, and are therefore expected to handle
301             // resource allocation & usage on their own. (No deferred or lazy proxies!)
302             onFlushRenderTask->visitTargetAndSrcProxies_debugOnly(
303                     [](GrSurfaceProxy* p, GrMipMapped mipMapped) {
304                 SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred());
305                 SkASSERT(!p->isLazy());
306                 if (p->requiresManualMSAAResolve()) {
307                     // The onFlush callback is responsible for ensuring MSAA gets resolved.
308                     SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty());
309                 }
310                 if (GrMipMapped::kYes == mipMapped) {
311                     // The onFlush callback is responsible for regenerating mips if needed.
312                     SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipMapsAreDirty());
313                 }
314             });
315 #endif
316             onFlushRenderTask->prepare(&flushState);
317         }
318     }
319 
320 #if 0
321     // Enable this to print out verbose GrOp information
322     SkDEBUGCODE(SkDebugf("onFlush renderTasks:"));
323     for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
324         SkDEBUGCODE(onFlushRenderTask->dump();)
325     }
326     SkDEBUGCODE(SkDebugf("Normal renderTasks:"));
327     for (int i = 0; i < fRenderTasks.count(); ++i) {
328         SkDEBUGCODE(fRenderTasks[i]->dump();)
329     }
330 #endif
331 
332     int startIndex, stopIndex;
333     bool flushed = false;
334 
335     {
336         GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, fDAG.numRenderTasks()));
337         for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
338             if (fDAG.renderTask(i)) {
339                 fDAG.renderTask(i)->gatherProxyIntervals(&alloc);
340             }
341             alloc.markEndOfOpsTask(i);
342         }
343         alloc.determineRecyclability();
344 
345         GrResourceAllocator::AssignError error = GrResourceAllocator::AssignError::kNoError;
346         int numRenderTasksExecuted = 0;
347         while (alloc.assign(&startIndex, &stopIndex, &error)) {
348             if (GrResourceAllocator::AssignError::kFailedProxyInstantiation == error) {
349                 for (int i = startIndex; i < stopIndex; ++i) {
350                     GrRenderTask* renderTask = fDAG.renderTask(i);
351                     if (!renderTask) {
352                         continue;
353                     }
354                     if (!renderTask->isInstantiated()) {
355                         // No need to call the renderTask's handleInternalAllocationFailure
356                         // since we will already skip executing the renderTask since it is not
357                         // instantiated.
358                         continue;
359                     }
360                     renderTask->handleInternalAllocationFailure();
361                 }
362             }
363 
364             if (this->executeRenderTasks(
365                     startIndex, stopIndex, &flushState, &numRenderTasksExecuted)) {
366                 flushed = true;
367             }
368         }
369     }
370 
371 #ifdef SK_DEBUG
372     for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
373         // If there are any remaining opsTaskss at this point, make sure they will not survive the
374         // flush. Otherwise we need to call endFlush() on them.
375         // http://skbug.com/7111
376         SkASSERT(!fDAG.renderTask(i) || fDAG.renderTask(i)->unique());
377     }
378 #endif
379     fDAG.reset();
380     this->clearDDLTargets();
381 
382 #ifdef SK_DEBUG
383     // In non-DDL mode this checks that all the flushed ops have been freed from the memory pool.
384     // When we move to partial flushes this assert will no longer be valid.
385     // In DDL mode this check is somewhat superfluous since the memory for most of the ops/opsTasks
386     // will be stored in the DDL's GrOpMemoryPools.
387     GrOpMemoryPool* opMemoryPool = fContext->priv().opMemoryPool();
388     opMemoryPool->isEmpty();
389 #endif
390 
391     GrSemaphoresSubmitted result = gpu->finishFlush(proxies, numProxies, access, info,
392                                                     externalRequests);
393 
394     // Give the cache a chance to purge resources that become purgeable due to flushing.
395     if (flushed) {
396         resourceCache->purgeAsNeeded();
397         flushed = false;
398     }
399     for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
400         onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), fFlushingRenderTaskIDs.begin(),
401                                    fFlushingRenderTaskIDs.count());
402         flushed = true;
403     }
404     if (flushed) {
405         resourceCache->purgeAsNeeded();
406     }
407     fFlushingRenderTaskIDs.reset();
408     fFlushing = false;
409 
410     return result;
411 }
412 
executeRenderTasks(int startIndex,int stopIndex,GrOpFlushState * flushState,int * numRenderTasksExecuted)413 bool GrDrawingManager::executeRenderTasks(int startIndex, int stopIndex, GrOpFlushState* flushState,
414                                           int* numRenderTasksExecuted) {
415     SkASSERT(startIndex <= stopIndex && stopIndex <= fDAG.numRenderTasks());
416 
417 #if GR_FLUSH_TIME_OP_SPEW
418     SkDebugf("Flushing opsTask: %d to %d out of [%d, %d]\n",
419                             startIndex, stopIndex, 0, fDAG.numRenderTasks());
420     for (int i = startIndex; i < stopIndex; ++i) {
421         if (fDAG.renderTask(i)) {
422             fDAG.renderTask(i)->dump(true);
423         }
424     }
425 #endif
426 
427     bool anyRenderTasksExecuted = false;
428 
429     for (int i = startIndex; i < stopIndex; ++i) {
430         GrRenderTask* renderTask = fDAG.renderTask(i);
431         if (!renderTask || !renderTask->isInstantiated()) {
432              continue;
433         }
434 
435         SkASSERT(renderTask->deferredProxiesAreInstantiated());
436 
437         renderTask->prepare(flushState);
438     }
439 
440     // Upload all data to the GPU
441     flushState->preExecuteDraws();
442 
443     // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources
444     // for each command buffer associated with the oplists. If this gets too large we can cause the
445     // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we
446     // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some
447     // memory pressure.
448     static constexpr int kMaxRenderTasksBeforeFlush = 100;
449 
450     // Execute the onFlush renderTasks first, if any.
451     for (sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) {
452         if (!onFlushRenderTask->execute(flushState)) {
453             SkDebugf("WARNING: onFlushRenderTask failed to execute.\n");
454         }
455         SkASSERT(onFlushRenderTask->unique());
456         onFlushRenderTask = nullptr;
457         (*numRenderTasksExecuted)++;
458         if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
459             flushState->gpu()->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess,
460                                            GrFlushInfo(), GrPrepareForExternalIORequests());
461             *numRenderTasksExecuted = 0;
462         }
463     }
464     fOnFlushRenderTasks.reset();
465 
466     // Execute the normal op lists.
467     for (int i = startIndex; i < stopIndex; ++i) {
468         GrRenderTask* renderTask = fDAG.renderTask(i);
469         if (!renderTask || !renderTask->isInstantiated()) {
470             continue;
471         }
472 
473         if (renderTask->execute(flushState)) {
474             anyRenderTasksExecuted = true;
475         }
476         (*numRenderTasksExecuted)++;
477         if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
478             flushState->gpu()->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess,
479                                            GrFlushInfo(), GrPrepareForExternalIORequests());
480             *numRenderTasksExecuted = 0;
481         }
482     }
483 
484     SkASSERT(!flushState->opsRenderPass());
485     SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush());
486 
487     // We reset the flush state before the RenderTasks so that the last resources to be freed are
488     // those that are written to in the RenderTasks. This helps to make sure the most recently used
489     // resources are the last to be purged by the resource cache.
490     flushState->reset();
491 
492     fDAG.removeRenderTasks(startIndex, stopIndex);
493 
494     return anyRenderTasksExecuted;
495 }
496 
flushSurfaces(GrSurfaceProxy * proxies[],int numProxies,SkSurface::BackendSurfaceAccess access,const GrFlushInfo & info)497 GrSemaphoresSubmitted GrDrawingManager::flushSurfaces(GrSurfaceProxy* proxies[], int numProxies,
498                                                       SkSurface::BackendSurfaceAccess access,
499                                                       const GrFlushInfo& info) {
500     if (this->wasAbandoned()) {
501         return GrSemaphoresSubmitted::kNo;
502     }
503     SkDEBUGCODE(this->validate());
504     SkASSERT(numProxies >= 0);
505     SkASSERT(!numProxies || proxies);
506 
507     auto direct = fContext->priv().asDirectContext();
508     if (!direct) {
509         return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
510     }
511 
512     GrGpu* gpu = direct->priv().getGpu();
513     if (!gpu) {
514         return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
515     }
516 
517     // TODO: It is important to upgrade the drawingmanager to just flushing the
518     // portion of the DAG required by 'proxies' in order to restore some of the
519     // semantics of this method.
520     GrSemaphoresSubmitted result = this->flush(proxies, numProxies, access, info,
521                                                GrPrepareForExternalIORequests());
522     for (int i = 0; i < numProxies; ++i) {
523         GrSurfaceProxy* proxy = proxies[i];
524         if (!proxy->isInstantiated()) {
525             return result;
526         }
527         // In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is
528         // because the client will call through to this method when drawing into a target created by
529         // wrapBackendTextureAsRenderTarget, and will expect the original texture to be fully
530         // resolved upon return.
531         if (proxy->requiresManualMSAAResolve()) {
532             auto* rtProxy = proxy->asRenderTargetProxy();
533             SkASSERT(rtProxy);
534             if (rtProxy->isMSAADirty()) {
535                 SkASSERT(rtProxy->peekRenderTarget());
536                 gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect(),
537                                          GrGpu::ForExternalIO::kYes);
538                 rtProxy->markMSAAResolved();
539             }
540         }
541         // If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in
542         // case their backend textures are being stolen.
543         // (This special case is exercised by the ReimportImageTextureWithMipLevels test.)
544         // FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag.
545         if (auto* textureProxy = proxy->asTextureProxy()) {
546             if (textureProxy->mipMapsAreDirty()) {
547                 SkASSERT(textureProxy->peekTexture());
548                 gpu->regenerateMipMapLevels(textureProxy->peekTexture());
549                 textureProxy->markMipMapsClean();
550             }
551         }
552     }
553 
554     SkDEBUGCODE(this->validate());
555     return result;
556 }
557 
addOnFlushCallbackObject(GrOnFlushCallbackObject * onFlushCBObject)558 void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) {
559     fOnFlushCBObjects.push_back(onFlushCBObject);
560 }
561 
562 #if GR_TEST_UTILS
testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject * cb)563 void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) {
564     int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) -
565             fOnFlushCBObjects.begin();
566     SkASSERT(n < fOnFlushCBObjects.count());
567     fOnFlushCBObjects.removeShuffle(n);
568 }
569 #endif
570 
moveRenderTasksToDDL(SkDeferredDisplayList * ddl)571 void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) {
572     SkDEBUGCODE(this->validate());
573 
574     // no renderTask should receive a new command after this
575     fDAG.closeAll(fContext->priv().caps());
576     fActiveOpsTask = nullptr;
577 
578     fDAG.swap(&ddl->fRenderTasks);
579 
580     for (auto renderTask : ddl->fRenderTasks) {
581         renderTask->prePrepare(fContext);
582     }
583 
584     ddl->fArenas = std::move(fContext->priv().detachArenas());
585 
586     fContext->priv().detachProgramData(&ddl->fProgramData);
587 
588     if (fPathRendererChain) {
589         if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) {
590             ddl->fPendingPaths = ccpr->detachPendingPaths();
591         }
592     }
593 
594     SkDEBUGCODE(this->validate());
595 }
596 
copyRenderTasksFromDDL(const SkDeferredDisplayList * ddl,GrRenderTargetProxy * newDest)597 void GrDrawingManager::copyRenderTasksFromDDL(const SkDeferredDisplayList* ddl,
598                                               GrRenderTargetProxy* newDest) {
599     SkDEBUGCODE(this->validate());
600 
601     if (fActiveOpsTask) {
602         // This is  a temporary fix for the partial-MDB world. In that world we're not
603         // reordering so ops that (in the single opsTask world) would've just glommed onto the
604         // end of the single opsTask but referred to a far earlier RT need to appear in their
605         // own opsTask.
606         fActiveOpsTask->makeClosed(*fContext->priv().caps());
607         fActiveOpsTask = nullptr;
608     }
609 
610     this->addDDLTarget(newDest);
611 
612     // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData.
613     // The lazy proxy that references it (in the copied opsTasks) will steal its GrTexture.
614     ddl->fLazyProxyData->fReplayDest = newDest;
615 
616     if (ddl->fPendingPaths.size()) {
617         GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer();
618 
619         ccpr->mergePendingPaths(ddl->fPendingPaths);
620     }
621 
622     fDAG.add(ddl->fRenderTasks);
623 
624     SkDEBUGCODE(this->validate());
625 }
626 
627 #ifdef SK_DEBUG
validate() const628 void GrDrawingManager::validate() const {
629     if (fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) {
630         SkASSERT(!fActiveOpsTask);
631     } else {
632         if (fActiveOpsTask) {
633             SkASSERT(!fDAG.empty());
634             SkASSERT(!fActiveOpsTask->isClosed());
635             SkASSERT(fActiveOpsTask == fDAG.back());
636         }
637 
638         for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
639             if (fActiveOpsTask != fDAG.renderTask(i)) {
640                 // The resolveTask associated with the activeTask remains open for as long as the
641                 // activeTask does.
642                 bool isActiveResolveTask =
643                         fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG.renderTask(i);
644                 SkASSERT(isActiveResolveTask || fDAG.renderTask(i)->isClosed());
645             }
646         }
647 
648         if (!fDAG.empty() && !fDAG.back()->isClosed()) {
649             SkASSERT(fActiveOpsTask == fDAG.back());
650         }
651     }
652 }
653 #endif
654 
closeRenderTasksForNewRenderTask(GrSurfaceProxy * target)655 void GrDrawingManager::closeRenderTasksForNewRenderTask(GrSurfaceProxy* target) {
656     if (target && fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) {
657         // In this case we need to close all the renderTasks that rely on the current contents of
658         // 'target'. That is bc we're going to update the content of the proxy so they need to be
659         // split in case they use both the old and new content. (This is a bit of an overkill: they
660         // really only need to be split if they ever reference proxy's contents again but that is
661         // hard to predict/handle).
662         if (GrRenderTask* lastRenderTask = target->getLastRenderTask()) {
663             lastRenderTask->closeThoseWhoDependOnMe(*fContext->priv().caps());
664         }
665     } else if (fActiveOpsTask) {
666         // This is  a temporary fix for the partial-MDB world. In that world we're not
667         // reordering so ops that (in the single opsTask world) would've just glommed onto the
668         // end of the single opsTask but referred to a far earlier RT need to appear in their
669         // own opsTask.
670         fActiveOpsTask->makeClosed(*fContext->priv().caps());
671         fActiveOpsTask = nullptr;
672     }
673 }
674 
newOpsTask(GrSurfaceProxyView surfaceView,bool managedOpsTask)675 sk_sp<GrOpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView,
676                                               bool managedOpsTask) {
677     SkDEBUGCODE(this->validate());
678     SkASSERT(fContext);
679 
680     GrSurfaceProxy* proxy = surfaceView.proxy();
681     this->closeRenderTasksForNewRenderTask(proxy);
682 
683     sk_sp<GrOpsTask> opsTask(new GrOpsTask(fContext->priv().arenas(),
684                                            std::move(surfaceView),
685                                            fContext->priv().auditTrail()));
686     SkASSERT(proxy->getLastRenderTask() == opsTask.get());
687 
688     if (managedOpsTask) {
689         fDAG.add(opsTask);
690 
691         if (!fDAG.sortingRenderTasks() || !fReduceOpsTaskSplitting) {
692             fActiveOpsTask = opsTask.get();
693         }
694     }
695 
696     SkDEBUGCODE(this->validate());
697     return opsTask;
698 }
699 
newTextureResolveRenderTask(const GrCaps & caps)700 GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTask(const GrCaps& caps) {
701     // Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are
702     // in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current
703     // state. This is because those opsTasks can still receive new ops and because if they refer to
704     // the mipmapped version of 'proxy', they will then come to depend on the render task being
705     // created here.
706     //
707     // Add the new textureResolveTask before the fActiveOpsTask (if not in
708     // sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task.
709     // NOTE: Putting it here will also reduce the amount of work required by the topological sort.
710     return static_cast<GrTextureResolveRenderTask*>(fDAG.addBeforeLast(
711             sk_make_sp<GrTextureResolveRenderTask>()));
712 }
713 
newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy,std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores,int numSemaphores)714 void GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy,
715                                          std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores,
716                                          int numSemaphores) {
717     SkDEBUGCODE(this->validate());
718     SkASSERT(fContext);
719 
720     const GrCaps& caps = *fContext->priv().caps();
721 
722     sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy),
723                                                                     std::move(semaphores),
724                                                                     numSemaphores);
725     if (fReduceOpsTaskSplitting) {
726         GrRenderTask* lastTask = proxy->getLastRenderTask();
727         if (lastTask && !lastTask->isClosed()) {
728             // We directly make the currently open renderTask depend on waitTask instead of using
729             // the proxy version of addDependency. The waitTask will never need to trigger any
730             // resolves or mip map generation which is the main advantage of going through the proxy
731             // version. Additionally we would've had to temporarily set the wait task as the
732             // lastRenderTask on the proxy, add the dependency, and then reset the lastRenderTask to
733             // lastTask. Additionally we add all dependencies of lastTask to waitTask so that the
734             // waitTask doesn't get reordered before them and unnecessarily block those tasks.
735             // Note: Any previous Ops already in lastTask will get blocked by the wait semaphore
736             // even though they don't need to be for correctness.
737 
738             // Make sure we add the dependencies of lastTask to waitTask first or else we'll get a
739             // circular self dependency of waitTask on waitTask.
740             waitTask->addDependenciesFromOtherTask(lastTask);
741             lastTask->addDependency(waitTask.get());
742         } else {
743             // If there is a last task we set the waitTask to depend on it so that it doesn't get
744             // reordered in front of the lastTask causing the lastTask to be blocked by the
745             // semaphore. Again we directly just go through adding the dependency to the task and
746             // not the proxy since we don't need to worry about resolving anything.
747             if (lastTask) {
748                 waitTask->addDependency(lastTask);
749             }
750             proxy->setLastRenderTask(waitTask.get());
751         }
752         fDAG.add(waitTask);
753     } else {
754         if (fActiveOpsTask && (fActiveOpsTask->fTargetView.proxy() == proxy.get())) {
755             SkASSERT(proxy->getLastRenderTask() == fActiveOpsTask);
756             fDAG.addBeforeLast(waitTask);
757             // In this case we keep the current renderTask open but just insert the new waitTask
758             // before it in the list. The waitTask will never need to trigger any resolves or mip
759             // map generation which is the main advantage of going through the proxy version.
760             // Additionally we would've had to temporarily set the wait task as the lastRenderTask
761             // on the proxy, add the dependency, and then reset the lastRenderTask to
762             // fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask
763             // dependencies so that we don't unnecessarily reorder the waitTask before them.
764             // Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait
765             // semaphore even though they don't need to be for correctness.
766 
767             // Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll
768             // get a circular self dependency of waitTask on waitTask.
769             waitTask->addDependenciesFromOtherTask(fActiveOpsTask);
770             fActiveOpsTask->addDependency(waitTask.get());
771         } else {
772             // In this case we just close the previous RenderTask and start and append the waitTask
773             // to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If
774             // there is a lastTask on the proxy we make waitTask depend on that task. This
775             // dependency isn't strictly needed but it does keep the DAG from reordering the
776             // waitTask earlier and blocking more tasks.
777             if (GrRenderTask* lastTask = proxy->getLastRenderTask()) {
778                 waitTask->addDependency(lastTask);
779             }
780             proxy->setLastRenderTask(waitTask.get());
781             this->closeRenderTasksForNewRenderTask(proxy.get());
782             fDAG.add(waitTask);
783         }
784     }
785     waitTask->makeClosed(caps);
786 
787     SkDEBUGCODE(this->validate());
788 }
789 
newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy,const SkIRect & srcRect,GrColorType surfaceColorType,GrColorType dstColorType,sk_sp<GrGpuBuffer> dstBuffer,size_t dstOffset)790 void GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy,
791                                                  const SkIRect& srcRect,
792                                                  GrColorType surfaceColorType,
793                                                  GrColorType dstColorType,
794                                                  sk_sp<GrGpuBuffer> dstBuffer,
795                                                  size_t dstOffset) {
796     SkDEBUGCODE(this->validate());
797     SkASSERT(fContext);
798     // This copies from srcProxy to dstBuffer so it doesn't have a real target.
799     this->closeRenderTasksForNewRenderTask(nullptr);
800 
801     GrRenderTask* task = fDAG.add(sk_make_sp<GrTransferFromRenderTask>(
802             srcProxy, srcRect, surfaceColorType, dstColorType, std::move(dstBuffer), dstOffset));
803 
804     const GrCaps& caps = *fContext->priv().caps();
805 
806     // We always say GrMipMapped::kNo here since we are always just copying from the base layer. We
807     // don't need to make sure the whole mip map chain is valid.
808     task->addDependency(srcProxy.get(), GrMipMapped::kNo, GrTextureResolveManager(this), caps);
809     task->makeClosed(caps);
810 
811     // We have closed the previous active oplist but since a new oplist isn't being added there
812     // shouldn't be an active one.
813     SkASSERT(!fActiveOpsTask);
814     SkDEBUGCODE(this->validate());
815 }
816 
newCopyRenderTask(GrSurfaceProxyView srcView,const SkIRect & srcRect,GrSurfaceProxyView dstView,const SkIPoint & dstPoint)817 bool GrDrawingManager::newCopyRenderTask(GrSurfaceProxyView srcView,
818                                          const SkIRect& srcRect,
819                                          GrSurfaceProxyView dstView,
820                                          const SkIPoint& dstPoint) {
821     SkDEBUGCODE(this->validate());
822     SkASSERT(fContext);
823 
824     this->closeRenderTasksForNewRenderTask(dstView.proxy());
825     const GrCaps& caps = *fContext->priv().caps();
826 
827     GrSurfaceProxy* srcProxy = srcView.proxy();
828 
829     GrRenderTask* task =
830             fDAG.add(GrCopyRenderTask::Make(std::move(srcView), srcRect, std::move(dstView),
831                                             dstPoint, &caps));
832     if (!task) {
833         return false;
834     }
835 
836     // We always say GrMipMapped::kNo here since we are always just copying from the base layer to
837     // another base layer. We don't need to make sure the whole mip map chain is valid.
838     task->addDependency(srcProxy, GrMipMapped::kNo, GrTextureResolveManager(this), caps);
839     task->makeClosed(caps);
840 
841     // We have closed the previous active oplist but since a new oplist isn't being added there
842     // shouldn't be an active one.
843     SkASSERT(!fActiveOpsTask);
844     SkDEBUGCODE(this->validate());
845     return true;
846 }
847 
getTextContext()848 GrTextContext* GrDrawingManager::getTextContext() {
849     if (!fTextContext) {
850         fTextContext = GrTextContext::Make(fOptionsForTextContext);
851     }
852 
853     return fTextContext.get();
854 }
855 
856 /*
857  * This method finds a path renderer that can draw the specified path on
858  * the provided target.
859  * Due to its expense, the software path renderer has split out so it can
860  * can be individually allowed/disallowed via the "allowSW" boolean.
861  */
getPathRenderer(const GrPathRenderer::CanDrawPathArgs & args,bool allowSW,GrPathRendererChain::DrawType drawType,GrPathRenderer::StencilSupport * stencilSupport)862 GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args,
863                                                   bool allowSW,
864                                                   GrPathRendererChain::DrawType drawType,
865                                                   GrPathRenderer::StencilSupport* stencilSupport) {
866 
867     if (!fPathRendererChain) {
868         fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain));
869     }
870 
871     GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport);
872     if (!pr && allowSW) {
873         auto swPR = this->getSoftwarePathRenderer();
874         if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) {
875             pr = swPR;
876         }
877     }
878 
879     return pr;
880 }
881 
getSoftwarePathRenderer()882 GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() {
883     if (!fSoftwarePathRenderer) {
884         fSoftwarePathRenderer.reset(
885                 new GrSoftwarePathRenderer(fContext->priv().proxyProvider(),
886                                            fOptionsForPathRendererChain.fAllowPathMaskCaching));
887     }
888     return fSoftwarePathRenderer.get();
889 }
890 
getCoverageCountingPathRenderer()891 GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() {
892     if (!fPathRendererChain) {
893         fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain));
894     }
895     return fPathRendererChain->getCoverageCountingPathRenderer();
896 }
897 
flushIfNecessary()898 void GrDrawingManager::flushIfNecessary() {
899     auto direct = fContext->priv().asDirectContext();
900     if (!direct) {
901         return;
902     }
903 
904     auto resourceCache = direct->priv().getResourceCache();
905     if (resourceCache && resourceCache->requestsFlush()) {
906         this->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(),
907                     GrPrepareForExternalIORequests());
908         resourceCache->purgeAsNeeded();
909     }
910 }
911 
912