1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ccpr/GrCCFiller.h"
9
10 #include "include/core/SkPath.h"
11 #include "include/core/SkPoint.h"
12 #include "src/core/SkMathPriv.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/gpu/GrCaps.h"
15 #include "src/gpu/GrOnFlushResourceProvider.h"
16 #include "src/gpu/GrOpFlushState.h"
17 #include <stdlib.h>
18
19 using TriPointInstance = GrCCCoverageProcessor::TriPointInstance;
20 using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance;
21
GrCCFiller(Algorithm algorithm,int numPaths,int numSkPoints,int numSkVerbs,int numConicWeights)22 GrCCFiller::GrCCFiller(Algorithm algorithm, int numPaths, int numSkPoints, int numSkVerbs,
23 int numConicWeights)
24 : fAlgorithm(algorithm)
25 , fGeometry(numSkPoints, numSkVerbs, numConicWeights)
26 , fPathInfos(numPaths)
27 , fScissorSubBatches(numPaths)
28 , fTotalPrimitiveCounts{PrimitiveTallies(), PrimitiveTallies()} {
29 // Batches decide what to draw by looking where the previous one ended. Define initial batches
30 // that "end" at the beginning of the data. These will not be drawn, but will only be be read by
31 // the first actual batch.
32 fScissorSubBatches.push_back() = {PrimitiveTallies(), SkIRect::MakeEmpty()};
33 fBatches.push_back() = {PrimitiveTallies(), fScissorSubBatches.count(), PrimitiveTallies()};
34 }
35
parseDeviceSpaceFill(const SkPath & path,const SkPoint * deviceSpacePts,GrScissorTest scissorTest,const SkIRect & clippedDevIBounds,const SkIVector & devToAtlasOffset)36 void GrCCFiller::parseDeviceSpaceFill(const SkPath& path, const SkPoint* deviceSpacePts,
37 GrScissorTest scissorTest, const SkIRect& clippedDevIBounds,
38 const SkIVector& devToAtlasOffset) {
39 SkASSERT(!fInstanceBuffer); // Can't call after prepareToDraw().
40 SkASSERT(!path.isEmpty());
41
42 int currPathPointsIdx = fGeometry.points().count();
43 int currPathVerbsIdx = fGeometry.verbs().count();
44 PrimitiveTallies currPathPrimitiveCounts = PrimitiveTallies();
45
46 fGeometry.beginPath();
47
48 const float* conicWeights = SkPathPriv::ConicWeightData(path);
49 int ptsIdx = 0;
50 int conicWeightsIdx = 0;
51 bool insideContour = false;
52
53 for (SkPath::Verb verb : SkPathPriv::Verbs(path)) {
54 switch (verb) {
55 case SkPath::kMove_Verb:
56 if (insideContour) {
57 currPathPrimitiveCounts += fGeometry.endContour();
58 }
59 fGeometry.beginContour(deviceSpacePts[ptsIdx]);
60 ++ptsIdx;
61 insideContour = true;
62 continue;
63 case SkPath::kClose_Verb:
64 if (insideContour) {
65 currPathPrimitiveCounts += fGeometry.endContour();
66 }
67 insideContour = false;
68 continue;
69 case SkPath::kLine_Verb:
70 fGeometry.lineTo(&deviceSpacePts[ptsIdx - 1]);
71 ++ptsIdx;
72 continue;
73 case SkPath::kQuad_Verb:
74 fGeometry.quadraticTo(&deviceSpacePts[ptsIdx - 1]);
75 ptsIdx += 2;
76 continue;
77 case SkPath::kCubic_Verb:
78 fGeometry.cubicTo(&deviceSpacePts[ptsIdx - 1]);
79 ptsIdx += 3;
80 continue;
81 case SkPath::kConic_Verb:
82 fGeometry.conicTo(&deviceSpacePts[ptsIdx - 1], conicWeights[conicWeightsIdx]);
83 ptsIdx += 2;
84 ++conicWeightsIdx;
85 continue;
86 default:
87 SK_ABORT("Unexpected path verb.");
88 }
89 }
90 SkASSERT(ptsIdx == path.countPoints());
91 SkASSERT(conicWeightsIdx == SkPathPriv::ConicWeightCnt(path));
92
93 if (insideContour) {
94 currPathPrimitiveCounts += fGeometry.endContour();
95 }
96
97 fPathInfos.emplace_back(scissorTest, devToAtlasOffset);
98
99 // Tessellate fans from very large and/or simple paths, in order to reduce overdraw.
100 int numVerbs = fGeometry.verbs().count() - currPathVerbsIdx - 1;
101 int64_t tessellationWork = (int64_t)numVerbs * (32 - SkCLZ(numVerbs)); // N log N.
102 int64_t fanningWork = (int64_t)clippedDevIBounds.height() * clippedDevIBounds.width();
103 if (tessellationWork * (50*50) + (100*100) < fanningWork) { // Don't tessellate under 100x100.
104 fPathInfos.back().tessellateFan(
105 fAlgorithm, path, fGeometry, currPathVerbsIdx, currPathPointsIdx, clippedDevIBounds,
106 &currPathPrimitiveCounts);
107 }
108
109 fTotalPrimitiveCounts[(int)scissorTest] += currPathPrimitiveCounts;
110
111 if (GrScissorTest::kEnabled == scissorTest) {
112 fScissorSubBatches.push_back() = {fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled],
113 clippedDevIBounds.makeOffset(devToAtlasOffset)};
114 }
115 }
116
tessellateFan(Algorithm algorithm,const SkPath & originalPath,const GrCCFillGeometry & geometry,int verbsIdx,int ptsIdx,const SkIRect & clippedDevIBounds,PrimitiveTallies * newTriangleCounts)117 void GrCCFiller::PathInfo::tessellateFan(
118 Algorithm algorithm, const SkPath& originalPath, const GrCCFillGeometry& geometry,
119 int verbsIdx, int ptsIdx, const SkIRect& clippedDevIBounds,
120 PrimitiveTallies* newTriangleCounts) {
121 using Verb = GrCCFillGeometry::Verb;
122 SkASSERT(-1 == fFanTessellationCount);
123 SkASSERT(!fFanTessellation);
124
125 const SkTArray<Verb, true>& verbs = geometry.verbs();
126 const SkTArray<SkPoint, true>& pts = geometry.points();
127
128 newTriangleCounts->fTriangles =
129 newTriangleCounts->fWeightedTriangles = 0;
130
131 // Build an SkPath of the Redbook fan.
132 SkPath fan;
133 if (Algorithm::kCoverageCount == algorithm) {
134 // We use "winding" fill type right now because we are producing a coverage count, and must
135 // fill in every region that has non-zero wind. The path processor will convert coverage
136 // count to the appropriate fill type later.
137 fan.setFillType(SkPathFillType::kWinding);
138 } else {
139 // When counting winding numbers in the stencil buffer, it works to use even/odd for the fan
140 // tessellation (where applicable). But we need to strip out inverse fill info because
141 // inverse-ness gets accounted for later on.
142 fan.setFillType(SkPathFillType_ConvertToNonInverse(originalPath.getFillType()));
143 }
144 SkASSERT(Verb::kBeginPath == verbs[verbsIdx]);
145 for (int i = verbsIdx + 1; i < verbs.count(); ++i) {
146 switch (verbs[i]) {
147 case Verb::kBeginPath:
148 SK_ABORT("Invalid GrCCFillGeometry");
149 continue;
150
151 case Verb::kBeginContour:
152 fan.moveTo(pts[ptsIdx++]);
153 continue;
154
155 case Verb::kLineTo:
156 fan.lineTo(pts[ptsIdx++]);
157 continue;
158
159 case Verb::kMonotonicQuadraticTo:
160 case Verb::kMonotonicConicTo:
161 fan.lineTo(pts[ptsIdx + 1]);
162 ptsIdx += 2;
163 continue;
164
165 case Verb::kMonotonicCubicTo:
166 fan.lineTo(pts[ptsIdx + 2]);
167 ptsIdx += 3;
168 continue;
169
170 case Verb::kEndClosedContour:
171 case Verb::kEndOpenContour:
172 fan.close();
173 continue;
174 }
175 }
176
177 GrTessellator::WindingVertex* vertices = nullptr;
178 SkASSERT(!fan.isInverseFillType());
179 fFanTessellationCount = GrTessellator::PathToVertices(
180 fan, std::numeric_limits<float>::infinity(), SkRect::Make(clippedDevIBounds),
181 &vertices);
182 if (fFanTessellationCount <= 0) {
183 SkASSERT(0 == fFanTessellationCount);
184 SkASSERT(nullptr == vertices);
185 return;
186 }
187
188 SkASSERT(0 == fFanTessellationCount % 3);
189 for (int i = 0; i < fFanTessellationCount; i += 3) {
190 int weight = abs(vertices[i].fWinding);
191 if (SkPathFillType::kEvenOdd == fan.getFillType()) {
192 // The tessellator doesn't wrap weights modulo 2 when we request even/odd fill type.
193 SkASSERT(weight & 1);
194 weight = 1;
195 }
196 if (weight > 1 && Algorithm::kCoverageCount == algorithm) {
197 ++newTriangleCounts->fWeightedTriangles;
198 } else {
199 newTriangleCounts->fTriangles += weight;
200 }
201 vertices[i].fWinding = weight;
202 }
203
204 fFanTessellation.reset(vertices);
205 }
206
closeCurrentBatch()207 GrCCFiller::BatchID GrCCFiller::closeCurrentBatch() {
208 SkASSERT(!fInstanceBuffer);
209 SkASSERT(!fBatches.empty());
210
211 const auto& lastBatch = fBatches.back();
212 int maxMeshes = 1 + fScissorSubBatches.count() - lastBatch.fEndScissorSubBatchIdx;
213 fMaxMeshesPerDraw = std::max(fMaxMeshesPerDraw, maxMeshes);
214
215 const auto& lastScissorSubBatch = fScissorSubBatches[lastBatch.fEndScissorSubBatchIdx - 1];
216 PrimitiveTallies batchTotalCounts = fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled] -
217 lastBatch.fEndNonScissorIndices;
218 batchTotalCounts += fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled] -
219 lastScissorSubBatch.fEndPrimitiveIndices;
220
221 // This will invalidate lastBatch.
222 fBatches.push_back() = {
223 fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled],
224 fScissorSubBatches.count(),
225 batchTotalCounts
226 };
227 return fBatches.count() - 1;
228 }
229
230 // Emits a contour's triangle fan.
231 //
232 // Classic Redbook fanning would be the triangles: [0 1 2], [0 2 3], ..., [0 n-2 n-1].
233 //
234 // This function emits the triangle: [0 n/3 n*2/3], and then recurses on all three sides. The
235 // advantage to this approach is that for a convex-ish contour, it generates larger triangles.
236 // Classic fanning tends to generate long, skinny triangles, which are expensive to draw since they
237 // have a longer perimeter to rasterize and antialias.
238 //
239 // The indices array indexes the fan's points (think: glDrawElements), and must have at least log3
240 // elements past the end for this method to use as scratch space.
241 //
242 // Returns the next triangle instance after the final one emitted.
emit_recursive_fan(const SkTArray<SkPoint,true> & pts,SkTArray<int32_t,true> & indices,int firstIndex,int indexCount,const Sk2f & devToAtlasOffset,TriPointInstance::Ordering ordering,TriPointInstance out[])243 static TriPointInstance* emit_recursive_fan(
244 const SkTArray<SkPoint, true>& pts, SkTArray<int32_t, true>& indices, int firstIndex,
245 int indexCount, const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering,
246 TriPointInstance out[]) {
247 if (indexCount < 3) {
248 return out;
249 }
250
251 int32_t oneThirdCount = indexCount / 3;
252 int32_t twoThirdsCount = (2 * indexCount) / 3;
253 out++->set(pts[indices[firstIndex]], pts[indices[firstIndex + oneThirdCount]],
254 pts[indices[firstIndex + twoThirdsCount]], devToAtlasOffset, ordering);
255
256 out = emit_recursive_fan(
257 pts, indices, firstIndex, oneThirdCount + 1, devToAtlasOffset, ordering, out);
258 out = emit_recursive_fan(
259 pts, indices, firstIndex + oneThirdCount, twoThirdsCount - oneThirdCount + 1,
260 devToAtlasOffset, ordering, out);
261
262 int endIndex = firstIndex + indexCount;
263 int32_t oldValue = indices[endIndex];
264 indices[endIndex] = indices[firstIndex];
265 out = emit_recursive_fan(
266 pts, indices, firstIndex + twoThirdsCount, indexCount - twoThirdsCount + 1,
267 devToAtlasOffset, ordering, out);
268 indices[endIndex] = oldValue;
269
270 return out;
271 }
272
emitTessellatedFan(const GrTessellator::WindingVertex * vertices,int numVertices,const Sk2f & devToAtlasOffset,TriPointInstance::Ordering ordering,TriPointInstance * triPointInstanceData,QuadPointInstance * quadPointInstanceData,GrCCFillGeometry::PrimitiveTallies * indices)273 void GrCCFiller::emitTessellatedFan(
274 const GrTessellator::WindingVertex* vertices, int numVertices, const Sk2f& devToAtlasOffset,
275 TriPointInstance::Ordering ordering, TriPointInstance* triPointInstanceData,
276 QuadPointInstance* quadPointInstanceData, GrCCFillGeometry::PrimitiveTallies* indices) {
277 for (int i = 0; i < numVertices; i += 3) {
278 int weight = vertices[i].fWinding;
279 SkASSERT(weight >= 1);
280 if (weight > 1 && Algorithm::kStencilWindingCount != fAlgorithm) {
281 quadPointInstanceData[indices->fWeightedTriangles++].setW(
282 vertices[i].fPos, vertices[i+1].fPos, vertices[i + 2].fPos, devToAtlasOffset,
283 static_cast<float>(abs(vertices[i].fWinding)));
284 } else for (int j = 0; j < weight; ++j) {
285 // Unfortunately, there is not a way to increment stencil values by an amount larger
286 // than 1. Instead we draw the triangle 'weight' times.
287 triPointInstanceData[indices->fTriangles++].set(
288 vertices[i].fPos, vertices[i + 1].fPos, vertices[i + 2].fPos, devToAtlasOffset,
289 ordering);
290 }
291 }
292 }
293
prepareToDraw(GrOnFlushResourceProvider * onFlushRP)294 bool GrCCFiller::prepareToDraw(GrOnFlushResourceProvider* onFlushRP) {
295 using Verb = GrCCFillGeometry::Verb;
296 SkASSERT(!fInstanceBuffer);
297 SkASSERT(fBatches.back().fEndNonScissorIndices == // Call closeCurrentBatch().
298 fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled]);
299 SkASSERT(fBatches.back().fEndScissorSubBatchIdx == fScissorSubBatches.count());
300
301 auto triangleOrdering = (Algorithm::kCoverageCount == fAlgorithm)
302 ? TriPointInstance::Ordering::kXYTransposed
303 : TriPointInstance::Ordering::kXYInterleaved;
304
305 // Here we build a single instance buffer to share with every internal batch.
306 //
307 // CCPR processs 3 different types of primitives: triangles, quadratics, cubics. Each primitive
308 // type is further divided into instances that require a scissor and those that don't. This
309 // leaves us with 3*2 = 6 independent instance arrays to build for the GPU.
310 //
311 // Rather than place each instance array in its own GPU buffer, we allocate a single
312 // megabuffer and lay them all out side-by-side. We can offset the "baseInstance" parameter in
313 // our draw calls to direct the GPU to the applicable elements within a given array.
314 //
315 // We already know how big to make each of the 6 arrays from fTotalPrimitiveCounts, so layout is
316 // straightforward. Start with triangles and quadratics. They both view the instance buffer as
317 // an array of TriPointInstance[], so we can begin at zero and lay them out one after the other.
318 fBaseInstances[0].fTriangles = 0;
319 fBaseInstances[1].fTriangles = fBaseInstances[0].fTriangles +
320 fTotalPrimitiveCounts[0].fTriangles;
321 fBaseInstances[0].fQuadratics = fBaseInstances[1].fTriangles +
322 fTotalPrimitiveCounts[1].fTriangles;
323 fBaseInstances[1].fQuadratics = fBaseInstances[0].fQuadratics +
324 fTotalPrimitiveCounts[0].fQuadratics;
325 int triEndIdx = fBaseInstances[1].fQuadratics + fTotalPrimitiveCounts[1].fQuadratics;
326
327 // Wound triangles and cubics both view the same instance buffer as an array of
328 // QuadPointInstance[]. So, reinterpreting the instance data as QuadPointInstance[], we start
329 // them on the first index that will not overwrite previous TriPointInstance data.
330 int quadBaseIdx =
331 GrSizeDivRoundUp(triEndIdx * sizeof(TriPointInstance), sizeof(QuadPointInstance));
332 fBaseInstances[0].fWeightedTriangles = quadBaseIdx;
333 fBaseInstances[1].fWeightedTriangles = fBaseInstances[0].fWeightedTriangles +
334 fTotalPrimitiveCounts[0].fWeightedTriangles;
335 fBaseInstances[0].fCubics = fBaseInstances[1].fWeightedTriangles +
336 fTotalPrimitiveCounts[1].fWeightedTriangles;
337 fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics;
338 fBaseInstances[0].fConics = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics;
339 fBaseInstances[1].fConics = fBaseInstances[0].fConics + fTotalPrimitiveCounts[0].fConics;
340 int quadEndIdx = fBaseInstances[1].fConics + fTotalPrimitiveCounts[1].fConics;
341
342 fInstanceBuffer =
343 onFlushRP->makeBuffer(GrGpuBufferType::kVertex, quadEndIdx * sizeof(QuadPointInstance));
344 if (!fInstanceBuffer) {
345 SkDebugf("WARNING: failed to allocate CCPR fill instance buffer.\n");
346 return false;
347 }
348
349 TriPointInstance* triPointInstanceData = static_cast<TriPointInstance*>(fInstanceBuffer->map());
350 QuadPointInstance* quadPointInstanceData =
351 reinterpret_cast<QuadPointInstance*>(triPointInstanceData);
352 SkASSERT(quadPointInstanceData);
353
354 PathInfo* nextPathInfo = fPathInfos.begin();
355 Sk2f devToAtlasOffset;
356 PrimitiveTallies instanceIndices[2] = {fBaseInstances[0], fBaseInstances[1]};
357 PrimitiveTallies* currIndices = nullptr;
358 SkSTArray<256, int32_t, true> currFan;
359 bool currFanIsTessellated = false;
360
361 const SkTArray<SkPoint, true>& pts = fGeometry.points();
362 int ptsIdx = -1;
363 int nextConicWeightIdx = 0;
364
365 // Expand the ccpr verbs into GPU instance buffers.
366 for (Verb verb : fGeometry.verbs()) {
367 switch (verb) {
368 case Verb::kBeginPath:
369 SkASSERT(currFan.empty());
370 currIndices = &instanceIndices[(int)nextPathInfo->scissorTest()];
371 devToAtlasOffset = Sk2f(static_cast<float>(nextPathInfo->devToAtlasOffset().fX),
372 static_cast<float>(nextPathInfo->devToAtlasOffset().fY));
373 currFanIsTessellated = nextPathInfo->hasFanTessellation();
374 if (currFanIsTessellated) {
375 this->emitTessellatedFan(
376 nextPathInfo->fanTessellation(), nextPathInfo->fanTessellationCount(),
377 devToAtlasOffset, triangleOrdering, triPointInstanceData,
378 quadPointInstanceData, currIndices);
379 }
380 ++nextPathInfo;
381 continue;
382
383 case Verb::kBeginContour:
384 SkASSERT(currFan.empty());
385 ++ptsIdx;
386 if (!currFanIsTessellated) {
387 currFan.push_back(ptsIdx);
388 }
389 continue;
390
391 case Verb::kLineTo:
392 ++ptsIdx;
393 if (!currFanIsTessellated) {
394 SkASSERT(!currFan.empty());
395 currFan.push_back(ptsIdx);
396 }
397 continue;
398
399 case Verb::kMonotonicQuadraticTo:
400 triPointInstanceData[currIndices->fQuadratics++].set(
401 &pts[ptsIdx], devToAtlasOffset, TriPointInstance::Ordering::kXYTransposed);
402 ptsIdx += 2;
403 if (!currFanIsTessellated) {
404 SkASSERT(!currFan.empty());
405 currFan.push_back(ptsIdx);
406 }
407 continue;
408
409 case Verb::kMonotonicCubicTo:
410 quadPointInstanceData[currIndices->fCubics++].set(
411 &pts[ptsIdx], devToAtlasOffset[0], devToAtlasOffset[1]);
412 ptsIdx += 3;
413 if (!currFanIsTessellated) {
414 SkASSERT(!currFan.empty());
415 currFan.push_back(ptsIdx);
416 }
417 continue;
418
419 case Verb::kMonotonicConicTo:
420 quadPointInstanceData[currIndices->fConics++].setW(
421 &pts[ptsIdx], devToAtlasOffset,
422 fGeometry.getConicWeight(nextConicWeightIdx));
423 ptsIdx += 2;
424 ++nextConicWeightIdx;
425 if (!currFanIsTessellated) {
426 SkASSERT(!currFan.empty());
427 currFan.push_back(ptsIdx);
428 }
429 continue;
430
431 case Verb::kEndClosedContour: // endPt == startPt.
432 if (!currFanIsTessellated) {
433 SkASSERT(!currFan.empty());
434 currFan.pop_back();
435 }
436 // fallthru.
437 case Verb::kEndOpenContour: // endPt != startPt.
438 SkASSERT(!currFanIsTessellated || currFan.empty());
439 if (!currFanIsTessellated && currFan.count() >= 3) {
440 int fanSize = currFan.count();
441 // Reserve space for emit_recursive_fan. Technically this can grow to
442 // fanSize + log3(fanSize), but we approximate with log2.
443 currFan.push_back_n(SkNextLog2(fanSize));
444 SkDEBUGCODE(TriPointInstance* end =) emit_recursive_fan(
445 pts, currFan, 0, fanSize, devToAtlasOffset, triangleOrdering,
446 triPointInstanceData + currIndices->fTriangles);
447 currIndices->fTriangles += fanSize - 2;
448 SkASSERT(triPointInstanceData + currIndices->fTriangles == end);
449 }
450 currFan.reset();
451 continue;
452 }
453 }
454
455 fInstanceBuffer->unmap();
456
457 SkASSERT(nextPathInfo == fPathInfos.end());
458 SkASSERT(ptsIdx == pts.count() - 1);
459 SkASSERT(instanceIndices[0].fTriangles == fBaseInstances[1].fTriangles);
460 SkASSERT(instanceIndices[1].fTriangles == fBaseInstances[0].fQuadratics);
461 SkASSERT(instanceIndices[0].fQuadratics == fBaseInstances[1].fQuadratics);
462 SkASSERT(instanceIndices[1].fQuadratics == triEndIdx);
463 SkASSERT(instanceIndices[0].fWeightedTriangles == fBaseInstances[1].fWeightedTriangles);
464 SkASSERT(instanceIndices[1].fWeightedTriangles == fBaseInstances[0].fCubics);
465 SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics);
466 SkASSERT(instanceIndices[1].fCubics == fBaseInstances[0].fConics);
467 SkASSERT(instanceIndices[0].fConics == fBaseInstances[1].fConics);
468 SkASSERT(instanceIndices[1].fConics == quadEndIdx);
469
470 fMeshesScratchBuffer.reserve(fMaxMeshesPerDraw);
471 fScissorRectScratchBuffer.reserve(fMaxMeshesPerDraw);
472
473 return true;
474 }
475
drawFills(GrOpFlushState * flushState,GrCCCoverageProcessor * proc,const GrPipeline & pipeline,BatchID batchID,const SkIRect & drawBounds) const476 void GrCCFiller::drawFills(
477 GrOpFlushState* flushState, GrCCCoverageProcessor* proc, const GrPipeline& pipeline,
478 BatchID batchID, const SkIRect& drawBounds) const {
479 using PrimitiveType = GrCCCoverageProcessor::PrimitiveType;
480
481 SkASSERT(fInstanceBuffer);
482
483 GrResourceProvider* rp = flushState->resourceProvider();
484 const PrimitiveTallies& batchTotalCounts = fBatches[batchID].fTotalPrimitiveCounts;
485
486 if (batchTotalCounts.fTriangles) {
487 proc->reset(PrimitiveType::kTriangles, rp);
488 this->drawPrimitives(
489 flushState, *proc, pipeline, batchID, &PrimitiveTallies::fTriangles, drawBounds);
490 }
491
492 if (batchTotalCounts.fWeightedTriangles) {
493 SkASSERT(Algorithm::kStencilWindingCount != fAlgorithm);
494 proc->reset(PrimitiveType::kWeightedTriangles, rp);
495 this->drawPrimitives(
496 flushState, *proc, pipeline, batchID, &PrimitiveTallies::fWeightedTriangles,
497 drawBounds);
498 }
499
500 if (batchTotalCounts.fQuadratics) {
501 proc->reset(PrimitiveType::kQuadratics, rp);
502 this->drawPrimitives(
503 flushState, *proc, pipeline, batchID, &PrimitiveTallies::fQuadratics, drawBounds);
504 }
505
506 if (batchTotalCounts.fCubics) {
507 proc->reset(PrimitiveType::kCubics, rp);
508 this->drawPrimitives(
509 flushState, *proc, pipeline, batchID, &PrimitiveTallies::fCubics, drawBounds);
510 }
511
512 if (batchTotalCounts.fConics) {
513 proc->reset(PrimitiveType::kConics, rp);
514 this->drawPrimitives(
515 flushState, *proc, pipeline, batchID, &PrimitiveTallies::fConics, drawBounds);
516 }
517 }
518
drawPrimitives(GrOpFlushState * flushState,const GrCCCoverageProcessor & proc,const GrPipeline & pipeline,BatchID batchID,int PrimitiveTallies::* instanceType,const SkIRect & drawBounds) const519 void GrCCFiller::drawPrimitives(
520 GrOpFlushState* flushState, const GrCCCoverageProcessor& proc, const GrPipeline& pipeline,
521 BatchID batchID, int PrimitiveTallies::*instanceType, const SkIRect& drawBounds) const {
522 SkASSERT(pipeline.isScissorEnabled());
523
524 // Don't call reset(), as that also resets the reserve count.
525 fMeshesScratchBuffer.pop_back_n(fMeshesScratchBuffer.count());
526 fScissorRectScratchBuffer.pop_back_n(fScissorRectScratchBuffer.count());
527
528 SkASSERT(batchID > 0);
529 SkASSERT(batchID < fBatches.count());
530 const Batch& previousBatch = fBatches[batchID - 1];
531 const Batch& batch = fBatches[batchID];
532 SkDEBUGCODE(int totalInstanceCount = 0);
533
534 if (int instanceCount = batch.fEndNonScissorIndices.*instanceType -
535 previousBatch.fEndNonScissorIndices.*instanceType) {
536 SkASSERT(instanceCount > 0);
537 int baseInstance = fBaseInstances[(int)GrScissorTest::kDisabled].*instanceType +
538 previousBatch.fEndNonScissorIndices.*instanceType;
539 proc.appendMesh(fInstanceBuffer, instanceCount, baseInstance, &fMeshesScratchBuffer);
540 fScissorRectScratchBuffer.push_back().setXYWH(0, 0, drawBounds.width(),
541 drawBounds.height());
542 SkDEBUGCODE(totalInstanceCount += instanceCount);
543 }
544
545 SkASSERT(previousBatch.fEndScissorSubBatchIdx > 0);
546 SkASSERT(batch.fEndScissorSubBatchIdx <= fScissorSubBatches.count());
547 int baseScissorInstance = fBaseInstances[(int)GrScissorTest::kEnabled].*instanceType;
548 for (int i = previousBatch.fEndScissorSubBatchIdx; i < batch.fEndScissorSubBatchIdx; ++i) {
549 const ScissorSubBatch& previousSubBatch = fScissorSubBatches[i - 1];
550 const ScissorSubBatch& scissorSubBatch = fScissorSubBatches[i];
551 int startIndex = previousSubBatch.fEndPrimitiveIndices.*instanceType;
552 int instanceCount = scissorSubBatch.fEndPrimitiveIndices.*instanceType - startIndex;
553 if (!instanceCount) {
554 continue;
555 }
556 SkASSERT(instanceCount > 0);
557 proc.appendMesh(fInstanceBuffer, instanceCount, baseScissorInstance + startIndex,
558 &fMeshesScratchBuffer);
559 fScissorRectScratchBuffer.push_back() = scissorSubBatch.fScissor;
560 SkDEBUGCODE(totalInstanceCount += instanceCount);
561 }
562
563 SkASSERT(fMeshesScratchBuffer.count() == fScissorRectScratchBuffer.count());
564 SkASSERT(fMeshesScratchBuffer.count() <= fMaxMeshesPerDraw);
565 SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType);
566
567 if (!fMeshesScratchBuffer.empty()) {
568 proc.draw(flushState, pipeline, fScissorRectScratchBuffer.begin(),
569 fMeshesScratchBuffer.begin(), fMeshesScratchBuffer.count(),
570 SkRect::Make(drawBounds));
571 }
572 }
573