1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/gpu/GrBackendSurface.h"
9 #include "include/gpu/vk/GrVkBackendContext.h"
10 #include "include/gpu/vk/GrVkExtensions.h"
11 #include "src/core/SkCompressedDataUtils.h"
12 #include "src/gpu/GrProgramDesc.h"
13 #include "src/gpu/GrRenderTarget.h"
14 #include "src/gpu/GrRenderTargetProxy.h"
15 #include "src/gpu/GrShaderCaps.h"
16 #include "src/gpu/GrStencilSettings.h"
17 #include "src/gpu/GrUtil.h"
18 #include "src/gpu/SkGr.h"
19 #include "src/gpu/vk/GrVkCaps.h"
20 #include "src/gpu/vk/GrVkGpu.h"
21 #include "src/gpu/vk/GrVkInterface.h"
22 #include "src/gpu/vk/GrVkRenderTarget.h"
23 #include "src/gpu/vk/GrVkTexture.h"
24 #include "src/gpu/vk/GrVkUniformHandler.h"
25 #include "src/gpu/vk/GrVkUtil.h"
26
27 #ifdef SK_BUILD_FOR_ANDROID
28 #include <sys/system_properties.h>
29 #endif
30
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)31 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
32 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
33 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
34 const GrVkExtensions& extensions, GrProtected isProtected)
35 : INHERITED(contextOptions) {
36 /**************************************************************************
37 * GrCaps fields
38 **************************************************************************/
39 fMipMapSupport = true; // always available in Vulkan
40 fNPOTTextureTileSupport = true; // always available in Vulkan
41 fReuseScratchTextures = true; //TODO: figure this out
42 fGpuTracingSupport = false; //TODO: figure this out
43 fOversizedStencilSupport = false; //TODO: figure this out
44 fInstanceAttribSupport = true;
45
46 fSemaphoreSupport = true; // always available in Vulkan
47 fFenceSyncSupport = true; // always available in Vulkan
48 fCrossContextTextureSupport = true;
49 fHalfFloatVertexAttributeSupport = true;
50
51 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
52 fReadPixelsRowBytesSupport = true;
53 fWritePixelsRowBytesSupport = true;
54
55 fTransferFromBufferToTextureSupport = true;
56 fTransferFromSurfaceToBufferSupport = true;
57
58 fMaxRenderTargetSize = 4096; // minimum required by spec
59 fMaxTextureSize = 4096; // minimum required by spec
60
61 fDynamicStateArrayGeometryProcessorTextureSupport = true;
62
63 fShaderCaps.reset(new GrShaderCaps(contextOptions));
64
65 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
66 isProtected);
67 }
68
69 namespace {
70 /**
71 * This comes from section 37.1.6 of the Vulkan spec. Format is
72 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
73 */
74 enum class FormatCompatibilityClass {
75 k8_1_1,
76 k16_2_1,
77 k24_3_1,
78 k32_4_1,
79 k64_8_1,
80 kBC1_RGB_8_16_1,
81 kBC1_RGBA_8_16,
82 kETC2_RGB_8_16,
83 };
84 } // anonymous namespace
85
format_compatibility_class(VkFormat format)86 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
87 switch (format) {
88 case VK_FORMAT_B8G8R8A8_UNORM:
89 case VK_FORMAT_R8G8B8A8_UNORM:
90 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
91 case VK_FORMAT_R8G8B8A8_SRGB:
92 case VK_FORMAT_R16G16_UNORM:
93 case VK_FORMAT_R16G16_SFLOAT:
94 return FormatCompatibilityClass::k32_4_1;
95
96 case VK_FORMAT_R8_UNORM:
97 return FormatCompatibilityClass::k8_1_1;
98
99 case VK_FORMAT_R5G6B5_UNORM_PACK16:
100 case VK_FORMAT_R16_SFLOAT:
101 case VK_FORMAT_R8G8_UNORM:
102 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
103 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
104 case VK_FORMAT_R16_UNORM:
105 return FormatCompatibilityClass::k16_2_1;
106
107 case VK_FORMAT_R16G16B16A16_SFLOAT:
108 case VK_FORMAT_R16G16B16A16_UNORM:
109 return FormatCompatibilityClass::k64_8_1;
110
111 case VK_FORMAT_R8G8B8_UNORM:
112 return FormatCompatibilityClass::k24_3_1;
113
114 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
115 return FormatCompatibilityClass::kETC2_RGB_8_16;
116
117 case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
118 return FormatCompatibilityClass::kBC1_RGB_8_16_1;
119
120 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
121 return FormatCompatibilityClass::kBC1_RGBA_8_16;
122
123 default:
124 SK_ABORT("Unsupported VkFormat");
125 }
126 }
127
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const128 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
129 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
130 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
131 return false;
132 }
133
134 if (dstHasYcbcr || srcHasYcbcr) {
135 return false;
136 }
137
138 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
139 // as image usage flags.
140 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
141 }
142
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const143 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
144 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
145 bool srcIsLinear, bool srcHasYcbcr) const {
146 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
147 // as image usage flags.
148 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
149 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
150 return false;
151 }
152
153 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
154 // resolved msaa though.
155 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
156 return false;
157 }
158
159 if (dstHasYcbcr || srcHasYcbcr) {
160 return false;
161 }
162
163 return true;
164 }
165
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const166 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
167 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
168 // The src surface must be multisampled.
169 if (srcSampleCnt <= 1) {
170 return false;
171 }
172
173 // The dst must not be multisampled.
174 if (dstSampleCnt > 1) {
175 return false;
176 }
177
178 // Surfaces must have the same format.
179 if (srcFormat != dstFormat) {
180 return false;
181 }
182
183 if (dstHasYcbcr || srcHasYcbcr) {
184 return false;
185 }
186
187 return true;
188 }
189
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const190 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
191 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
192 if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
193 return false;
194 }
195
196 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
197 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
198 // tracking of external or rectangle textures in GL? For now we don't create linear textures
199 // internally, and I don't believe anyone is wrapping them.
200 bool srcIsLinear = false;
201 bool dstIsLinear = false;
202
203 int dstSampleCnt = 0;
204 int srcSampleCnt = 0;
205 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
206 // Copying to or from render targets that wrap a secondary command buffer is not allowed
207 // since they would require us to know the VkImage, which we don't have, as well as need us
208 // to stop and start the VkRenderPass which we don't have access to.
209 if (rtProxy->wrapsVkSecondaryCB()) {
210 return false;
211 }
212 dstSampleCnt = rtProxy->numSamples();
213 }
214 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
215 // Copying to or from render targets that wrap a secondary command buffer is not allowed
216 // since they would require us to know the VkImage, which we don't have, as well as need us
217 // to stop and start the VkRenderPass which we don't have access to.
218 if (rtProxy->wrapsVkSecondaryCB()) {
219 return false;
220 }
221 srcSampleCnt = rtProxy->numSamples();
222 }
223 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
224 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
225
226 bool dstHasYcbcr = false;
227 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
228 if (ycbcr->isValid()) {
229 dstHasYcbcr = true;
230 }
231 }
232
233 bool srcHasYcbcr = false;
234 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
235 if (ycbcr->isValid()) {
236 srcHasYcbcr = true;
237 }
238 }
239
240 VkFormat dstFormat, srcFormat;
241 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
242 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
243
244 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
245 srcFormat, srcSampleCnt, srcHasYcbcr) ||
246 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
247 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
248 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
249 srcFormat, srcSampleCnt, srcHasYcbcr);
250 }
251
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)252 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
253 VkStructureType type) {
254 // All Vulkan structs that could be part of the features chain will start with the
255 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
256 // so we can get access to the pNext for the next struct.
257 struct CommonVulkanHeader {
258 VkStructureType sType;
259 void* pNext;
260 };
261
262 void* pNext = features.pNext;
263 while (pNext) {
264 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
265 if (header->sType == type) {
266 return static_cast<T*>(pNext);
267 }
268 pNext = header->pNext;
269 }
270 return nullptr;
271 }
272
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)273 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
274 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
275 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
276 GrProtected isProtected) {
277 VkPhysicalDeviceProperties properties;
278 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
279
280 VkPhysicalDeviceMemoryProperties memoryProperties;
281 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
282
283 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
284
285 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
286 fSupportsSwapchain = true;
287 }
288
289 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
290 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
291 fSupportsPhysicalDeviceProperties2 = true;
292 }
293
294 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
295 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
296 fSupportsMemoryRequirements2 = true;
297 }
298
299 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
300 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
301 fSupportsBindMemory2 = true;
302 }
303
304 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
305 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
306 fSupportsMaintenance1 = true;
307 }
308
309 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
310 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
311 fSupportsMaintenance2 = true;
312 }
313
314 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
315 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
316 fSupportsMaintenance3 = true;
317 }
318
319 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
320 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
321 this->supportsMemoryRequirements2())) {
322 fSupportsDedicatedAllocation = true;
323 }
324
325 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
326 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
327 this->supportsPhysicalDeviceProperties2() &&
328 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
329 this->supportsDedicatedAllocation())) {
330 fSupportsExternalMemory = true;
331 }
332
333 #ifdef SK_BUILD_FOR_ANDROID
334 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
335 // do we don't explicitly require it here even the spec says it is required.
336 if (extensions.hasExtension(
337 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
338 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
339 this->supportsExternalMemory() &&
340 this->supportsBindMemory2()) {
341 fSupportsAndroidHWBExternalMemory = true;
342 fSupportsAHardwareBufferImages = true;
343 }
344 #endif
345
346 auto ycbcrFeatures =
347 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
348 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
349 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
350 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
351 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
352 this->supportsMaintenance1() && this->supportsBindMemory2() &&
353 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
354 fSupportsYcbcrConversion = true;
355 }
356
357 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
358 // will return a key of 0.
359 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
360
361 if ((isProtected == GrProtected::kYes) &&
362 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
363 fSupportsProtectedMemory = true;
364 fAvoidUpdateBuffers = true;
365 fShouldAlwaysUseDedicatedImageMemory = true;
366 }
367
368 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
369 this->initShaderCaps(properties, features);
370
371 if (kQualcomm_VkVendor == properties.vendorID) {
372 // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
373 // scissored clear.
374 // On NVIDIA and Intel, the discard load followed by clear is faster.
375 // TODO: Evaluate on ARM, Imagination, and ATI.
376 fPreferFullscreenClears = true;
377 }
378
379 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
380 // On Qualcomm and ARM mapping a gpu buffer and doing both reads and writes to it is slow.
381 // Thus for index and vertex buffers we will force to use a cpu side buffer and then copy
382 // the whole buffer up to the gpu.
383 fBufferMapThreshold = SK_MaxS32;
384 }
385
386 if (kQualcomm_VkVendor == properties.vendorID) {
387 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
388 // even for small sizes.
389 fAvoidUpdateBuffers = true;
390 }
391
392 if (kARM_VkVendor == properties.vendorID) {
393 // ARM seems to do better with more fine triangles as opposed to using the sample mask.
394 // (At least in our current round rect op.)
395 fPreferTrianglesOverSampleMask = true;
396 }
397
398 this->initFormatTable(vkInterface, physDev, properties);
399 this->initStencilFormat(vkInterface, physDev);
400
401 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
402 this->applyDriverCorrectnessWorkarounds(properties);
403 }
404
405 this->finishInitialization(contextOptions);
406 }
407
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)408 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
409 if (kQualcomm_VkVendor == properties.vendorID) {
410 fMustDoCopiesFromOrigin = true;
411 // Transfer doesn't support this workaround.
412 fTransferFromSurfaceToBufferSupport = false;
413 }
414
415 #if defined(SK_BUILD_FOR_WIN)
416 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
417 fMustSleepOnTearDown = true;
418 }
419 #elif defined(SK_BUILD_FOR_ANDROID)
420 if (kImagination_VkVendor == properties.vendorID) {
421 fMustSleepOnTearDown = true;
422 }
423 #endif
424
425 #if defined(SK_BUILD_FOR_ANDROID)
426 // Protected memory features have problems in Android P and earlier.
427 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
428 char androidAPIVersion[PROP_VALUE_MAX];
429 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersion);
430 if (strLength == 0 || atoi(androidAPIVersion) <= 28) {
431 fSupportsProtectedMemory = false;
432 }
433 }
434 #endif
435
436 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
437 if (kARM_VkVendor == properties.vendorID) {
438 fShouldAlwaysUseDedicatedImageMemory = true;
439 }
440
441 // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
442 // using only primary command buffers.
443 if (kARM_VkVendor == properties.vendorID) {
444 fPreferPrimaryOverSecondaryCommandBuffers = false;
445 }
446
447 // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
448 // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
449 // of bound buffers so that we will rebind them on the next draw.
450 if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
451 fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
452 }
453
454 ////////////////////////////////////////////////////////////////////////////
455 // GrCaps workarounds
456 ////////////////////////////////////////////////////////////////////////////
457
458 // The GTX660 bot experiences crashes and incorrect rendering with MSAA CCPR. Block this path
459 // renderer on non-mixed-sampled NVIDIA.
460 // NOTE: We may lose mixed samples support later if the context options suppress dual source
461 // blending, but that shouldn't be an issue because MSAA CCPR seems to work fine (even without
462 // mixed samples) on later NVIDIA hardware where mixed samples would be supported.
463 if ((kNvidia_VkVendor == properties.vendorID) && !fMixedSamplesSupport) {
464 fDriverBlacklistMSAACCPR = true;
465 }
466
467 #ifdef SK_BUILD_FOR_ANDROID
468 // MSAA CCPR is slow on Android. http://skbug.com/9676
469 fDriverBlacklistMSAACCPR = true;
470 #endif
471
472 if (kARM_VkVendor == properties.vendorID) {
473 fInstanceAttribSupport = false;
474 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
475 }
476
477 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
478 if (kAMD_VkVendor == properties.vendorID) {
479 fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
480 }
481
482 ////////////////////////////////////////////////////////////////////////////
483 // GrShaderCaps workarounds
484 ////////////////////////////////////////////////////////////////////////////
485
486 if (kImagination_VkVendor == properties.vendorID) {
487 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
488 }
489
490 if (kQualcomm_VkVendor == properties.vendorID) {
491 // The sample mask round rect op draws nothing on Adreno for the srcmode gm.
492 // http://skbug.com/8921
493 fShaderCaps->fCanOnlyUseSampleMaskWithStencil = true;
494 }
495 }
496
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)497 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
498 VkPhysicalDevice physDev,
499 const VkPhysicalDeviceProperties& properties,
500 const VkPhysicalDeviceMemoryProperties& memoryProperties,
501 const VkPhysicalDeviceFeatures2& features,
502 const GrVkExtensions& extensions) {
503 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
504 // need for us ever to support that amount, and it makes tests which tests all the vertex
505 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
506 // we ever find that need.
507 static const uint32_t kMaxVertexAttributes = 64;
508 fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
509
510 if (properties.limits.standardSampleLocations) {
511 fSampleLocationsSupport = true;
512 }
513
514 if (extensions.hasExtension(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME, 1)) {
515 // We "disable" multisample by colocating all samples at pixel center.
516 fMultisampleDisableSupport = true;
517 }
518
519 if (extensions.hasExtension(VK_NV_FRAMEBUFFER_MIXED_SAMPLES_EXTENSION_NAME, 1)) {
520 fMixedSamplesSupport = true;
521 }
522
523 if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
524 fConservativeRasterSupport = true;
525 }
526
527 fWireframeSupport = true;
528
529 // We could actually query and get a max size for each config, however maxImageDimension2D will
530 // give the minimum max size across all configs. So for simplicity we will use that for now.
531 fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
532 fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
533 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
534 fMaxTextureSize = std::min(fMaxTextureSize, 4096);
535 }
536 // Our render targets are always created with textures as the color
537 // attachment, hence this min:
538 fMaxRenderTargetSize = std::min(fMaxTextureSize, fMaxRenderTargetSize);
539
540 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
541 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
542
543 // Assuming since we will always map in the end to upload the data we might as well just map
544 // from the get go. There is no hard data to suggest this is faster or slower.
545 fBufferMapThreshold = 0;
546
547 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
548
549 fOversizedStencilSupport = true;
550
551 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
552 this->supportsPhysicalDeviceProperties2()) {
553
554 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
555 blendProps.sType =
556 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
557 blendProps.pNext = nullptr;
558
559 VkPhysicalDeviceProperties2 props;
560 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
561 props.pNext = &blendProps;
562
563 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
564
565 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
566 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
567
568 auto blendFeatures =
569 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
570 features,
571 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
572 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
573 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
574 } else {
575 // TODO: Currently non coherent blends are not supported in our vulkan backend. They
576 // require us to support self dependencies in our render passes.
577 // fBlendEquationSupport = kAdvanced_BlendEquationSupport;
578 }
579 }
580 }
581
582 if (kARM_VkVendor == properties.vendorID) {
583 fShouldCollapseSrcOverToSrcWhenAble = true;
584 }
585 }
586
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)587 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
588 const VkPhysicalDeviceFeatures2& features) {
589 GrShaderCaps* shaderCaps = fShaderCaps.get();
590 shaderCaps->fVersionDeclString = "#version 330\n";
591
592 // Vulkan is based off ES 3.0 so the following should all be supported
593 shaderCaps->fUsesPrecisionModifiers = true;
594 shaderCaps->fFlatInterpolationSupport = true;
595 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
596 // to be true with Vulkan as well.
597 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
598
599 shaderCaps->fSampleMaskSupport = true;
600
601 shaderCaps->fShaderDerivativeSupport = true;
602
603 // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
604 // shaderCaps->fGeometryShaderSupport =
605 // shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
606
607 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
608
609 shaderCaps->fIntegerSupport = true;
610 shaderCaps->fVertexIDSupport = true;
611 shaderCaps->fFPManipulationSupport = true;
612
613 // Assume the minimum precisions mandated by the SPIR-V spec.
614 shaderCaps->fFloatIs32Bits = true;
615 shaderCaps->fHalfIs32Bits = false;
616
617 shaderCaps->fMaxFragmentSamplers = std::min(
618 std::min(properties.limits.maxPerStageDescriptorSampledImages,
619 properties.limits.maxPerStageDescriptorSamplers),
620 (uint32_t)INT_MAX);
621 }
622
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)623 bool stencil_format_supported(const GrVkInterface* interface,
624 VkPhysicalDevice physDev,
625 VkFormat format) {
626 VkFormatProperties props;
627 memset(&props, 0, sizeof(VkFormatProperties));
628 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
629 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
630 }
631
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)632 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
633 // List of legal stencil formats (though perhaps not supported on
634 // the particular gpu/driver) from most preferred to least. We are guaranteed to have either
635 // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
636 // can optionally have 24 unused bits at the end so we assume the total bits is 64.
637 static const StencilFormat
638 // internal Format stencil bits total bits packed?
639 gS8 = { VK_FORMAT_S8_UINT, 8, 8, false },
640 gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true },
641 gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true };
642
643 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
644 fPreferredStencilFormat = gS8;
645 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
646 fPreferredStencilFormat = gD24S8;
647 } else {
648 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
649 fPreferredStencilFormat = gD32S8;
650 }
651 }
652
format_is_srgb(VkFormat format)653 static bool format_is_srgb(VkFormat format) {
654 SkASSERT(GrVkFormatIsSupported(format));
655
656 switch (format) {
657 case VK_FORMAT_R8G8B8A8_SRGB:
658 return true;
659 default:
660 return false;
661 }
662 }
663
664 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
665 // frequently used to least to improve look up times in arrays.
666 static constexpr VkFormat kVkFormats[] = {
667 VK_FORMAT_R8G8B8A8_UNORM,
668 VK_FORMAT_R8_UNORM,
669 VK_FORMAT_B8G8R8A8_UNORM,
670 VK_FORMAT_R5G6B5_UNORM_PACK16,
671 VK_FORMAT_R16G16B16A16_SFLOAT,
672 VK_FORMAT_R16_SFLOAT,
673 VK_FORMAT_R8G8B8_UNORM,
674 VK_FORMAT_R8G8_UNORM,
675 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
676 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
677 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
678 VK_FORMAT_R8G8B8A8_SRGB,
679 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
680 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
681 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
682 VK_FORMAT_R16_UNORM,
683 VK_FORMAT_R16G16_UNORM,
684 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
685 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
686 VK_FORMAT_R16G16B16A16_UNORM,
687 VK_FORMAT_R16G16_SFLOAT,
688 };
689
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)690 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
691 #ifdef SK_DEBUG
692 for (size_t i = 0; i < kNumVkFormats; ++i) {
693 const auto& formatInfo = fFormatTable[i];
694 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
695 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
696 if (ctInfo.fColorType == colorType &&
697 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
698 bool found = false;
699 for (auto it = formats.begin(); it != formats.end(); ++it) {
700 if (kVkFormats[i] == *it) {
701 found = true;
702 }
703 }
704 SkASSERT(found);
705 }
706 }
707 }
708 #endif
709 int idx = static_cast<int>(colorType);
710 for (auto it = formats.begin(); it != formats.end(); ++it) {
711 const auto& info = this->getFormatInfo(*it);
712 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
713 if (info.fColorTypeInfos[i].fColorType == colorType) {
714 fColorTypeToFormatTable[idx] = *it;
715 return;
716 }
717 }
718 }
719 }
720
getFormatInfo(VkFormat format) const721 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
722 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
723 return nonConstThis->getFormatInfo(format);
724 }
725
getFormatInfo(VkFormat format)726 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
727 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
728 "Size of VkFormats array must match static value in header");
729 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
730 if (kVkFormats[i] == format) {
731 return fFormatTable[i];
732 }
733 }
734 static FormatInfo kInvalidFormat;
735 return kInvalidFormat;
736 }
737
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)738 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
739 const VkPhysicalDeviceProperties& properties) {
740 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
741 "Size of VkFormats array must match static value in header");
742
743 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
744
745 // Go through all the formats and init their support surface and data GrColorTypes.
746 // Format: VK_FORMAT_R8G8B8A8_UNORM
747 {
748 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
749 auto& info = this->getFormatInfo(format);
750 info.init(interface, physDev, properties, format);
751 info.fBytesPerPixel = 4;
752 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
753 info.fColorTypeInfoCount = 2;
754 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
755 int ctIdx = 0;
756 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
757 {
758 constexpr GrColorType ct = GrColorType::kRGBA_8888;
759 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
760 ctInfo.fColorType = ct;
761 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
762 }
763 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
764 {
765 constexpr GrColorType ct = GrColorType::kRGB_888x;
766 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
767 ctInfo.fColorType = ct;
768 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
769 ctInfo.fReadSwizzle = GrSwizzle::RGB1();
770 }
771 }
772 }
773
774 // Format: VK_FORMAT_R8_UNORM
775 {
776 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
777 auto& info = this->getFormatInfo(format);
778 info.init(interface, physDev, properties, format);
779 info.fBytesPerPixel = 1;
780 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
781 info.fColorTypeInfoCount = 2;
782 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
783 int ctIdx = 0;
784 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
785 {
786 constexpr GrColorType ct = GrColorType::kAlpha_8;
787 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
788 ctInfo.fColorType = ct;
789 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
790 ctInfo.fReadSwizzle = GrSwizzle::RRRR();
791 ctInfo.fOutputSwizzle = GrSwizzle::AAAA();
792 }
793 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
794 {
795 constexpr GrColorType ct = GrColorType::kGray_8;
796 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
797 ctInfo.fColorType = ct;
798 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
799 ctInfo.fReadSwizzle = GrSwizzle("rrr1");
800 }
801 }
802 }
803 // Format: VK_FORMAT_B8G8R8A8_UNORM
804 {
805 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
806 auto& info = this->getFormatInfo(format);
807 info.init(interface, physDev, properties, format);
808 info.fBytesPerPixel = 4;
809 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
810 info.fColorTypeInfoCount = 1;
811 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
812 int ctIdx = 0;
813 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
814 {
815 constexpr GrColorType ct = GrColorType::kBGRA_8888;
816 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
817 ctInfo.fColorType = ct;
818 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
819 }
820 }
821 }
822 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
823 {
824 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
825 auto& info = this->getFormatInfo(format);
826 info.init(interface, physDev, properties, format);
827 info.fBytesPerPixel = 2;
828 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
829 info.fColorTypeInfoCount = 1;
830 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
831 int ctIdx = 0;
832 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
833 {
834 constexpr GrColorType ct = GrColorType::kBGR_565;
835 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
836 ctInfo.fColorType = ct;
837 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
838 }
839 }
840 }
841 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
842 {
843 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
844 auto& info = this->getFormatInfo(format);
845 info.init(interface, physDev, properties, format);
846 info.fBytesPerPixel = 8;
847 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
848 info.fColorTypeInfoCount = 2;
849 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
850 int ctIdx = 0;
851 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
852 {
853 constexpr GrColorType ct = GrColorType::kRGBA_F16;
854 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
855 ctInfo.fColorType = ct;
856 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
857 }
858 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
859 {
860 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
861 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
862 ctInfo.fColorType = ct;
863 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
864 }
865 }
866 }
867 // Format: VK_FORMAT_R16_SFLOAT
868 {
869 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
870 auto& info = this->getFormatInfo(format);
871 info.init(interface, physDev, properties, format);
872 info.fBytesPerPixel = 2;
873 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
874 info.fColorTypeInfoCount = 1;
875 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
876 int ctIdx = 0;
877 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
878 {
879 constexpr GrColorType ct = GrColorType::kAlpha_F16;
880 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
881 ctInfo.fColorType = ct;
882 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
883 ctInfo.fReadSwizzle = GrSwizzle::RRRR();
884 ctInfo.fOutputSwizzle = GrSwizzle::AAAA();
885 }
886 }
887 }
888 // Format: VK_FORMAT_R8G8B8_UNORM
889 {
890 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
891 auto& info = this->getFormatInfo(format);
892 info.init(interface, physDev, properties, format);
893 info.fBytesPerPixel = 3;
894 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
895 info.fColorTypeInfoCount = 1;
896 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
897 int ctIdx = 0;
898 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
899 {
900 constexpr GrColorType ct = GrColorType::kRGB_888x;
901 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
902 ctInfo.fColorType = ct;
903 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
904 }
905 }
906 }
907 // Format: VK_FORMAT_R8G8_UNORM
908 {
909 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
910 auto& info = this->getFormatInfo(format);
911 info.init(interface, physDev, properties, format);
912 info.fBytesPerPixel = 2;
913 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
914 info.fColorTypeInfoCount = 1;
915 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
916 int ctIdx = 0;
917 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
918 {
919 constexpr GrColorType ct = GrColorType::kRG_88;
920 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
921 ctInfo.fColorType = ct;
922 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
923 }
924 }
925 }
926 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
927 {
928 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
929 auto& info = this->getFormatInfo(format);
930 info.init(interface, physDev, properties, format);
931 info.fBytesPerPixel = 4;
932 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
933 info.fColorTypeInfoCount = 1;
934 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
935 int ctIdx = 0;
936 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
937 {
938 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
939 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
940 ctInfo.fColorType = ct;
941 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
942 }
943 }
944 }
945 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
946 {
947 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
948 auto& info = this->getFormatInfo(format);
949 info.init(interface, physDev, properties, format);
950 info.fBytesPerPixel = 2;
951 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
952 info.fColorTypeInfoCount = 1;
953 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
954 int ctIdx = 0;
955 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
956 {
957 constexpr GrColorType ct = GrColorType::kABGR_4444;
958 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
959 ctInfo.fColorType = ct;
960 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
961 ctInfo.fReadSwizzle = GrSwizzle::BGRA();
962 ctInfo.fOutputSwizzle = GrSwizzle::BGRA();
963 }
964 }
965 }
966 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
967 {
968 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
969 auto& info = this->getFormatInfo(format);
970 info.init(interface, physDev, properties, format);
971 info.fBytesPerPixel = 2;
972 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
973 info.fColorTypeInfoCount = 1;
974 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
975 int ctIdx = 0;
976 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
977 {
978 constexpr GrColorType ct = GrColorType::kABGR_4444;
979 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
980 ctInfo.fColorType = ct;
981 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
982 }
983 }
984 }
985 // Format: VK_FORMAT_R8G8B8A8_SRGB
986 {
987 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
988 auto& info = this->getFormatInfo(format);
989 info.init(interface, physDev, properties, format);
990 info.fBytesPerPixel = 4;
991 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
992 info.fColorTypeInfoCount = 1;
993 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
994 int ctIdx = 0;
995 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
996 {
997 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
998 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
999 ctInfo.fColorType = ct;
1000 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1001 }
1002 }
1003 }
1004 // Format: VK_FORMAT_R16_UNORM
1005 {
1006 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1007 auto& info = this->getFormatInfo(format);
1008 info.init(interface, physDev, properties, format);
1009 info.fBytesPerPixel = 2;
1010 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1011 info.fColorTypeInfoCount = 1;
1012 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1013 int ctIdx = 0;
1014 // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1015 {
1016 constexpr GrColorType ct = GrColorType::kAlpha_16;
1017 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1018 ctInfo.fColorType = ct;
1019 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1020 ctInfo.fReadSwizzle = GrSwizzle::RRRR();
1021 ctInfo.fOutputSwizzle = GrSwizzle::AAAA();
1022 }
1023 }
1024 }
1025 // Format: VK_FORMAT_R16G16_UNORM
1026 {
1027 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1028 auto& info = this->getFormatInfo(format);
1029 info.init(interface, physDev, properties, format);
1030 info.fBytesPerPixel = 4;
1031 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1032 info.fColorTypeInfoCount = 1;
1033 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1034 int ctIdx = 0;
1035 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1036 {
1037 constexpr GrColorType ct = GrColorType::kRG_1616;
1038 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1039 ctInfo.fColorType = ct;
1040 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1041 }
1042 }
1043 }
1044 // Format: VK_FORMAT_R16G16B16A16_UNORM
1045 {
1046 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1047 auto& info = this->getFormatInfo(format);
1048 info.init(interface, physDev, properties, format);
1049 info.fBytesPerPixel = 8;
1050 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1051 info.fColorTypeInfoCount = 1;
1052 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1053 int ctIdx = 0;
1054 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1055 {
1056 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1057 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1058 ctInfo.fColorType = ct;
1059 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1060 }
1061 }
1062 }
1063 // Format: VK_FORMAT_R16G16_SFLOAT
1064 {
1065 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1066 auto& info = this->getFormatInfo(format);
1067 info.init(interface, physDev, properties, format);
1068 info.fBytesPerPixel = 4;
1069 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1070 info.fColorTypeInfoCount = 1;
1071 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1072 int ctIdx = 0;
1073 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1074 {
1075 constexpr GrColorType ct = GrColorType::kRG_F16;
1076 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1077 ctInfo.fColorType = ct;
1078 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1079 }
1080 }
1081 }
1082 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1083 {
1084 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1085 auto& info = this->getFormatInfo(format);
1086 // Currently we are just over estimating this value to be used in gpu size calculations even
1087 // though the actually size is probably less. We should instead treat planar formats similar
1088 // to compressed textures that go through their own special query for calculating size.
1089 info.fBytesPerPixel = 3;
1090 if (fSupportsYcbcrConversion) {
1091 info.init(interface, physDev, properties, format);
1092 }
1093 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1094 info.fColorTypeInfoCount = 1;
1095 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1096 int ctIdx = 0;
1097 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1098 {
1099 constexpr GrColorType ct = GrColorType::kRGB_888x;
1100 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1101 ctInfo.fColorType = ct;
1102 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1103 }
1104 }
1105 }
1106 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1107 {
1108 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1109 auto& info = this->getFormatInfo(format);
1110 // Currently we are just over estimating this value to be used in gpu size calculations even
1111 // though the actually size is probably less. We should instead treat planar formats similar
1112 // to compressed textures that go through their own special query for calculating size.
1113 info.fBytesPerPixel = 3;
1114 if (fSupportsYcbcrConversion) {
1115 info.init(interface, physDev, properties, format);
1116 }
1117 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1118 info.fColorTypeInfoCount = 1;
1119 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1120 int ctIdx = 0;
1121 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1122 {
1123 constexpr GrColorType ct = GrColorType::kRGB_888x;
1124 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1125 ctInfo.fColorType = ct;
1126 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1127 }
1128 }
1129 }
1130 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1131 {
1132 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1133 auto& info = this->getFormatInfo(format);
1134 info.init(interface, physDev, properties, format);
1135 info.fBytesPerPixel = 0;
1136 // No supported GrColorTypes.
1137 }
1138
1139 // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1140 {
1141 constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1142 auto& info = this->getFormatInfo(format);
1143 info.init(interface, physDev, properties, format);
1144 info.fBytesPerPixel = 0;
1145 // No supported GrColorTypes.
1146 }
1147
1148 // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1149 {
1150 constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1151 auto& info = this->getFormatInfo(format);
1152 info.init(interface, physDev, properties, format);
1153 info.fBytesPerPixel = 0;
1154 // No supported GrColorTypes.
1155 }
1156
1157 ////////////////////////////////////////////////////////////////////////////
1158 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1159 // are passed into the setColorType function indicates the priority in selecting which format
1160 // we use for a given GrcolorType.
1161
1162 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1163 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1164 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1165 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1166 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1167 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1168 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1169 VK_FORMAT_R8G8B8A8_UNORM });
1170 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1171 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1172 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1173 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1174 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1175 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1176 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1177 this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
1178 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1179 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1180 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1181 }
1182
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1183 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1184 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1185 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1186 *flags = *flags | kTexturable_Flag;
1187
1188 // Ganesh assumes that all renderable surfaces are also texturable
1189 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1190 *flags = *flags | kRenderable_Flag;
1191 }
1192 }
1193
1194 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1195 *flags = *flags | kBlitSrc_Flag;
1196 }
1197
1198 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1199 *flags = *flags | kBlitDst_Flag;
1200 }
1201 }
1202
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1203 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1204 VkPhysicalDevice physDev,
1205 const VkPhysicalDeviceProperties& physProps,
1206 VkFormat format) {
1207 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1208 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1209 VK_IMAGE_USAGE_SAMPLED_BIT |
1210 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1211 VkImageFormatProperties properties;
1212 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1213 format,
1214 VK_IMAGE_TYPE_2D,
1215 VK_IMAGE_TILING_OPTIMAL,
1216 usage,
1217 0, // createFlags
1218 &properties));
1219 VkSampleCountFlags flags = properties.sampleCounts;
1220 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1221 fColorSampleCounts.push_back(1);
1222 }
1223 if (kImagination_VkVendor == physProps.vendorID) {
1224 // MSAA does not work on imagination
1225 return;
1226 }
1227 if (kIntel_VkVendor == physProps.vendorID) {
1228 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1229 return;
1230 }
1231 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1232 fColorSampleCounts.push_back(2);
1233 }
1234 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1235 fColorSampleCounts.push_back(4);
1236 }
1237 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1238 fColorSampleCounts.push_back(8);
1239 }
1240 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1241 fColorSampleCounts.push_back(16);
1242 }
1243 // Standard sample locations are not defined for more than 16 samples, and we don't need more
1244 // than 16. Omit 32 and 64.
1245 }
1246
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1247 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1248 VkPhysicalDevice physDev,
1249 const VkPhysicalDeviceProperties& properties,
1250 VkFormat format) {
1251 VkFormatProperties props;
1252 memset(&props, 0, sizeof(VkFormatProperties));
1253 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1254 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1255 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1256 if (fOptimalFlags & kRenderable_Flag) {
1257 this->initSampleCounts(interface, physDev, properties, format);
1258 }
1259 }
1260
1261 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1262 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1263 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1264 static bool backend_format_is_external(const GrBackendFormat& format) {
1265 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1266 SkASSERT(ycbcrInfo);
1267
1268 // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1269 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1270 #ifdef SK_DEBUG
1271 VkFormat vkFormat;
1272 SkAssertResult(format.asVkFormat(&vkFormat));
1273 SkASSERT(vkFormat == VK_NULL_HANDLE);
1274 #endif
1275 return true;
1276 }
1277 return false;
1278 }
1279
isFormatSRGB(const GrBackendFormat & format) const1280 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1281 VkFormat vkFormat;
1282 if (!format.asVkFormat(&vkFormat)) {
1283 return false;
1284 }
1285 if (backend_format_is_external(format)) {
1286 return false;
1287 }
1288
1289 return format_is_srgb(vkFormat);
1290 }
1291
compressionType(const GrBackendFormat & format) const1292 SkImage::CompressionType GrVkCaps::compressionType(const GrBackendFormat& format) const {
1293 VkFormat vkFormat;
1294 if (!format.asVkFormat(&vkFormat)) {
1295 return SkImage::CompressionType::kNone;
1296 }
1297
1298 switch (vkFormat) {
1299 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: return SkImage::CompressionType::kETC2_RGB8_UNORM;
1300 case VK_FORMAT_BC1_RGB_UNORM_BLOCK: return SkImage::CompressionType::kBC1_RGB8_UNORM;
1301 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: return SkImage::CompressionType::kBC1_RGBA8_UNORM;
1302 default: return SkImage::CompressionType::kNone;
1303 }
1304
1305 SkUNREACHABLE;
1306 }
1307
isFormatTexturableAndUploadable(GrColorType ct,const GrBackendFormat & format) const1308 bool GrVkCaps::isFormatTexturableAndUploadable(GrColorType ct,
1309 const GrBackendFormat& format) const {
1310 VkFormat vkFormat;
1311 if (!format.asVkFormat(&vkFormat)) {
1312 return false;
1313 }
1314
1315 uint32_t ctFlags = this->getFormatInfo(vkFormat).colorTypeFlags(ct);
1316 return this->isVkFormatTexturable(vkFormat) &&
1317 SkToBool(ctFlags & ColorTypeInfo::kUploadData_Flag);
1318 }
1319
isFormatTexturable(const GrBackendFormat & format) const1320 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format) const {
1321 VkFormat vkFormat;
1322 if (!format.asVkFormat(&vkFormat)) {
1323 return false;
1324 }
1325 if (backend_format_is_external(format)) {
1326 // We can always texture from an external format (assuming we have the ycbcr conversion
1327 // info which we require to be passed in).
1328 return true;
1329 }
1330 return this->isVkFormatTexturable(vkFormat);
1331 }
1332
isVkFormatTexturable(VkFormat format) const1333 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1334 const FormatInfo& info = this->getFormatInfo(format);
1335 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1336 }
1337
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1338 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1339 int sampleCount) const {
1340 if (!this->isFormatRenderable(format, sampleCount)) {
1341 return false;
1342 }
1343 VkFormat vkFormat;
1344 if (!format.asVkFormat(&vkFormat)) {
1345 return false;
1346 }
1347 const auto& info = this->getFormatInfo(vkFormat);
1348 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1349 return false;
1350 }
1351 return true;
1352 }
1353
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1354 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1355 VkFormat vkFormat;
1356 if (!format.asVkFormat(&vkFormat)) {
1357 return false;
1358 }
1359 return this->isFormatRenderable(vkFormat, sampleCount);
1360 }
1361
isFormatRenderable(VkFormat format,int sampleCount) const1362 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1363 return sampleCount <= this->maxRenderTargetSampleCount(format);
1364 }
1365
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1366 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1367 const GrBackendFormat& format) const {
1368 VkFormat vkFormat;
1369 if (!format.asVkFormat(&vkFormat)) {
1370 return 0;
1371 }
1372
1373 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1374 }
1375
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1376 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1377 requestedCount = std::max(1, requestedCount);
1378
1379 const FormatInfo& info = this->getFormatInfo(format);
1380
1381 int count = info.fColorSampleCounts.count();
1382
1383 if (!count) {
1384 return 0;
1385 }
1386
1387 if (1 == requestedCount) {
1388 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1389 return 1;
1390 }
1391
1392 for (int i = 0; i < count; ++i) {
1393 if (info.fColorSampleCounts[i] >= requestedCount) {
1394 return info.fColorSampleCounts[i];
1395 }
1396 }
1397 return 0;
1398 }
1399
maxRenderTargetSampleCount(const GrBackendFormat & format) const1400 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1401 VkFormat vkFormat;
1402 if (!format.asVkFormat(&vkFormat)) {
1403 return 0;
1404 }
1405 return this->maxRenderTargetSampleCount(vkFormat);
1406 }
1407
maxRenderTargetSampleCount(VkFormat format) const1408 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1409 const FormatInfo& info = this->getFormatInfo(format);
1410
1411 const auto& table = info.fColorSampleCounts;
1412 if (!table.count()) {
1413 return 0;
1414 }
1415 return table[table.count() - 1];
1416 }
1417
bytesPerPixel(const GrBackendFormat & format) const1418 size_t GrVkCaps::bytesPerPixel(const GrBackendFormat& format) const {
1419 VkFormat vkFormat;
1420 if (!format.asVkFormat(&vkFormat)) {
1421 return 0;
1422 }
1423 return this->bytesPerPixel(vkFormat);
1424 }
1425
bytesPerPixel(VkFormat format) const1426 size_t GrVkCaps::bytesPerPixel(VkFormat format) const {
1427 return this->getFormatInfo(format).fBytesPerPixel;
1428 }
1429
align_to_4(size_t v)1430 static inline size_t align_to_4(size_t v) {
1431 switch (v & 0b11) {
1432 // v is already a multiple of 4.
1433 case 0: return v;
1434 // v is a multiple of 2 but not 4.
1435 case 2: return 2 * v;
1436 // v is not a multiple of 2.
1437 default: return 4 * v;
1438 }
1439 }
1440
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1441 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1442 const GrBackendFormat& surfaceFormat,
1443 GrColorType srcColorType) const {
1444 VkFormat vkFormat;
1445 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1446 return {GrColorType::kUnknown, 0};
1447 }
1448
1449 // We don't support the ability to upload to external formats or formats that require a ycbcr
1450 // sampler. In general these types of formats are only used for sampling in a shader.
1451 if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1452 return {GrColorType::kUnknown, 0};
1453 }
1454
1455 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1456 size_t offsetAlignment = align_to_4(this->bytesPerPixel(vkFormat));
1457
1458 const auto& info = this->getFormatInfo(vkFormat);
1459 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1460 const auto& ctInfo = info.fColorTypeInfos[i];
1461 if (ctInfo.fColorType == surfaceColorType) {
1462 return {surfaceColorType, offsetAlignment};
1463 }
1464 }
1465 return {GrColorType::kUnknown, 0};
1466 }
1467
surfaceSupportsReadPixels(const GrSurface * surface) const1468 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1469 const GrSurface* surface) const {
1470 if (surface->isProtected()) {
1471 return SurfaceReadPixelsSupport::kUnsupported;
1472 }
1473 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1474 // We can't directly read from a VkImage that has a ycbcr sampler.
1475 if (tex->ycbcrConversionInfo().isValid()) {
1476 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1477 }
1478 // We can't directly read from a compressed format
1479 if (GrVkFormatIsCompressed(tex->imageFormat())) {
1480 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1481 }
1482 }
1483 return SurfaceReadPixelsSupport::kSupported;
1484 }
1485
onSurfaceSupportsWritePixels(const GrSurface * surface) const1486 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1487 if (auto rt = surface->asRenderTarget()) {
1488 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1489 }
1490 // We can't write to a texture that has a ycbcr sampler.
1491 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1492 // We can't directly read from a VkImage that has a ycbcr sampler.
1493 if (tex->ycbcrConversionInfo().isValid()) {
1494 return false;
1495 }
1496 }
1497 return true;
1498 }
1499
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1500 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1501 const GrBackendFormat& format) const {
1502 VkFormat vkFormat;
1503 if (!format.asVkFormat(&vkFormat)) {
1504 return false;
1505 }
1506 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1507 SkASSERT(ycbcrInfo);
1508
1509 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1510 // Format may be undefined for external images, which are required to have YCbCr conversion.
1511 if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1512 return true;
1513 }
1514 return false;
1515 }
1516
1517 SkImage::CompressionType compression = GrVkFormatToCompressionType(vkFormat);
1518 if (compression != SkImage::CompressionType::kNone) {
1519 return ct == (SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1520 : GrColorType::kRGBA_8888);
1521 }
1522
1523 const auto& info = this->getFormatInfo(vkFormat);
1524 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1525 if (info.fColorTypeInfos[i].fColorType == ct) {
1526 return true;
1527 }
1528 }
1529 return false;
1530 }
1531
getYUVAColorTypeFromBackendFormat(const GrBackendFormat & format,bool isAlphaChannel) const1532 GrColorType GrVkCaps::getYUVAColorTypeFromBackendFormat(const GrBackendFormat& format,
1533 bool isAlphaChannel) const {
1534 VkFormat vkFormat;
1535 if (!format.asVkFormat(&vkFormat)) {
1536 return GrColorType::kUnknown;
1537 }
1538
1539 switch (vkFormat) {
1540 case VK_FORMAT_R8_UNORM: return isAlphaChannel ? GrColorType::kAlpha_8
1541 : GrColorType::kGray_8;
1542 case VK_FORMAT_R8G8B8A8_UNORM: return GrColorType::kRGBA_8888;
1543 case VK_FORMAT_R8G8B8_UNORM: return GrColorType::kRGB_888x;
1544 case VK_FORMAT_R8G8_UNORM: return GrColorType::kRG_88;
1545 case VK_FORMAT_B8G8R8A8_UNORM: return GrColorType::kBGRA_8888;
1546 case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return GrColorType::kRGBA_1010102;
1547 case VK_FORMAT_R16_UNORM: return GrColorType::kAlpha_16;
1548 case VK_FORMAT_R16_SFLOAT: return GrColorType::kAlpha_F16;
1549 case VK_FORMAT_R16G16_UNORM: return GrColorType::kRG_1616;
1550 case VK_FORMAT_R16G16B16A16_UNORM: return GrColorType::kRGBA_16161616;
1551 case VK_FORMAT_R16G16_SFLOAT: return GrColorType::kRG_F16;
1552 default: return GrColorType::kUnknown;
1553 }
1554
1555 SkUNREACHABLE;
1556 }
1557
onGetDefaultBackendFormat(GrColorType ct,GrRenderable renderable) const1558 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct,
1559 GrRenderable renderable) const {
1560 VkFormat format = this->getFormatFromColorType(ct);
1561 if (format == VK_FORMAT_UNDEFINED) {
1562 return GrBackendFormat();
1563 }
1564 return GrBackendFormat::MakeVk(format);
1565 }
1566
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1567 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1568 SkImage::CompressionType compressionType) const {
1569 switch (compressionType) {
1570 case SkImage::CompressionType::kNone:
1571 return {};
1572 case SkImage::CompressionType::kETC2_RGB8_UNORM:
1573 if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1574 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1575 }
1576 return {};
1577 case SkImage::CompressionType::kBC1_RGB8_UNORM:
1578 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1579 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1580 }
1581 return {};
1582 case SkImage::CompressionType::kBC1_RGBA8_UNORM:
1583 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1584 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1585 }
1586 return {};
1587 }
1588
1589 SkUNREACHABLE;
1590 }
1591
getReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1592 GrSwizzle GrVkCaps::getReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1593 VkFormat vkFormat;
1594 SkAssertResult(format.asVkFormat(&vkFormat));
1595 const auto& info = this->getFormatInfo(vkFormat);
1596 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1597 const auto& ctInfo = info.fColorTypeInfos[i];
1598 if (ctInfo.fColorType == colorType) {
1599 return ctInfo.fReadSwizzle;
1600 }
1601 }
1602 return GrSwizzle::RGBA();
1603 }
1604
getOutputSwizzle(const GrBackendFormat & format,GrColorType colorType) const1605 GrSwizzle GrVkCaps::getOutputSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1606 VkFormat vkFormat;
1607 SkAssertResult(format.asVkFormat(&vkFormat));
1608 const auto& info = this->getFormatInfo(vkFormat);
1609 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1610 const auto& ctInfo = info.fColorTypeInfos[i];
1611 if (ctInfo.fColorType == colorType) {
1612 return ctInfo.fOutputSwizzle;
1613 }
1614 }
1615 return GrSwizzle::RGBA();
1616 }
1617
computeFormatKey(const GrBackendFormat & format) const1618 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1619 VkFormat vkFormat;
1620 SkAssertResult(format.asVkFormat(&vkFormat));
1621
1622 #ifdef SK_DEBUG
1623 // We should never be trying to compute a key for an external format
1624 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1625 SkASSERT(ycbcrInfo);
1626 SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1627 #endif
1628
1629 // A VkFormat has a size of 64 bits.
1630 return (uint64_t)vkFormat;
1631 }
1632
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1633 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1634 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1635 GrColorType dstColorType) const {
1636 VkFormat vkFormat;
1637 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1638 return {GrColorType::kUnknown, 0};
1639 }
1640
1641 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1642 return {GrColorType::kUnknown, 0};
1643 }
1644
1645 SkImage::CompressionType compression = GrVkFormatToCompressionType(vkFormat);
1646 if (compression != SkImage::CompressionType::kNone) {
1647 return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1648 : GrColorType::kRGBA_8888, 0 };
1649 }
1650
1651 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1652 size_t offsetAlignment = align_to_4(this->bytesPerPixel(vkFormat));
1653
1654 const auto& info = this->getFormatInfo(vkFormat);
1655 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1656 const auto& ctInfo = info.fColorTypeInfos[i];
1657 if (ctInfo.fColorType == srcColorType) {
1658 return {srcColorType, offsetAlignment};
1659 }
1660 }
1661 return {GrColorType::kUnknown, 0};
1662 }
1663
getFragmentUniformBinding() const1664 int GrVkCaps::getFragmentUniformBinding() const {
1665 return GrVkUniformHandler::kUniformBinding;
1666 }
1667
getFragmentUniformSet() const1668 int GrVkCaps::getFragmentUniformSet() const {
1669 return GrVkUniformHandler::kUniformBufferDescSet;
1670 }
1671
addExtraSamplerKey(GrProcessorKeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const1672 void GrVkCaps::addExtraSamplerKey(GrProcessorKeyBuilder* b,
1673 GrSamplerState samplerState,
1674 const GrBackendFormat& format) const {
1675 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1676 if (!ycbcrInfo) {
1677 return;
1678 }
1679
1680 GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
1681
1682 size_t numInts = (sizeof(key) + 3) / 4;
1683
1684 uint32_t* tmp = b->add32n(numInts);
1685
1686 tmp[numInts - 1] = 0;
1687 memcpy(tmp, &key, sizeof(key));
1688 }
1689
1690 /**
1691 * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
1692 * the information needed to differentiate one pipeline from another.
1693 *
1694 * The GrProgramDesc contains all the information need to create the actual shaders for the
1695 * pipeline.
1696 *
1697 * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
1698 * pipline. This includes stencil settings, blending information, render pass format, draw face
1699 * information, and primitive type. Note that some state is set dynamically on the pipeline for
1700 * each draw and thus is not included in this descriptor. This includes the viewport, scissor,
1701 * and blend constant.
1702 */
makeDesc(const GrRenderTarget * rt,const GrProgramInfo & programInfo) const1703 GrProgramDesc GrVkCaps::makeDesc(const GrRenderTarget* rt, const GrProgramInfo& programInfo) const {
1704 GrProgramDesc desc;
1705 if (!GrProgramDesc::Build(&desc, rt, programInfo, *this)) {
1706 SkASSERT(!desc.isValid());
1707 return desc;
1708 }
1709
1710 GrProcessorKeyBuilder b(&desc.key());
1711
1712 // This will become part of the sheared off key used to persistently cache
1713 // the SPIRV code. It needs to be added right after the base key so that,
1714 // when the base-key is sheared off, the shearing code can include it in the
1715 // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
1716 // GrVkPipelineStateBuilder.cpp).
1717 b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
1718
1719 GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
1720 // TODO: support failure in getSimpleRenderPass
1721 SkASSERT(vkRT->getSimpleRenderPass());
1722 vkRT->getSimpleRenderPass()->genKey(&b);
1723
1724 GrStencilSettings stencil = programInfo.nonGLStencilSettings();
1725 stencil.genKey(&b);
1726
1727 programInfo.pipeline().genKey(&b, *this);
1728 b.add32(programInfo.numRasterSamples());
1729
1730 // Vulkan requires the full primitive type as part of its key
1731 b.add32(programInfo.primitiveTypeKey());
1732
1733 if (this->mixedSamplesSupport()) {
1734 // Add "0" to indicate that coverage modulation will not be enabled, or the (non-zero)
1735 // raster sample count if it will.
1736 b.add32(!programInfo.isMixedSampled() ? 0 : programInfo.numRasterSamples());
1737 }
1738
1739 return desc;
1740 }
1741
1742 #if GR_TEST_UTILS
getTestingCombinations() const1743 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1744 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1745 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1746 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1747 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1748 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
1749 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1750 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
1751 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1752 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
1753 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
1754 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
1755 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
1756 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1757 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
1758 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1759 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1760 { GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
1761 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
1762 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
1763 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
1764 // These two compressed formats both have an effective colorType of kRGB_888x
1765 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
1766 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
1767 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
1768 };
1769
1770 return combos;
1771 }
1772 #endif
1773