• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkCanvas.h"
9 #include "include/core/SkPath.h"
10 #include "include/core/SkPoint.h"
11 #include "include/core/SkString.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13 #include "src/gpu/ops/GrAAConvexTessellator.h"
14 
15 // Next steps:
16 //  add an interactive sample app slide
17 //  add debug check that all points are suitably far apart
18 //  test more degenerate cases
19 
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = kClose * kClose;
23 
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.25f;
28 
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31 
32 // dot product above which we consider two adjacent curves to be part of the "same" curve
33 static const SkScalar kCurveConnectionThreshold = 0.8f;
34 
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)35 static bool intersect(const SkPoint& p0, const SkPoint& n0,
36                       const SkPoint& p1, const SkPoint& n1,
37                       SkScalar* t) {
38     const SkPoint v = p1 - p0;
39     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
40     if (SkScalarNearlyZero(perpDot)) {
41         return false;
42     }
43     *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
44     SkASSERT(SkScalarIsFinite(*t));
45     return true;
46 }
47 
48 // This is a special case version of intersect where we have the vector
49 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)50 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
51                                const SkPoint& p1, const SkPoint& perp) {
52     const SkPoint v = p1 - p0;
53     SkScalar perpDot = n0.dot(perp);
54     return v.dot(perp) / perpDot;
55 }
56 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)57 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
58     SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
59     return distSq < kCloseSqd;
60 }
61 
points_are_colinear_and_b_is_middle(const SkPoint & a,const SkPoint & b,const SkPoint & c)62 static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
63                                                 const SkPoint& c) {
64     // First check distance from b to the infinite line through a, c
65     SkVector aToC = c - a;
66     SkVector n = {aToC.fY, -aToC.fX};
67     n.normalize();
68 
69     SkScalar distBToLineAC = n.dot(b) - n.dot(a);
70     if (SkScalarAbs(distBToLineAC) >= kClose) {
71         // Too far from the line, cannot be colinear
72         return false;
73     }
74 
75     // b is colinear, but it may not be in the line segment between a and c. It's in the middle if
76     // both the angle at a and the angle at c are acute.
77     return aToC.dot(b - a) > 0 && aToC.dot(c - b) > 0;
78 }
79 
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)80 int GrAAConvexTessellator::addPt(const SkPoint& pt,
81                                  SkScalar depth,
82                                  SkScalar coverage,
83                                  bool movable,
84                                  CurveState curve) {
85     SkASSERT(pt.isFinite());
86     this->validate();
87 
88     int index = fPts.count();
89     *fPts.push() = pt;
90     *fCoverages.push() = coverage;
91     *fMovable.push() = movable;
92     *fCurveState.push() = curve;
93 
94     this->validate();
95     return index;
96 }
97 
popLastPt()98 void GrAAConvexTessellator::popLastPt() {
99     this->validate();
100 
101     fPts.pop();
102     fCoverages.pop();
103     fMovable.pop();
104     fCurveState.pop();
105 
106     this->validate();
107 }
108 
popFirstPtShuffle()109 void GrAAConvexTessellator::popFirstPtShuffle() {
110     this->validate();
111 
112     fPts.removeShuffle(0);
113     fCoverages.removeShuffle(0);
114     fMovable.removeShuffle(0);
115     fCurveState.removeShuffle(0);
116 
117     this->validate();
118 }
119 
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)120 void GrAAConvexTessellator::updatePt(int index,
121                                      const SkPoint& pt,
122                                      SkScalar depth,
123                                      SkScalar coverage) {
124     this->validate();
125     SkASSERT(fMovable[index]);
126 
127     fPts[index] = pt;
128     fCoverages[index] = coverage;
129 }
130 
addTri(int i0,int i1,int i2)131 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
132     if (i0 == i1 || i1 == i2 || i2 == i0) {
133         return;
134     }
135 
136     *fIndices.push() = i0;
137     *fIndices.push() = i1;
138     *fIndices.push() = i2;
139 }
140 
rewind()141 void GrAAConvexTessellator::rewind() {
142     fPts.rewind();
143     fCoverages.rewind();
144     fMovable.rewind();
145     fIndices.rewind();
146     fNorms.rewind();
147     fCurveState.rewind();
148     fInitialRing.rewind();
149     fCandidateVerts.rewind();
150 #if GR_AA_CONVEX_TESSELLATOR_VIZ
151     fRings.rewind();        // TODO: leak in this case!
152 #else
153     fRings[0].rewind();
154     fRings[1].rewind();
155 #endif
156 }
157 
computeNormals()158 void GrAAConvexTessellator::computeNormals() {
159     auto normalToVector = [this](SkVector v) {
160         SkVector n = SkPointPriv::MakeOrthog(v, fSide);
161         SkAssertResult(n.normalize());
162         SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
163         return n;
164     };
165 
166     // Check the cross product of the final trio
167     fNorms.append(fPts.count());
168     fNorms[0] = fPts[1] - fPts[0];
169     fNorms.top() = fPts[0] - fPts.top();
170     SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
171     fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
172     fNorms[0] = normalToVector(fNorms[0]);
173     for (int cur = 1; cur < fNorms.count() - 1; ++cur) {
174         fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
175     }
176     fNorms.top() = normalToVector(fNorms.top());
177 }
178 
computeBisectors()179 void GrAAConvexTessellator::computeBisectors() {
180     fBisectors.setCount(fNorms.count());
181 
182     int prev = fBisectors.count() - 1;
183     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
184         fBisectors[cur] = fNorms[cur] + fNorms[prev];
185         if (!fBisectors[cur].normalize()) {
186             fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
187                               SkPointPriv::MakeOrthog(fNorms[prev], fSide);
188             SkAssertResult(fBisectors[cur].normalize());
189         } else {
190             fBisectors[cur].negate();      // make the bisector face in
191         }
192         if (fCurveState[prev] == kIndeterminate_CurveState) {
193             if (fCurveState[cur] == kSharp_CurveState) {
194                 fCurveState[prev] = kSharp_CurveState;
195             } else {
196                 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
197                     fCurveState[prev] = kCurve_CurveState;
198                     fCurveState[cur]  = kCurve_CurveState;
199                 } else {
200                     fCurveState[prev] = kSharp_CurveState;
201                     fCurveState[cur]  = kSharp_CurveState;
202                 }
203             }
204         }
205 
206         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
207     }
208 }
209 
210 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
211 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)212 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
213                                              SkScalar initialCoverage, SkScalar targetDepth,
214                                              SkScalar targetCoverage, Ring** finalRing) {
215     static const int kMaxNumRings = 8;
216 
217     if (previousRing.numPts() < 3) {
218         return false;
219     }
220     Ring* currentRing = &previousRing;
221     int i;
222     for (i = 0; i < kMaxNumRings; ++i) {
223         Ring* nextRing = this->getNextRing(currentRing);
224         SkASSERT(nextRing != currentRing);
225 
226         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
227                                           targetDepth, targetCoverage, i == 0);
228         currentRing = nextRing;
229         if (done) {
230             break;
231         }
232         currentRing->init(*this);
233     }
234 
235     if (kMaxNumRings == i) {
236         // Bail if we've exceeded the amount of time we want to throw at this.
237         this->terminate(*currentRing);
238         return false;
239     }
240     bool done = currentRing->numPts() >= 3;
241     if (done) {
242         currentRing->init(*this);
243     }
244     *finalRing = currentRing;
245     return done;
246 }
247 
248 // The general idea here is to, conceptually, start with the original polygon and slide
249 // the vertices along the bisectors until the first intersection. At that
250 // point two of the edges collapse and the process repeats on the new polygon.
251 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
252 // controls the iteration. The CandidateVerts holds the formative points for the
253 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)254 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
255     if (!this->extractFromPath(m, path)) {
256         return false;
257     }
258 
259     SkScalar coverage = 1.0f;
260     SkScalar scaleFactor = 0.0f;
261 
262     if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
263         SkASSERT(m.isSimilarity());
264         scaleFactor = m.getMaxScale(); // x and y scale are the same
265         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
266         Ring outerStrokeAndAARing;
267         this->createOuterRing(fInitialRing,
268                               effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
269                               &outerStrokeAndAARing);
270 
271         // discard all the triangles added between the originating ring and the new outer ring
272         fIndices.rewind();
273 
274         outerStrokeAndAARing.init(*this);
275 
276         outerStrokeAndAARing.makeOriginalRing();
277 
278         // Add the outer stroke ring's normals to the originating ring's normals
279         // so it can also act as an originating ring
280         fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
281         for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
282             SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
283             fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
284         }
285 
286         // the bisectors are only needed for the computation of the outer ring
287         fBisectors.rewind();
288 
289         Ring* insetAARing;
290         this->createInsetRings(outerStrokeAndAARing,
291                                0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
292                                &insetAARing);
293 
294         SkDEBUGCODE(this->validate();)
295         return true;
296     }
297 
298     if (SkStrokeRec::kStroke_Style == fStyle) {
299         SkASSERT(fStrokeWidth >= 0.0f);
300         SkASSERT(m.isSimilarity());
301         scaleFactor = m.getMaxScale(); // x and y scale are the same
302         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
303         Ring outerStrokeRing;
304         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
305                               coverage, &outerStrokeRing);
306         outerStrokeRing.init(*this);
307         Ring outerAARing;
308         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
309     } else {
310         Ring outerAARing;
311         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
312     }
313 
314     // the bisectors are only needed for the computation of the outer ring
315     fBisectors.rewind();
316     if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
317         SkASSERT(fStrokeWidth >= 0.0f);
318         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
319         Ring* insetStrokeRing;
320         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
321         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
322                                    &insetStrokeRing)) {
323             Ring* insetAARing;
324             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
325                                    kAntialiasingRadius * 2, 0.0f, &insetAARing);
326         }
327     } else {
328         Ring* insetAARing;
329         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
330     }
331 
332     SkDEBUGCODE(this->validate();)
333     return true;
334 }
335 
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const336 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
337     SkASSERT(edgeIdx < fNorms.count());
338 
339     SkPoint v = p - fPts[edgeIdx];
340     SkScalar depth = -fNorms[edgeIdx].dot(v);
341     return depth;
342 }
343 
344 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
345 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const346 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
347                                                    const SkVector& bisector,
348                                                    int edgeIdx,
349                                                    SkScalar desiredDepth,
350                                                    SkPoint* result) const {
351     const SkPoint& norm = fNorms[edgeIdx];
352 
353     // First find the point where the edge and the bisector intersect
354     SkPoint newP;
355 
356     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
357     if (SkScalarNearlyEqual(t, 0.0f)) {
358         // the start point was one of the original ring points
359         SkASSERT(startIdx < fPts.count());
360         newP = fPts[startIdx];
361     } else if (t < 0.0f) {
362         newP = bisector;
363         newP.scale(t);
364         newP += fPts[startIdx];
365     } else {
366         return false;
367     }
368 
369     // Then offset along the bisector from that point the correct distance
370     SkScalar dot = bisector.dot(norm);
371     t = -desiredDepth / dot;
372     *result = bisector;
373     result->scale(t);
374     *result += newP;
375 
376     return true;
377 }
378 
extractFromPath(const SkMatrix & m,const SkPath & path)379 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
380     SkASSERT(SkPathConvexityType::kConvex == path.getConvexityType());
381 
382     SkRect bounds = path.getBounds();
383     m.mapRect(&bounds);
384     if (!bounds.isFinite()) {
385         // We could do something smarter here like clip the path based on the bounds of the dst.
386         // We'd have to be careful about strokes to ensure we don't draw something wrong.
387         return false;
388     }
389 
390     // Outer ring: 3*numPts
391     // Middle ring: numPts
392     // Presumptive inner ring: numPts
393     this->reservePts(5*path.countPoints());
394     // Outer ring: 12*numPts
395     // Middle ring: 0
396     // Presumptive inner ring: 6*numPts + 6
397     fIndices.setReserve(18*path.countPoints() + 6);
398 
399     // TODO: is there a faster way to extract the points from the path? Perhaps
400     // get all the points via a new entry point, transform them all in bulk
401     // and then walk them to find duplicates?
402     SkPathEdgeIter iter(path);
403     while (auto e = iter.next()) {
404         switch (e.fEdge) {
405             case SkPathEdgeIter::Edge::kLine:
406                 if (!SkPathPriv::AllPointsEq(e.fPts, 2)) {
407                     this->lineTo(m, e.fPts[1], kSharp_CurveState);
408                 }
409                 break;
410             case SkPathEdgeIter::Edge::kQuad:
411                 if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
412                     this->quadTo(m, e.fPts);
413                 }
414                 break;
415             case SkPathEdgeIter::Edge::kCubic:
416                 if (!SkPathPriv::AllPointsEq(e.fPts, 4)) {
417                     this->cubicTo(m, e.fPts);
418                 }
419                 break;
420             case SkPathEdgeIter::Edge::kConic:
421                 if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
422                     this->conicTo(m, e.fPts, iter.conicWeight());
423                 }
424                 break;
425         }
426     }
427 
428     if (this->numPts() < 2) {
429         return false;
430     }
431 
432     // check if last point is a duplicate of the first point. If so, remove it.
433     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
434         this->popLastPt();
435     }
436 
437     // Remove any lingering colinear points where the path wraps around
438     bool noRemovalsToDo = false;
439     while (!noRemovalsToDo && this->numPts() >= 3) {
440         if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0])) {
441             this->popLastPt();
442         } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1])) {
443             this->popFirstPtShuffle();
444         } else {
445             noRemovalsToDo = true;
446         }
447     }
448 
449     // Compute the normals and bisectors.
450     SkASSERT(fNorms.empty());
451     if (this->numPts() >= 3) {
452         this->computeNormals();
453         this->computeBisectors();
454     } else if (this->numPts() == 2) {
455         // We've got two points, so we're degenerate.
456         if (fStyle == SkStrokeRec::kFill_Style) {
457             // it's a fill, so we don't need to worry about degenerate paths
458             return false;
459         }
460         // For stroking, we still need to process the degenerate path, so fix it up
461         fSide = SkPointPriv::kLeft_Side;
462 
463         fNorms.append(2);
464         fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
465         fNorms[0].normalize();
466         fNorms[1] = -fNorms[0];
467         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
468         // we won't actually use the bisectors, so just push zeroes
469         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
470         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
471     } else {
472         return false;
473     }
474 
475     fCandidateVerts.setReserve(this->numPts());
476     fInitialRing.setReserve(this->numPts());
477     for (int i = 0; i < this->numPts(); ++i) {
478         fInitialRing.addIdx(i, i);
479     }
480     fInitialRing.init(fNorms, fBisectors);
481 
482     this->validate();
483     return true;
484 }
485 
getNextRing(Ring * lastRing)486 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
487 #if GR_AA_CONVEX_TESSELLATOR_VIZ
488     Ring* ring = *fRings.push() = new Ring;
489     ring->setReserve(fInitialRing.numPts());
490     ring->rewind();
491     return ring;
492 #else
493     // Flip flop back and forth between fRings[0] & fRings[1]
494     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
495     fRings[nextRing].setReserve(fInitialRing.numPts());
496     fRings[nextRing].rewind();
497     return &fRings[nextRing];
498 #endif
499 }
500 
fanRing(const Ring & ring)501 void GrAAConvexTessellator::fanRing(const Ring& ring) {
502     // fan out from point 0
503     int startIdx = ring.index(0);
504     for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
505         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
506     }
507 }
508 
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)509 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
510                                             SkScalar coverage, Ring* nextRing) {
511     const int numPts = previousRing.numPts();
512     if (numPts == 0) {
513         return;
514     }
515 
516     int prev = numPts - 1;
517     int lastPerpIdx = -1, firstPerpIdx = -1;
518 
519     const SkScalar outsetSq = outset * outset;
520     SkScalar miterLimitSq = outset * fMiterLimit;
521     miterLimitSq = miterLimitSq * miterLimitSq;
522     for (int cur = 0; cur < numPts; ++cur) {
523         int originalIdx = previousRing.index(cur);
524         // For each vertex of the original polygon we add at least two points to the
525         // outset polygon - one extending perpendicular to each impinging edge. Connecting these
526         // two points yields a bevel join. We need one additional point for a mitered join, and
527         // a round join requires one or more points depending upon curvature.
528 
529         // The perpendicular point for the last edge
530         SkPoint normal1 = previousRing.norm(prev);
531         SkPoint perp1 = normal1;
532         perp1.scale(outset);
533         perp1 += this->point(originalIdx);
534 
535         // The perpendicular point for the next edge.
536         SkPoint normal2 = previousRing.norm(cur);
537         SkPoint perp2 = normal2;
538         perp2.scale(outset);
539         perp2 += fPts[originalIdx];
540 
541         CurveState curve = fCurveState[originalIdx];
542 
543         // We know it isn't a duplicate of the prior point (since it and this
544         // one are just perpendicular offsets from the non-merged polygon points)
545         int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
546         nextRing->addIdx(perp1Idx, originalIdx);
547 
548         int perp2Idx;
549         // For very shallow angles all the corner points could fuse.
550         if (duplicate_pt(perp2, this->point(perp1Idx))) {
551             perp2Idx = perp1Idx;
552         } else {
553             perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
554         }
555 
556         if (perp2Idx != perp1Idx) {
557             if (curve == kCurve_CurveState) {
558                 // bevel or round depending upon curvature
559                 SkScalar dotProd = normal1.dot(normal2);
560                 if (dotProd < kRoundCapThreshold) {
561                     // Currently we "round" by creating a single extra point, which produces
562                     // good results for common cases. For thick strokes with high curvature, we will
563                     // need to add more points; for the time being we simply fall back to software
564                     // rendering for thick strokes.
565                     SkPoint miter = previousRing.bisector(cur);
566                     miter.setLength(-outset);
567                     miter += fPts[originalIdx];
568 
569                     // For very shallow angles all the corner points could fuse
570                     if (!duplicate_pt(miter, this->point(perp1Idx))) {
571                         int miterIdx;
572                         miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
573                         nextRing->addIdx(miterIdx, originalIdx);
574                         // The two triangles for the corner
575                         this->addTri(originalIdx, perp1Idx, miterIdx);
576                         this->addTri(originalIdx, miterIdx, perp2Idx);
577                     }
578                 } else {
579                     this->addTri(originalIdx, perp1Idx, perp2Idx);
580                 }
581             } else {
582                 switch (fJoin) {
583                     case SkPaint::Join::kMiter_Join: {
584                         // The bisector outset point
585                         SkPoint miter = previousRing.bisector(cur);
586                         SkScalar dotProd = normal1.dot(normal2);
587                         // The max is because this could go slightly negative if precision causes
588                         // us to become slightly concave.
589                         SkScalar sinHalfAngleSq = std::max(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
590                         SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
591                         if (lengthSq > miterLimitSq) {
592                             // just bevel it
593                             this->addTri(originalIdx, perp1Idx, perp2Idx);
594                             break;
595                         }
596                         miter.setLength(-SkScalarSqrt(lengthSq));
597                         miter += fPts[originalIdx];
598 
599                         // For very shallow angles all the corner points could fuse
600                         if (!duplicate_pt(miter, this->point(perp1Idx))) {
601                             int miterIdx;
602                             miterIdx = this->addPt(miter, -outset, coverage, false,
603                                                    kSharp_CurveState);
604                             nextRing->addIdx(miterIdx, originalIdx);
605                             // The two triangles for the corner
606                             this->addTri(originalIdx, perp1Idx, miterIdx);
607                             this->addTri(originalIdx, miterIdx, perp2Idx);
608                         } else {
609                             // ignore the miter point as it's so close to perp1/perp2 and simply
610                             // bevel.
611                             this->addTri(originalIdx, perp1Idx, perp2Idx);
612                         }
613                         break;
614                     }
615                     case SkPaint::Join::kBevel_Join:
616                         this->addTri(originalIdx, perp1Idx, perp2Idx);
617                         break;
618                     default:
619                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
620                         // only willing to draw mitered or beveled, so we should never get here.
621                         SkASSERT(false);
622                 }
623             }
624 
625             nextRing->addIdx(perp2Idx, originalIdx);
626         }
627 
628         if (0 == cur) {
629             // Store the index of the first perpendicular point to finish up
630             firstPerpIdx = perp1Idx;
631             SkASSERT(-1 == lastPerpIdx);
632         } else {
633             // The triangles for the previous edge
634             int prevIdx = previousRing.index(prev);
635             this->addTri(prevIdx, perp1Idx, originalIdx);
636             this->addTri(prevIdx, lastPerpIdx, perp1Idx);
637         }
638 
639         // Track the last perpendicular outset point so we can construct the
640         // trailing edge triangles.
641         lastPerpIdx = perp2Idx;
642         prev = cur;
643     }
644 
645     // pick up the final edge rect
646     int lastIdx = previousRing.index(numPts - 1);
647     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
648     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
649 
650     this->validate();
651 }
652 
653 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
654 // and fan it.
terminate(const Ring & ring)655 void GrAAConvexTessellator::terminate(const Ring& ring) {
656     if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
657         this->fanRing(ring);
658     }
659 }
660 
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)661 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
662                                 SkScalar targetDepth, SkScalar targetCoverage) {
663     if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
664         return targetCoverage;
665     }
666     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
667             (targetCoverage - initialCoverage) + initialCoverage;
668     return SkTPin(result, 0.0f, 1.0f);
669 }
670 
671 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)672 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
673                                             SkScalar initialDepth, SkScalar initialCoverage,
674                                             SkScalar targetDepth, SkScalar targetCoverage,
675                                             bool forceNew) {
676     bool done = false;
677 
678     fCandidateVerts.rewind();
679 
680     // Loop through all the points in the ring and find the intersection with the smallest depth
681     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
682     int minEdgeIdx = -1;
683 
684     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
685         int next = (cur + 1) % lastRing.numPts();
686 
687         SkScalar t;
688         bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
689                                 this->point(lastRing.index(next)), lastRing.bisector(next),
690                                 &t);
691         // The bisectors may be parallel (!result) or the previous ring may have become slightly
692         // concave due to accumulated error (t <= 0).
693         if (!result || t <= 0) {
694             continue;
695         }
696         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
697 
698         if (minDist > dist) {
699             minDist = dist;
700             minT = t;
701             minEdgeIdx = cur;
702         }
703     }
704 
705     if (minEdgeIdx == -1) {
706         return false;
707     }
708     SkPoint newPt = lastRing.bisector(minEdgeIdx);
709     newPt.scale(minT);
710     newPt += this->point(lastRing.index(minEdgeIdx));
711 
712     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
713     if (depth >= targetDepth) {
714         // None of the bisectors intersect before reaching the desired depth.
715         // Just step them all to the desired depth
716         depth = targetDepth;
717         done = true;
718     }
719 
720     // 'dst' stores where each point in the last ring maps to/transforms into
721     // in the next ring.
722     SkTDArray<int> dst;
723     dst.setCount(lastRing.numPts());
724 
725     // Create the first point (who compares with no one)
726     if (!this->computePtAlongBisector(lastRing.index(0),
727                                       lastRing.bisector(0),
728                                       lastRing.origEdgeID(0),
729                                       depth, &newPt)) {
730         this->terminate(lastRing);
731         return true;
732     }
733     dst[0] = fCandidateVerts.addNewPt(newPt,
734                                       lastRing.index(0), lastRing.origEdgeID(0),
735                                       !this->movable(lastRing.index(0)));
736 
737     // Handle the middle points (who only compare with the prior point)
738     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
739         if (!this->computePtAlongBisector(lastRing.index(cur),
740                                           lastRing.bisector(cur),
741                                           lastRing.origEdgeID(cur),
742                                           depth, &newPt)) {
743             this->terminate(lastRing);
744             return true;
745         }
746         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
747             dst[cur] = fCandidateVerts.addNewPt(newPt,
748                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
749                                                 !this->movable(lastRing.index(cur)));
750         } else {
751             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
752         }
753     }
754 
755     // Check on the last point (handling the wrap around)
756     int cur = lastRing.numPts()-1;
757     if  (!this->computePtAlongBisector(lastRing.index(cur),
758                                        lastRing.bisector(cur),
759                                        lastRing.origEdgeID(cur),
760                                        depth, &newPt)) {
761         this->terminate(lastRing);
762         return true;
763     }
764     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
765     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
766 
767     if (!dupPrev && !dupNext) {
768         dst[cur] = fCandidateVerts.addNewPt(newPt,
769                                             lastRing.index(cur), lastRing.origEdgeID(cur),
770                                             !this->movable(lastRing.index(cur)));
771     } else if (dupPrev && !dupNext) {
772         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
773     } else if (!dupPrev && dupNext) {
774         dst[cur] = fCandidateVerts.fuseWithNext();
775     } else {
776         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
777 
778         if (!dupPrevVsNext) {
779             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
780         } else {
781             const int fused = fCandidateVerts.fuseWithBoth();
782             dst[cur] = fused;
783             const int targetIdx = dst[cur - 1];
784             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
785                 dst[i] = fused;
786             }
787         }
788     }
789 
790     // Fold the new ring's points into the global pool
791     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
792         int newIdx;
793         if (fCandidateVerts.needsToBeNew(i) || forceNew) {
794             // if the originating index is still valid then this point wasn't
795             // fused (and is thus movable)
796             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
797                                                  targetDepth, targetCoverage);
798             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
799                                  fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
800         } else {
801             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
802             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
803                            targetCoverage);
804             newIdx = fCandidateVerts.originatingIdx(i);
805         }
806 
807         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
808     }
809 
810     // 'dst' currently has indices into the ring. Remap these to be indices
811     // into the global pool since the triangulation operates in that space.
812     for (int i = 0; i < dst.count(); ++i) {
813         dst[i] = nextRing->index(dst[i]);
814     }
815 
816     for (int i = 0; i < lastRing.numPts(); ++i) {
817         int next = (i + 1) % lastRing.numPts();
818 
819         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
820         this->addTri(lastRing.index(i), dst[next], dst[i]);
821     }
822 
823     if (done && fStyle != SkStrokeRec::kStroke_Style) {
824         // fill or stroke-and-fill
825         this->fanRing(*nextRing);
826     }
827 
828     if (nextRing->numPts() < 3) {
829         done = true;
830     }
831     return done;
832 }
833 
validate() const834 void GrAAConvexTessellator::validate() const {
835     SkASSERT(fPts.count() == fMovable.count());
836     SkASSERT(fPts.count() == fCoverages.count());
837     SkASSERT(fPts.count() == fCurveState.count());
838     SkASSERT(0 == (fIndices.count() % 3));
839     SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
840 }
841 
842 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)843 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
844     this->computeNormals(tess);
845     this->computeBisectors(tess);
846 }
847 
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)848 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
849                                        const SkTDArray<SkVector>& bisectors) {
850     for (int i = 0; i < fPts.count(); ++i) {
851         fPts[i].fNorm = norms[i];
852         fPts[i].fBisector = bisectors[i];
853     }
854 }
855 
856 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)857 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
858     for (int cur = 0; cur < fPts.count(); ++cur) {
859         int next = (cur + 1) % fPts.count();
860 
861         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
862         SkPoint::Normalize(&fPts[cur].fNorm);
863         fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
864     }
865 }
866 
computeBisectors(const GrAAConvexTessellator & tess)867 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
868     int prev = fPts.count() - 1;
869     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
870         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
871         if (!fPts[cur].fBisector.normalize()) {
872             fPts[cur].fBisector =
873                     SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
874                     SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
875             SkAssertResult(fPts[cur].fBisector.normalize());
876         } else {
877             fPts[cur].fBisector.negate();      // make the bisector face in
878         }
879     }
880 }
881 
882 //////////////////////////////////////////////////////////////////////////////
883 #ifdef SK_DEBUG
884 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const885 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
886     if (fPts.count() < 3) {
887         return true;
888     }
889 
890     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
891     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
892     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
893     SkScalar maxDot = minDot;
894 
895     prev = cur;
896     for (int i = 1; i < fPts.count(); ++i) {
897         int next = (i + 1) % fPts.count();
898 
899         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
900         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
901 
902         minDot = std::min(minDot, dot);
903         maxDot = std::max(maxDot, dot);
904 
905         prev = cur;
906     }
907 
908     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
909         maxDot = 0;
910     }
911     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
912         minDot = 0;
913     }
914     return (maxDot >= 0.0f) == (minDot >= 0.0f);
915 }
916 
917 #endif
918 
lineTo(const SkPoint & p,CurveState curve)919 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
920     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
921         return;
922     }
923 
924     if (this->numPts() >= 2 &&
925         points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p)) {
926         // The old last point is on the line from the second to last to the new point
927         this->popLastPt();
928         // double-check that the new last point is not a duplicate of the new point. In an ideal
929         // world this wouldn't be necessary (since it's only possible for non-convex paths), but
930         // floating point precision issues mean it can actually happen on paths that were
931         // determined to be convex.
932         if (duplicate_pt(p, this->lastPoint())) {
933             return;
934         }
935     }
936     SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
937     this->addPt(p, 0.0f, initialRingCoverage, false, curve);
938 }
939 
lineTo(const SkMatrix & m,const SkPoint & p,CurveState curve)940 void GrAAConvexTessellator::lineTo(const SkMatrix& m, const SkPoint& p, CurveState curve) {
941     this->lineTo(m.mapXY(p.fX, p.fY), curve);
942 }
943 
quadTo(const SkPoint pts[3])944 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
945     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
946     fPointBuffer.setCount(maxCount);
947     SkPoint* target = fPointBuffer.begin();
948     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
949                                                      kQuadTolerance, &target, maxCount);
950     fPointBuffer.setCount(count);
951     for (int i = 0; i < count - 1; i++) {
952         this->lineTo(fPointBuffer[i], kCurve_CurveState);
953     }
954     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
955 }
956 
quadTo(const SkMatrix & m,const SkPoint srcPts[3])957 void GrAAConvexTessellator::quadTo(const SkMatrix& m, const SkPoint srcPts[3]) {
958     SkPoint pts[3];
959     m.mapPoints(pts, srcPts, 3);
960     this->quadTo(pts);
961 }
962 
cubicTo(const SkMatrix & m,const SkPoint srcPts[4])963 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, const SkPoint srcPts[4]) {
964     SkPoint pts[4];
965     m.mapPoints(pts, srcPts, 4);
966     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
967     fPointBuffer.setCount(maxCount);
968     SkPoint* target = fPointBuffer.begin();
969     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
970             kCubicTolerance, &target, maxCount);
971     fPointBuffer.setCount(count);
972     for (int i = 0; i < count - 1; i++) {
973         this->lineTo(fPointBuffer[i], kCurve_CurveState);
974     }
975     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
976 }
977 
978 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
979 #include "src/core/SkGeometry.h"
980 
conicTo(const SkMatrix & m,const SkPoint srcPts[3],SkScalar w)981 void GrAAConvexTessellator::conicTo(const SkMatrix& m, const SkPoint srcPts[3], SkScalar w) {
982     SkPoint pts[3];
983     m.mapPoints(pts, srcPts, 3);
984     SkAutoConicToQuads quadder;
985     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
986     SkPoint lastPoint = *(quads++);
987     int count = quadder.countQuads();
988     for (int i = 0; i < count; ++i) {
989         SkPoint quadPts[3];
990         quadPts[0] = lastPoint;
991         quadPts[1] = quads[0];
992         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
993         this->quadTo(quadPts);
994         lastPoint = quadPts[2];
995         quads += 2;
996     }
997 }
998 
999 //////////////////////////////////////////////////////////////////////////////
1000 #if GR_AA_CONVEX_TESSELLATOR_VIZ
1001 static const SkScalar kPointRadius = 0.02f;
1002 static const SkScalar kArrowStrokeWidth = 0.0f;
1003 static const SkScalar kArrowLength = 0.2f;
1004 static const SkScalar kEdgeTextSize = 0.1f;
1005 static const SkScalar kPointTextSize = 0.02f;
1006 
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)1007 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
1008     SkPaint paint;
1009     SkASSERT(paramValue <= 1.0f);
1010     int gs = int(255*paramValue);
1011     paint.setARGB(255, gs, gs, gs);
1012 
1013     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1014 
1015     if (stroke) {
1016         SkPaint stroke;
1017         stroke.setColor(SK_ColorYELLOW);
1018         stroke.setStyle(SkPaint::kStroke_Style);
1019         stroke.setStrokeWidth(kPointRadius/3.0f);
1020         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1021     }
1022 }
1023 
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1024 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1025     SkPaint p;
1026     p.setColor(color);
1027 
1028     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1029 }
1030 
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1031 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1032                        SkScalar len, SkColor color) {
1033     SkPaint paint;
1034     paint.setColor(color);
1035     paint.setStrokeWidth(kArrowStrokeWidth);
1036     paint.setStyle(SkPaint::kStroke_Style);
1037 
1038     canvas->drawLine(p.fX, p.fY,
1039                      p.fX + len * n.fX, p.fY + len * n.fY,
1040                      paint);
1041 }
1042 
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1043 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1044     SkPaint paint;
1045     paint.setTextSize(kEdgeTextSize);
1046 
1047     for (int cur = 0; cur < fPts.count(); ++cur) {
1048         int next = (cur + 1) % fPts.count();
1049 
1050         draw_line(canvas,
1051                   tess.point(fPts[cur].fIndex),
1052                   tess.point(fPts[next].fIndex),
1053                   SK_ColorGREEN);
1054 
1055         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1056         mid.scale(0.5f);
1057 
1058         if (fPts.count()) {
1059             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1060             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1061             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1062         }
1063 
1064         SkString num;
1065         num.printf("%d", this->origEdgeID(cur));
1066         canvas->drawString(num, mid.fX, mid.fY, paint);
1067 
1068         if (fPts.count()) {
1069             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1070                        kArrowLength, SK_ColorBLUE);
1071         }
1072     }
1073 }
1074 
draw(SkCanvas * canvas) const1075 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1076     for (int i = 0; i < fIndices.count(); i += 3) {
1077         SkASSERT(fIndices[i] < this->numPts()) ;
1078         SkASSERT(fIndices[i+1] < this->numPts()) ;
1079         SkASSERT(fIndices[i+2] < this->numPts()) ;
1080 
1081         draw_line(canvas,
1082                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1083                   SK_ColorBLACK);
1084         draw_line(canvas,
1085                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1086                   SK_ColorBLACK);
1087         draw_line(canvas,
1088                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1089                   SK_ColorBLACK);
1090     }
1091 
1092     fInitialRing.draw(canvas, *this);
1093     for (int i = 0; i < fRings.count(); ++i) {
1094         fRings[i]->draw(canvas, *this);
1095     }
1096 
1097     for (int i = 0; i < this->numPts(); ++i) {
1098         draw_point(canvas,
1099                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1100                    !this->movable(i));
1101 
1102         SkPaint paint;
1103         paint.setTextSize(kPointTextSize);
1104         if (this->depth(i) <= -kAntialiasingRadius) {
1105             paint.setColor(SK_ColorWHITE);
1106         }
1107 
1108         SkString num;
1109         num.printf("%d", i);
1110         canvas->drawString(num,
1111                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1112                          paint);
1113     }
1114 }
1115 
1116 #endif
1117