• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkBlitRow_opts_DEFINED
9 #define SkBlitRow_opts_DEFINED
10 
11 #include "include/private/SkColorData.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkMSAN.h"
14 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
15     #include <immintrin.h>
16 
SkPMSrcOver_AVX2(const __m256i & src,const __m256i & dst)17     static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
18         // Abstractly srcover is
19         //     b = s + d*(1-srcA)
20         //
21         // In terms of unorm8 bytes, that works out to
22         //     b = s + (d*(255-srcA) + 127) / 255
23         //
24         // But we approximate that to within a bit with
25         //     b = s + (d*(255-srcA) + d) / 256
26         // a.k.a
27         //     b = s + (d*(256-srcA)) >> 8
28 
29         // The bottleneck of this math is the multiply, and we want to do it as
30         // narrowly as possible, here getting inputs into 16-bit lanes and
31         // using 16-bit multiplies.  We can do twice as many multiplies at once
32         // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies
33         // are themselves a couple cycles quicker.  Win-win.
34 
35         // We'll get everything in 16-bit lanes for two multiplies, one
36         // handling dst red and blue, the other green and alpha.  (They're
37         // conveniently 16-bits apart, you see.) We don't need the individual
38         // src channels beyond alpha until the very end when we do the "s + "
39         // add, and we don't even need to unpack them; the adds cannot overflow.
40 
41         // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
42         const int _ = -1;   // fills a literal 0 byte.
43         __m256i srcA_x2 = _mm256_shuffle_epi8(src,
44                 _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_,
45                                  3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_));
46         __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256),
47                                             srcA_x2);
48 
49         // Scale red and blue, leaving results in the low byte of each 16-bit lane.
50         __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst);
51         rb = _mm256_mullo_epi16(rb, scale_x2);
52         rb = _mm256_srli_epi16 (rb, 8);
53 
54         // Scale green and alpha, leaving results in the high byte, masking off the low bits.
55         __m256i ga = _mm256_srli_epi16(dst, 8);
56         ga = _mm256_mullo_epi16(ga, scale_x2);
57         ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga);
58 
59         return _mm256_add_epi32(src, _mm256_or_si256(rb, ga));
60     }
61 
62 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
63     #include <immintrin.h>
64 
SkPMSrcOver_SSE2(const __m128i & src,const __m128i & dst)65     static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
66         auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) {
67             const __m128i mask = _mm_set1_epi32(0xFF00FF);
68             __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
69 
70             // uint32_t rb = ((c & mask) * scale) >> 8
71             __m128i rb = _mm_and_si128(mask, c);
72             rb = _mm_mullo_epi16(rb, s);
73             rb = _mm_srli_epi16(rb, 8);
74 
75             // uint32_t ag = ((c >> 8) & mask) * scale
76             __m128i ag = _mm_srli_epi16(c, 8);
77             ag = _mm_mullo_epi16(ag, s);
78 
79             // (rb & mask) | (ag & ~mask)
80             ag = _mm_andnot_si128(mask, ag);
81             return _mm_or_si128(rb, ag);
82         };
83         return _mm_add_epi32(src,
84                              SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
85                                                                  _mm_srli_epi32(src, 24))));
86     }
87 #endif
88 
89 namespace SK_OPTS_NS {
90 
91 // Blend constant color over count src pixels, writing into dst.
blit_row_color32(SkPMColor * dst,const SkPMColor * src,int count,SkPMColor color)92 inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
93     constexpr int N = 4;  // 8, 16 also reasonable choices
94     using U32 = skvx::Vec<  N, uint32_t>;
95     using U16 = skvx::Vec<4*N, uint16_t>;
96     using U8  = skvx::Vec<4*N, uint8_t>;
97 
98     auto kernel = [color](U32 src) {
99         unsigned invA = 255 - SkGetPackedA32(color);
100         invA += invA >> 7;
101         SkASSERT(0 < invA && invA < 256);  // We handle alpha == 0 or alpha == 255 specially.
102 
103         // (src * invA + (color << 8) + 128) >> 8
104         // Should all fit in 16 bits.
105         U8 s = skvx::bit_pun<U8>(src),
106            a = U8(invA);
107         U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
108             d = (mull(s,a) + (c << 8) + 128)>>8;
109         return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
110     };
111 
112     while (count >= N) {
113         kernel(U32::Load(src)).store(dst);
114         src   += N;
115         dst   += N;
116         count -= N;
117     }
118     while (count --> 0) {
119         *dst++ = kernel(U32{*src++})[0];
120     }
121 }
122 
123 #if defined(SK_ARM_HAS_NEON)
124 
125 // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
126 // y[i] are the i-th lanes of the corresponding NEON vectors.
SkMulDiv255Round_neon8(uint8x8_t x,uint8x8_t y)127 static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
128     uint16x8_t prod = vmull_u8(x, y);
129     return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
130 }
131 
132 // The implementations of SkPMSrcOver below perform alpha blending consistently with
133 // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
134 //
135 //   result_i = src_i + rint(g(src_alpha, dst_i))
136 //
137 // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
138 
139 // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
140 // of the same color component for 8 consecutive pixels. The result of this function follows the
141 // same convention.
SkPMSrcOver_neon8(uint8x8x4_t dst,uint8x8x4_t src)142 static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
143     uint8x8_t nalphas = vmvn_u8(src.val[3]);
144     uint8x8x4_t result;
145     result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas,  dst.val[0]));
146     result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas,  dst.val[1]));
147     result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas,  dst.val[2]));
148     result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas,  dst.val[3]));
149     return result;
150 }
151 
152 // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
153 // pixels. The return value follows the same convention.
SkPMSrcOver_neon2(uint8x8_t dst,uint8x8_t src)154 static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
155     const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
156     uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
157     return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
158 }
159 
160 #endif
161 
162 /*not static*/ inline
blit_row_s32a_opaque(SkPMColor * dst,const SkPMColor * src,int len,U8CPU alpha)163 void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
164     SkASSERT(alpha == 0xFF);
165     sk_msan_assert_initialized(src, src+len);
166 // Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver
167 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
168     while (len >= 32) {
169         // Load 32 source pixels.
170         auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0),
171              s1 = _mm256_loadu_si256((const __m256i*)(src) + 1),
172              s2 = _mm256_loadu_si256((const __m256i*)(src) + 2),
173              s3 = _mm256_loadu_si256((const __m256i*)(src) + 3);
174 
175         const auto alphaMask = _mm256_set1_epi32(0xFF000000);
176 
177         auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0)));
178         if (_mm256_testz_si256(ORed, alphaMask)) {
179             // All 32 source pixels are transparent.  Nothing to do.
180             src += 32;
181             dst += 32;
182             len -= 32;
183             continue;
184         }
185 
186         auto d0 = (__m256i*)(dst) + 0,
187              d1 = (__m256i*)(dst) + 1,
188              d2 = (__m256i*)(dst) + 2,
189              d3 = (__m256i*)(dst) + 3;
190 
191         auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0)));
192         if (_mm256_testc_si256(ANDed, alphaMask)) {
193             // All 32 source pixels are opaque.  SrcOver becomes Src.
194             _mm256_storeu_si256(d0, s0);
195             _mm256_storeu_si256(d1, s1);
196             _mm256_storeu_si256(d2, s2);
197             _mm256_storeu_si256(d3, s3);
198             src += 32;
199             dst += 32;
200             len -= 32;
201             continue;
202         }
203 
204         // TODO: This math is wrong.
205         // Do SrcOver.
206         _mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0)));
207         _mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1)));
208         _mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2)));
209         _mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3)));
210         src += 32;
211         dst += 32;
212         len -= 32;
213     }
214 
215 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
216     while (len >= 16) {
217         // Load 16 source pixels.
218         auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
219              s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
220              s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
221              s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
222 
223         const auto alphaMask = _mm_set1_epi32(0xFF000000);
224 
225         auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
226         if (_mm_testz_si128(ORed, alphaMask)) {
227             // All 16 source pixels are transparent.  Nothing to do.
228             src += 16;
229             dst += 16;
230             len -= 16;
231             continue;
232         }
233 
234         auto d0 = (__m128i*)(dst) + 0,
235              d1 = (__m128i*)(dst) + 1,
236              d2 = (__m128i*)(dst) + 2,
237              d3 = (__m128i*)(dst) + 3;
238 
239         auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
240         if (_mm_testc_si128(ANDed, alphaMask)) {
241             // All 16 source pixels are opaque.  SrcOver becomes Src.
242             _mm_storeu_si128(d0, s0);
243             _mm_storeu_si128(d1, s1);
244             _mm_storeu_si128(d2, s2);
245             _mm_storeu_si128(d3, s3);
246             src += 16;
247             dst += 16;
248             len -= 16;
249             continue;
250         }
251 
252         // TODO: This math is wrong.
253         // Do SrcOver.
254         _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
255         _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
256         _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
257         _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
258         src += 16;
259         dst += 16;
260         len -= 16;
261     }
262 
263 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
264     while (len >= 16) {
265         // Load 16 source pixels.
266         auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
267              s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
268              s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
269              s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
270 
271         const auto alphaMask = _mm_set1_epi32(0xFF000000);
272 
273         auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
274         if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
275                                                        _mm_setzero_si128()))) {
276             // All 16 source pixels are transparent.  Nothing to do.
277             src += 16;
278             dst += 16;
279             len -= 16;
280             continue;
281         }
282 
283         auto d0 = (__m128i*)(dst) + 0,
284              d1 = (__m128i*)(dst) + 1,
285              d2 = (__m128i*)(dst) + 2,
286              d3 = (__m128i*)(dst) + 3;
287 
288         auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
289         if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
290                                                        alphaMask))) {
291             // All 16 source pixels are opaque.  SrcOver becomes Src.
292             _mm_storeu_si128(d0, s0);
293             _mm_storeu_si128(d1, s1);
294             _mm_storeu_si128(d2, s2);
295             _mm_storeu_si128(d3, s3);
296             src += 16;
297             dst += 16;
298             len -= 16;
299             continue;
300         }
301 
302         // TODO: This math is wrong.
303         // Do SrcOver.
304         _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
305         _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
306         _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
307         _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
308 
309         src += 16;
310         dst += 16;
311         len -= 16;
312     }
313 
314 #elif defined(SK_ARM_HAS_NEON)
315     // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
316     // underperformed on some of the platforms under test for inputs with frequent transitions of
317     // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
318     // revisiting the situation in the future.
319     while (len >= 8) {
320         // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
321         // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
322         // pixels).
323         uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
324         src += 8;
325         len -= 8;
326 
327         // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
328         // are all transparent), the second when all alphas are fully set (they are all opaque).
329         uint8x8_t alphas = src_col.val[3];
330         uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
331         if (alphas_u64 == 0) {
332             // All pixels transparent.
333             dst += 8;
334             continue;
335         }
336 
337         if (~alphas_u64 == 0) {
338             // All pixels opaque.
339             vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
340             dst += 8;
341             continue;
342         }
343 
344         uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
345         vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
346         dst += 8;
347     }
348 
349     // Deal with leftover pixels.
350     for (; len >= 2; len -= 2, src += 2, dst += 2) {
351         uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
352         uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
353         vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
354     }
355 
356     if (len != 0) {
357         uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst), vcreate_u8((uint64_t)*src));
358         vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
359     }
360     return;
361 #endif
362 
363     while (len-- > 0) {
364         // This 0xFF000000 is not semantically necessary, but for compatibility
365         // with chromium:611002 we need to keep it until we figure out where
366         // the non-premultiplied src values (like 0x00FFFFFF) are coming from.
367         // TODO(mtklein): sort this out and assert *src is premul here.
368         if (*src & 0xFF000000) {
369             *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
370         }
371         src++;
372         dst++;
373     }
374 }
375 
376 }  // SK_OPTS_NS
377 
378 #endif//SkBlitRow_opts_DEFINED
379