• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ccpr/GrCCPathProcessor.h"
9 
10 #include "include/gpu/GrTexture.h"
11 #include "src/gpu/GrOnFlushResourceProvider.h"
12 #include "src/gpu/GrOpsRenderPass.h"
13 #include "src/gpu/GrTexturePriv.h"
14 #include "src/gpu/ccpr/GrCCPerFlushResources.h"
15 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
16 #include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
17 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
18 #include "src/gpu/glsl/GrGLSLVarying.h"
19 
20 // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge
21 // from the path's bounding box and one edge from its 45-degree bounding box. The selectors
22 // below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding
23 // box. The octagon vertex is the point that lies between these two corners, found by intersecting
24 // their edges.
25 static constexpr float kOctoEdgeNorms[8*4] = {
26     // bbox   // bbox45
27     0,0,      0,0,
28     0,0,      1,0,
29     1,0,      1,0,
30     1,0,      1,1,
31     1,1,      1,1,
32     1,1,      0,1,
33     0,1,      0,1,
34     0,1,      0,0,
35 };
36 
37 GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey);
38 
FindVertexBuffer(GrOnFlushResourceProvider * onFlushRP)39 sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) {
40     GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey);
41     return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms),
42                                              kOctoEdgeNorms, gVertexBufferKey);
43 }
44 
45 static constexpr uint16_t kRestartStrip = 0xffff;
46 
47 static constexpr uint16_t kOctoIndicesAsStrips[] = {
48     3, 4, 2, 0, 1, kRestartStrip,  // First half.
49     7, 0, 6, 4, 5  // Second half.
50 };
51 
52 static constexpr uint16_t kOctoIndicesAsTris[] = {
53     // First half.
54     3, 4, 2,
55     4, 0, 2,
56     2, 0, 1,
57 
58     // Second half.
59     7, 0, 6,
60     0, 4, 6,
61     6, 4, 5,
62 };
63 
64 GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
65 
66 constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[];
67 constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib;
68 
FindIndexBuffer(GrOnFlushResourceProvider * onFlushRP)69 sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) {
70     GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
71     if (onFlushRP->caps()->usePrimitiveRestart()) {
72         return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex,
73                                                  sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips,
74                                                  gIndexBufferKey);
75     } else {
76         return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex,
77                                                  sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris,
78                                                  gIndexBufferKey);
79     }
80 }
81 
GrCCPathProcessor(CoverageMode coverageMode,const GrTexture * atlasTexture,const GrSwizzle & swizzle,GrSurfaceOrigin atlasOrigin,const SkMatrix & viewMatrixIfUsingLocalCoords)82 GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture,
83                                      const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin,
84                                      const SkMatrix& viewMatrixIfUsingLocalCoords)
85         : INHERITED(kGrCCPathProcessor_ClassID)
86         , fCoverageMode(coverageMode)
87         , fAtlasAccess(GrSamplerState::Filter::kNearest, atlasTexture->backendFormat(), swizzle)
88         , fAtlasDimensions(atlasTexture->dimensions())
89         , fAtlasOrigin(atlasOrigin) {
90     // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin?
91     this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs));
92     SkASSERT(this->instanceStride() == sizeof(Instance));
93 
94     this->setVertexAttributes(&kCornersAttrib, 1);
95     this->setTextureSamplerCnt(1);
96 
97     if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) {
98         fLocalMatrix.setIdentity();
99     }
100 }
101 
102 class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor {
103 public:
104     void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
105 
106 private:
setData(const GrGLSLProgramDataManager & pdman,const GrPrimitiveProcessor & primProc,const CoordTransformRange & transformRange)107     void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc,
108                  const CoordTransformRange& transformRange) override {
109         const auto& proc = primProc.cast<GrCCPathProcessor>();
110         pdman.set2f(fAtlasAdjustUniform,
111                     1.0f / proc.fAtlasDimensions.fWidth,
112                     1.0f / proc.fAtlasDimensions.fHeight);
113         this->setTransformDataHelper(proc.fLocalMatrix, pdman, transformRange);
114     }
115 
116     GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform;
117 
118     typedef GrGLSLGeometryProcessor INHERITED;
119 };
120 
createGLSLInstance(const GrShaderCaps &) const121 GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const {
122     return new Impl();
123 }
124 
drawPaths(GrOpFlushState * flushState,const GrPipeline & pipeline,const GrPipeline::FixedDynamicState * fixedDynamicState,const GrCCPerFlushResources & resources,int baseInstance,int endInstance,const SkRect & bounds) const125 void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline,
126                                   const GrPipeline::FixedDynamicState* fixedDynamicState,
127                                   const GrCCPerFlushResources& resources, int baseInstance,
128                                   int endInstance, const SkRect& bounds) const {
129     const GrCaps& caps = flushState->caps();
130     GrPrimitiveType primitiveType = caps.usePrimitiveRestart()
131                                             ? GrPrimitiveType::kTriangleStrip
132                                             : GrPrimitiveType::kTriangles;
133     int numIndicesPerInstance = caps.usePrimitiveRestart()
134                                         ? SK_ARRAY_COUNT(kOctoIndicesAsStrips)
135                                         : SK_ARRAY_COUNT(kOctoIndicesAsTris);
136     auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart());
137 
138     GrMesh mesh;
139     mesh.setIndexedInstanced(resources.refIndexBuffer(), numIndicesPerInstance,
140                              resources.refInstanceBuffer(), endInstance - baseInstance,
141                              baseInstance, enablePrimitiveRestart);
142     mesh.setVertexData(resources.refVertexBuffer());
143 
144     GrProgramInfo programInfo(flushState->proxy()->numSamples(),
145                               flushState->proxy()->numStencilSamples(),
146                               flushState->proxy()->backendFormat(),
147                               flushState->view()->origin(),
148                               &pipeline,
149                               this,
150                               fixedDynamicState,
151                               nullptr, 0, primitiveType);
152 
153     flushState->opsRenderPass()->bindPipeline(programInfo, bounds);
154     flushState->opsRenderPass()->drawMeshes(programInfo, &mesh, 1);
155 }
156 
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)157 void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
158     using Interpolation = GrGLSLVaryingHandler::Interpolation;
159 
160     const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>();
161     GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
162     GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
163     bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode);
164 
165     const char* atlasAdjust;
166     fAtlasAdjustUniform = uniHandler->addUniform(
167             kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust", &atlasAdjust);
168 
169     varyingHandler->emitAttributes(proc);
170 
171     GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType);
172     varyingHandler->addVarying("texcoord", &texcoord);
173 
174     GrGLSLVarying color(kHalf4_GrSLType);
175     varyingHandler->addPassThroughAttribute(
176             kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat);
177 
178     // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to
179     // find an octagon that circumscribes the (bloated) path.
180     GrGLSLVertexBuilder* v = args.fVertBuilder;
181 
182     // Are we clockwise? (Positive wind => nonzero fill rule.)
183     // Or counter-clockwise? (negative wind => even/odd fill rule.)
184     v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);");
185 
186     // Find our reference corner from the device-space bounding box.
187     v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);");
188 
189     // Find our reference corner from the 45-degree bounding box.
190     v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);");
191     // Transform back to device space.
192     v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;");
193 
194     // Find the normals to each edge, then intersect them to find our octagon vertex.
195     v->codeAppendf("float2x2 N = float2x2("
196                            "corners.z + corners.w - 1, corners.w - corners.z, "
197                            "corners.xy*2 - 1);");
198     v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;");
199     v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));");
200     v->codeAppendf("float2 octocoord = K * inverse(N);");
201 
202     // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive
203     // bloatdir means we should take the "ceil" and negative means to take the "floor".)
204     //
205     // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also
206     // diagonals in the octagon that cross through pixel centers, we need to outset by another
207     // quarter px to ensure those pixels get rasterized.
208     v->codeAppendf("float2 bloatdir = (0 != N[0].x) "
209                            "? float2(N[0].x, N[1].y)"
210                            ": float2(N[1].x, N[0].y);");
211     v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;");
212     v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);");
213 
214     // Convert to atlas coordinates in order to do our texture lookup.
215     if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) {
216         v->codeAppendf("%s.xy = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
217     } else {
218         SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin);
219         v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
220                        texcoord.vsOut(), atlasAdjust, atlasAdjust);
221     }
222     if (isCoverageCount) {
223         v->codeAppendf("%s.z = wind * .5;", texcoord.vsOut());
224     }
225 
226     gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord");
227     this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, proc.fLocalMatrix,
228                          args.fFPCoordTransformHandler);
229 
230     // Fragment shader.
231     GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
232 
233     // Look up coverage in the atlas.
234     f->codeAppendf("half coverage = ");
235     f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy", texcoord.fsIn()).c_str());
236     f->codeAppendf(".a;");
237 
238     if (isCoverageCount) {
239         f->codeAppendf("coverage = abs(coverage);");
240 
241         // Scale coverage count by .5. Make it negative for even-odd paths and positive for
242         // winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)).
243         f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);", texcoord.fsIn());
244 
245         // For negative values, this finishes the even-odd sawtooth function. Since positive
246         // (winding) values were clamped at "coverage/2 = .5", this only undoes the previous
247         // multiply by .5.
248         f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);");
249     }
250 
251     f->codeAppendf("%s = half4(coverage);", args.fOutputCoverage);
252 }
253