• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 // The copyright below was added in 2009, but I see no record of moto contributions...?
9 
10 /* NEON optimized code (C) COPYRIGHT 2009 Motorola
11  *
12  * Use of this source code is governed by a BSD-style license that can be
13  * found in the LICENSE file.
14  */
15 
16 #include "SkBitmapProcState.h"
17 #include "SkShader.h"
18 #include "SkTo.h"
19 #include "SkUtils.h"
20 
21 /*
22  *  The decal_ functions require that
23  *  1. dx > 0
24  *  2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX
25  *
26  *  In addition, we use SkFractionalInt to keep more fractional precision than
27  *  just SkFixed, so we will abort the decal_ call if dx is very small, since
28  *  the decal_ function just operates on SkFixed. If that were changed, we could
29  *  skip the very_small test here.
30  */
can_truncate_to_fixed_for_decal(SkFixed fx,SkFixed dx,int count,unsigned max)31 static inline bool can_truncate_to_fixed_for_decal(SkFixed fx,
32                                                    SkFixed dx,
33                                                    int count, unsigned max) {
34     SkASSERT(count > 0);
35 
36     // if decal_ kept SkFractionalInt precision, this would just be dx <= 0
37     // I just made up the 1/256. Just don't want to perceive accumulated error
38     // if we truncate frDx and lose its low bits.
39     if (dx <= SK_Fixed1 / 256) {
40         return false;
41     }
42 
43     // Note: it seems the test should be (fx <= max && lastFx <= max); but
44     // historically it's been a strict inequality check, and changing produces
45     // unexpected diffs.  Further investigation is needed.
46 
47     // We cast to unsigned so we don't have to check for negative values, which
48     // will now appear as very large positive values, and thus fail our test!
49     if ((unsigned)SkFixedFloorToInt(fx) >= max) {
50         return false;
51     }
52 
53     // Promote to 64bit (48.16) to avoid overflow.
54     const uint64_t lastFx = fx + sk_64_mul(dx, count - 1);
55 
56     return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max;
57 }
58 
59 
60 // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ...
61 // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1.
62 
63 // The clamp routines may try to fall into one of these unclamped decal fast-paths.
64 // (Only clamp works in the right coordinate space to check for decal.)
decal_nofilter_scale(uint32_t dst[],SkFixed fx,SkFixed dx,int count)65 static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
66     for (; count >= 2; count -= 2) {
67         *dst++ = pack_two_shorts( (fx +  0) >> 16,
68                                   (fx + dx) >> 16);
69         fx += dx+dx;
70     }
71 
72     auto xx = (uint16_t*)dst;
73     while (count --> 0) {
74         *xx++ = SkToU16(fx >> 16);
75         fx += dx;
76     }
77 }
78 
79 // A generic implementation for unfiltered scale+translate, templated on tiling method.
80 template <unsigned (*tile)(SkFixed, int), bool tryDecal>
nofilter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)81 static void nofilter_scale(const SkBitmapProcState& s,
82                            uint32_t xy[], int count, int x, int y) {
83     SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
84                              SkMatrix::kScale_Mask)) == 0);
85 
86     // Write out our 32-bit y, and get our intial fx.
87     SkFractionalInt fx;
88     {
89         const SkBitmapProcStateAutoMapper mapper(s, x, y);
90         *xy++ = tile(mapper.fixedY(), s.fPixmap.height() - 1);
91         fx = mapper.fractionalIntX();
92     }
93 
94     const unsigned maxX = s.fPixmap.width() - 1;
95     if (0 == maxX) {
96         // If width == 1, all the x-values must refer to that pixel, and must be zero.
97         memset(xy, 0, count * sizeof(uint16_t));
98         return;
99     }
100 
101     const SkFractionalInt dx = s.fInvSxFractionalInt;
102 
103     if (tryDecal) {
104         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
105         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
106 
107         if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
108             decal_nofilter_scale(xy, fixedFx, fixedDx, count);
109             return;
110         }
111     }
112 
113     // Remember, each x-coordinate is 16-bit.
114     for (; count >= 2; count -= 2) {
115         *xy++ = pack_two_shorts(tile(SkFractionalIntToFixed(fx     ), maxX),
116                                 tile(SkFractionalIntToFixed(fx + dx), maxX));
117         fx += dx+dx;
118     }
119 
120     auto xx = (uint16_t*)xy;
121     while (count --> 0) {
122         *xx++ = tile(SkFractionalIntToFixed(fx), maxX);
123         fx += dx;
124     }
125 }
126 
127 // Extract the high four fractional bits from fx, the lerp parameter when filtering.
extract_low_bits_clamp(SkFixed fx,int)128 static unsigned extract_low_bits_clamp(SkFixed fx, int /*max*/) {
129     // If we're already scaled up to by max like clamp/decal,
130     // just grab the high four fractional bits.
131     return (fx >> 12) & 0xf;
132 }
extract_low_bits_repeat_mirror(SkFixed fx,int max)133 static unsigned extract_low_bits_repeat_mirror(SkFixed fx, int max) {
134     // In repeat or mirror fx is in [0,1], so scale up by max first.
135     // TODO: remove the +1 here and the -1 at the call sites...
136     return extract_low_bits_clamp((fx & 0xffff) * (max+1), max);
137 }
138 
139 template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal>
filter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)140 static void filter_scale(const SkBitmapProcState& s,
141                          uint32_t xy[], int count, int x, int y) {
142     SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
143                              SkMatrix::kScale_Mask)) == 0);
144     SkASSERT(s.fInvKy == 0);
145 
146     auto pack = [](SkFixed f, unsigned max, SkFixed one) {
147         unsigned i = tile(f, max);
148         i = (i << 4) | extract_low_bits(f, max);
149         return (i << 14) | (tile((f + one), max));
150     };
151 
152     const unsigned maxX = s.fPixmap.width() - 1;
153     const SkFractionalInt dx = s.fInvSxFractionalInt;
154     SkFractionalInt fx;
155     {
156         const SkBitmapProcStateAutoMapper mapper(s, x, y);
157         const SkFixed fy = mapper.fixedY();
158         const unsigned maxY = s.fPixmap.height() - 1;
159         // compute our two Y values up front
160         *xy++ = pack(fy, maxY, s.fFilterOneY);
161         // now initialize fx
162         fx = mapper.fractionalIntX();
163     }
164 
165     // For historical reasons we check both ends are < maxX rather than <= maxX.
166     // TODO: try changing this?  See also can_truncate_to_fixed_for_decal().
167     if (tryDecal &&
168         (unsigned)SkFractionalIntToInt(fx               ) < maxX &&
169         (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) {
170         while (count --> 0) {
171             SkFixed fixedFx = SkFractionalIntToFixed(fx);
172             SkASSERT((fixedFx >> (16 + 14)) == 0);
173             *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1);
174             fx += dx;
175         }
176         return;
177     }
178 
179     while (count --> 0) {
180         SkFixed fixedFx = SkFractionalIntToFixed(fx);
181         *xy++ = pack(fixedFx, maxX, s.fFilterOneX);
182         fx += dx;
183     }
184 }
185 
186 // Helper to ensure that when we shift down, we do it w/o sign-extension
187 // so the caller doesn't have to manually mask off the top 16 bits.
SK_USHIFT16(unsigned x)188 static inline unsigned SK_USHIFT16(unsigned x) {
189     return x >> 16;
190 }
191 
clamp(SkFixed fx,int max)192 static unsigned clamp(SkFixed fx, int max) {
193     return SkClampMax(fx >> 16, max);
194 }
repeat(SkFixed fx,int max)195 static unsigned repeat(SkFixed fx, int max) {
196     SkASSERT(max < 65535);
197     return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1));
198 }
mirror(SkFixed fx,int max)199 static unsigned mirror(SkFixed fx, int max) {
200     SkASSERT(max < 65535);
201     // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval
202     SkFixed s = SkLeftShift(fx, 15) >> 31;
203 
204     // This should be exactly the same as repeat(fx ^ s, max) from here on.
205     return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) );
206 }
207 
208 // Mirror/Mirror's always just portable code.
209 static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = {
210     nofilter_scale<mirror, false>,
211     filter_scale<mirror, extract_low_bits_repeat_mirror, false>,
212 };
213 
214 // Clamp/Clamp and Repeat/Repeat have NEON or portable implementations.
215 #if defined(SK_ARM_HAS_NEON)
216     #include <arm_neon.h>
217 
218     // TODO: this is a fine drop-in for decal_nofilter_scale() generally.
decal_nofilter_scale_neon(uint32_t dst[],SkFixed fx,SkFixed dx,int count)219     static void decal_nofilter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
220         if (count >= 8) {
221             // SkFixed is 16.16 fixed point
222             SkFixed dx8 = dx * 8;
223             int32x4_t vdx8 = vdupq_n_s32(dx8);
224 
225             // setup lbase and hbase
226             int32x4_t lbase, hbase;
227             lbase = vdupq_n_s32(fx);
228             lbase = vsetq_lane_s32(fx + dx, lbase, 1);
229             lbase = vsetq_lane_s32(fx + dx + dx, lbase, 2);
230             lbase = vsetq_lane_s32(fx + dx + dx + dx, lbase, 3);
231             hbase = lbase + vdupq_n_s32(4 * dx);
232 
233             do {
234                 // store the upper 16 bits
235                 vst1q_u32(dst, vreinterpretq_u32_s16(
236                     vuzpq_s16(vreinterpretq_s16_s32(lbase), vreinterpretq_s16_s32(hbase)).val[1]
237                 ));
238 
239                 // on to the next group of 8
240                 lbase += vdx8;
241                 hbase += vdx8;
242                 dst += 4; // we did 8 elements but the result is twice smaller
243                 count -= 8;
244                 fx += dx8;
245             } while (count >= 8);
246         }
247 
248         uint16_t* xx = (uint16_t*)dst;
249         for (int i = count; i > 0; --i) {
250             *xx++ = SkToU16(fx >> 16); fx += dx;
251         }
252     }
253 
decal_filter_scale_neon(uint32_t dst[],SkFixed fx,SkFixed dx,int count)254     static void decal_filter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
255         if (count >= 8) {
256             SkFixed dx8 = dx * 8;
257             int32x4_t vdx8 = vdupq_n_s32(dx8);
258 
259             int32x4_t wide_fx, wide_fx2;
260             wide_fx = vdupq_n_s32(fx);
261             wide_fx = vsetq_lane_s32(fx + dx, wide_fx, 1);
262             wide_fx = vsetq_lane_s32(fx + dx + dx, wide_fx, 2);
263             wide_fx = vsetq_lane_s32(fx + dx + dx + dx, wide_fx, 3);
264 
265             wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(4 * dx));
266 
267             while (count >= 8) {
268                 int32x4_t wide_out;
269                 int32x4_t wide_out2;
270 
271                 wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14);
272                 wide_out = wide_out | (vshrq_n_s32(wide_fx,16) + vdupq_n_s32(1));
273 
274                 wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14);
275                 wide_out2 = wide_out2 | (vshrq_n_s32(wide_fx2,16) + vdupq_n_s32(1));
276 
277                 vst1q_u32(dst, vreinterpretq_u32_s32(wide_out));
278                 vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2));
279 
280                 dst += 8;
281                 fx += dx8;
282                 wide_fx += vdx8;
283                 wide_fx2 += vdx8;
284                 count -= 8;
285             }
286         }
287 
288         if (count & 1)
289         {
290             SkASSERT((fx >> (16 + 14)) == 0);
291             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
292             fx += dx;
293         }
294         while ((count -= 2) >= 0)
295         {
296             SkASSERT((fx >> (16 + 14)) == 0);
297             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
298             fx += dx;
299 
300             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
301             fx += dx;
302         }
303     }
304 
clamp8(int32x4_t low,int32x4_t high,unsigned max)305     static inline int16x8_t clamp8(int32x4_t low, int32x4_t high, unsigned max) {
306         int16x8_t res;
307 
308         // get the hi 16s of all those 32s
309         res = vuzpq_s16(vreinterpretq_s16_s32(low), vreinterpretq_s16_s32(high)).val[1];
310 
311         // clamp
312         res = vmaxq_s16(res, vdupq_n_s16(0));
313         res = vminq_s16(res, vdupq_n_s16(max));
314 
315         return res;
316     }
317 
clamp4(int32x4_t f,unsigned max)318     static inline int32x4_t clamp4(int32x4_t f, unsigned max) {
319         int32x4_t res;
320 
321         // get the hi 16s of all those 32s
322         res = vshrq_n_s32(f, 16);
323 
324         // clamp
325         res = vmaxq_s32(res, vdupq_n_s32(0));
326         res = vminq_s32(res, vdupq_n_s32(max));
327 
328         return res;
329     }
330 
extract_low_bits_clamp4(int32x4_t fx,unsigned)331     static inline int32x4_t extract_low_bits_clamp4(int32x4_t fx, unsigned) {
332         int32x4_t ret;
333 
334         ret = vshrq_n_s32(fx, 12);
335 
336         /* We don't need the mask below because the caller will
337          * overwrite the non-masked bits
338          */
339         //ret = vandq_s32(ret, vdupq_n_s32(0xF));
340 
341         return ret;
342     }
343 
repeat8(int32x4_t low,int32x4_t high,unsigned max)344     static inline int16x8_t repeat8(int32x4_t low, int32x4_t high, unsigned max) {
345         uint16x8_t res;
346         uint32x4_t tmpl, tmph;
347 
348         // get the lower 16 bits
349         res = vuzpq_u16(vreinterpretq_u16_s32(low), vreinterpretq_u16_s32(high)).val[0];
350 
351         // bare multiplication, not SkFixedMul
352         tmpl = vmull_u16(vget_low_u16(res), vdup_n_u16(max+1));
353         tmph = vmull_u16(vget_high_u16(res), vdup_n_u16(max+1));
354 
355         // extraction of the 16 upper bits
356         res = vuzpq_u16(vreinterpretq_u16_u32(tmpl), vreinterpretq_u16_u32(tmph)).val[1];
357 
358         return vreinterpretq_s16_u16(res);
359     }
360 
repeat4(int32x4_t f,unsigned max)361     static inline int32x4_t repeat4(int32x4_t f, unsigned max) {
362         uint16x4_t res;
363         uint32x4_t tmp;
364 
365         // get the lower 16 bits
366         res = vmovn_u32(vreinterpretq_u32_s32(f));
367 
368         // bare multiplication, not SkFixedMul
369         tmp = vmull_u16(res, vdup_n_u16(max+1));
370 
371         // extraction of the 16 upper bits
372         tmp = vshrq_n_u32(tmp, 16);
373 
374         return vreinterpretq_s32_u32(tmp);
375     }
376 
extract_low_bits_repeat_mirror4(int32x4_t fx,unsigned max)377     static inline int32x4_t extract_low_bits_repeat_mirror4(int32x4_t fx, unsigned max) {
378         uint16x4_t res;
379         uint32x4_t tmp;
380         int32x4_t ret;
381 
382         // get the lower 16 bits
383         res = vmovn_u32(vreinterpretq_u32_s32(fx));
384 
385         // bare multiplication, not SkFixedMul
386         tmp = vmull_u16(res, vdup_n_u16(max + 1));
387 
388         // shift and mask
389         ret = vshrq_n_s32(vreinterpretq_s32_u32(tmp), 12);
390 
391         /* We don't need the mask below because the caller will
392          * overwrite the non-masked bits
393          */
394         //ret = vandq_s32(ret, vdupq_n_s32(0xF));
395 
396         return ret;
397     }
398 
399     template <unsigned   (*tile)(SkFixed, int),
400               int16x8_t (*tile8)(int32x4_t, int32x4_t, unsigned),
401              bool tryDecal>
nofilter_scale_neon(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)402     static void nofilter_scale_neon(const SkBitmapProcState& s,
403                                     uint32_t xy[], int count, int x, int y) {
404         SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
405                                  SkMatrix::kScale_Mask)) == 0);
406 
407         // we store y, x, x, x, x, x
408         const unsigned maxX = s.fPixmap.width() - 1;
409         SkFractionalInt fx;
410         {
411             const SkBitmapProcStateAutoMapper mapper(s, x, y);
412             const unsigned maxY = s.fPixmap.height() - 1;
413             *xy++ = tile(mapper.fixedY(), maxY);
414             fx = mapper.fractionalIntX();
415         }
416 
417         if (0 == maxX) {
418             // all of the following X values must be 0
419             memset(xy, 0, count * sizeof(uint16_t));
420             return;
421         }
422 
423         const SkFractionalInt dx = s.fInvSxFractionalInt;
424 
425         // test if we don't need to apply the tile proc
426         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
427         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
428         if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
429             decal_nofilter_scale_neon(xy, fixedFx, fixedDx, count);
430             return;
431         }
432 
433         if (count >= 8) {
434             SkFractionalInt dx2 = dx+dx;
435             SkFractionalInt dx4 = dx2+dx2;
436             SkFractionalInt dx8 = dx4+dx4;
437 
438             // now build fx/fx+dx/fx+2dx/fx+3dx
439             SkFractionalInt fx1, fx2, fx3;
440             int32x4_t lbase, hbase;
441             int16_t *dst16 = (int16_t *)xy;
442 
443             fx1 = fx+dx;
444             fx2 = fx1+dx;
445             fx3 = fx2+dx;
446 
447             lbase = vdupq_n_s32(SkFractionalIntToFixed(fx));
448             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx1), lbase, 1);
449             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx2), lbase, 2);
450             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx3), lbase, 3);
451             hbase = vaddq_s32(lbase, vdupq_n_s32(SkFractionalIntToFixed(dx4)));
452 
453             // store & bump
454             while (count >= 8) {
455 
456                 int16x8_t fx8;
457 
458                 fx8 = tile8(lbase, hbase, maxX);
459 
460                 vst1q_s16(dst16, fx8);
461 
462                 // but preserving base & on to the next
463                 lbase = vaddq_s32 (lbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
464                 hbase = vaddq_s32 (hbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
465                 dst16 += 8;
466                 count -= 8;
467                 fx += dx8;
468             };
469             xy = (uint32_t *) dst16;
470         }
471 
472         uint16_t* xx = (uint16_t*)xy;
473         for (int i = count; i > 0; --i) {
474             *xx++ = tile(SkFractionalIntToFixed(fx), maxX);
475             fx += dx;
476         }
477     }
478 
479     template <unsigned              (*tile )(SkFixed, int),
480               int32x4_t             (*tile4)(int32x4_t, unsigned),
481               unsigned  (*extract_low_bits )(SkFixed, int),
482               int32x4_t (*extract_low_bits4)(int32x4_t, unsigned),
483               bool tryDecal>
filter_scale_neon(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)484     static void filter_scale_neon(const SkBitmapProcState& s,
485                                   uint32_t xy[], int count, int x, int y) {
486         SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
487                                  SkMatrix::kScale_Mask)) == 0);
488         SkASSERT(s.fInvKy == 0);
489 
490         auto pack = [&](SkFixed f, unsigned max, SkFixed one) {
491             unsigned i = tile(f, max);
492             i = (i << 4) | extract_low_bits(f, max);
493             return (i << 14) | (tile((f + one), max));
494         };
495 
496         auto pack4 = [&](int32x4_t f, unsigned max, SkFixed one) {
497             int32x4_t ret, res;
498 
499             res = tile4(f, max);
500 
501             ret = extract_low_bits4(f, max);
502             ret = vsliq_n_s32(ret, res, 4);
503 
504             res = tile4(f + vdupq_n_s32(one), max);
505             ret = vorrq_s32(vshlq_n_s32(ret, 14), res);
506 
507             return ret;
508         };
509 
510         const unsigned maxX = s.fPixmap.width() - 1;
511         const SkFixed one = s.fFilterOneX;
512         const SkFractionalInt dx = s.fInvSxFractionalInt;
513         SkFractionalInt fx;
514 
515         {
516             const SkBitmapProcStateAutoMapper mapper(s, x, y);
517             const SkFixed fy = mapper.fixedY();
518             const unsigned maxY = s.fPixmap.height() - 1;
519             // compute our two Y values up front
520             *xy++ = pack(fy, maxY, s.fFilterOneY);
521             // now initialize fx
522             fx = mapper.fractionalIntX();
523         }
524 
525         // test if we don't need to apply the tile proc
526         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
527         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
528         if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
529             decal_filter_scale_neon(xy, fixedFx, fixedDx, count);
530             return;
531         }
532 
533         if (count >= 4) {
534             int32x4_t wide_fx;
535 
536             wide_fx = vdupq_n_s32(SkFractionalIntToFixed(fx));
537             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx), wide_fx, 1);
538             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx), wide_fx, 2);
539             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx+dx), wide_fx, 3);
540 
541             while (count >= 4) {
542                 int32x4_t res;
543 
544                 res = pack4(wide_fx, maxX, one);
545 
546                 vst1q_u32(xy, vreinterpretq_u32_s32(res));
547 
548                 wide_fx += vdupq_n_s32(SkFractionalIntToFixed(dx+dx+dx+dx));
549                 fx += dx+dx+dx+dx;
550                 xy += 4;
551                 count -= 4;
552             }
553         }
554 
555         while (--count >= 0) {
556             *xy++ = pack(SkFractionalIntToFixed(fx), maxX, one);
557             fx += dx;
558         }
559     }
560 
561     static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
562         nofilter_scale_neon<clamp, clamp8, true>,
563         filter_scale_neon<clamp,
564                           clamp4,
565                           extract_low_bits_clamp,
566                           extract_low_bits_clamp4,
567                           true>,
568     };
569 
570     static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
571         nofilter_scale_neon<repeat, repeat8, false>,
572         filter_scale_neon<repeat,
573                           repeat4,
574                           extract_low_bits_repeat_mirror,
575                           extract_low_bits_repeat_mirror4,
576                           false>,
577     };
578 
579 #else
580     static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
581         nofilter_scale<clamp, true>,
582         filter_scale<clamp, extract_low_bits_clamp, true>,
583     };
584 
585     static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
586         nofilter_scale<repeat, false>,
587         filter_scale<repeat, extract_low_bits_repeat_mirror, false>,
588     };
589 #endif
590 
591 
592 ///////////////////////////////////////////////////////////////////////////////
593 // This next chunk has some specializations for unfiltered translate-only matrices.
594 
int_clamp(int x,int n)595 static inline U16CPU int_clamp(int x, int n) {
596     if (x <  0) { x = 0; }
597     if (x >= n) { x = n - 1; }
598     return x;
599 }
600 
601 /*  returns 0...(n-1) given any x (positive or negative).
602 
603     As an example, if n (which is always positive) is 5...
604 
605           x: -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8
606     returns:  2  3  4  0  1  2  3  4  0  1  2  3  4  0  1  2  3
607  */
sk_int_mod(int x,int n)608 static inline int sk_int_mod(int x, int n) {
609     SkASSERT(n > 0);
610     if ((unsigned)x >= (unsigned)n) {
611         if (x < 0) {
612             x = n + ~(~x % n);
613         } else {
614             x = x % n;
615         }
616     }
617     return x;
618 }
619 
int_repeat(int x,int n)620 static inline U16CPU int_repeat(int x, int n) {
621     return sk_int_mod(x, n);
622 }
623 
int_mirror(int x,int n)624 static inline U16CPU int_mirror(int x, int n) {
625     x = sk_int_mod(x, 2 * n);
626     if (x >= n) {
627         x = n + ~(x - n);
628     }
629     return x;
630 }
631 
fill_sequential(uint16_t xptr[],int pos,int count)632 static void fill_sequential(uint16_t xptr[], int pos, int count) {
633     while (count --> 0) {
634         *xptr++ = pos++;
635     }
636 }
637 
fill_backwards(uint16_t xptr[],int pos,int count)638 static void fill_backwards(uint16_t xptr[], int pos, int count) {
639     while (count --> 0) {
640         SkASSERT(pos >= 0);
641         *xptr++ = pos--;
642     }
643 }
644 
clampx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)645 static void clampx_nofilter_trans(const SkBitmapProcState& s,
646                                   uint32_t xy[], int count, int x, int y) {
647     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
648 
649     const SkBitmapProcStateAutoMapper mapper(s, x, y);
650     *xy++ = int_clamp(mapper.intY(), s.fPixmap.height());
651     int xpos = mapper.intX();
652 
653     const int width = s.fPixmap.width();
654     if (1 == width) {
655         // all of the following X values must be 0
656         memset(xy, 0, count * sizeof(uint16_t));
657         return;
658     }
659 
660     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
661     int n;
662 
663     // fill before 0 as needed
664     if (xpos < 0) {
665         n = -xpos;
666         if (n > count) {
667             n = count;
668         }
669         memset(xptr, 0, n * sizeof(uint16_t));
670         count -= n;
671         if (0 == count) {
672             return;
673         }
674         xptr += n;
675         xpos = 0;
676     }
677 
678     // fill in 0..width-1 if needed
679     if (xpos < width) {
680         n = width - xpos;
681         if (n > count) {
682             n = count;
683         }
684         fill_sequential(xptr, xpos, n);
685         count -= n;
686         if (0 == count) {
687             return;
688         }
689         xptr += n;
690     }
691 
692     // fill the remaining with the max value
693     sk_memset16(xptr, width - 1, count);
694 }
695 
repeatx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)696 static void repeatx_nofilter_trans(const SkBitmapProcState& s,
697                                    uint32_t xy[], int count, int x, int y) {
698     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
699 
700     const SkBitmapProcStateAutoMapper mapper(s, x, y);
701     *xy++ = int_repeat(mapper.intY(), s.fPixmap.height());
702     int xpos = mapper.intX();
703 
704     const int width = s.fPixmap.width();
705     if (1 == width) {
706         // all of the following X values must be 0
707         memset(xy, 0, count * sizeof(uint16_t));
708         return;
709     }
710 
711     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
712     int start = sk_int_mod(xpos, width);
713     int n = width - start;
714     if (n > count) {
715         n = count;
716     }
717     fill_sequential(xptr, start, n);
718     xptr += n;
719     count -= n;
720 
721     while (count >= width) {
722         fill_sequential(xptr, 0, width);
723         xptr += width;
724         count -= width;
725     }
726 
727     if (count > 0) {
728         fill_sequential(xptr, 0, count);
729     }
730 }
731 
mirrorx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)732 static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
733                                    uint32_t xy[], int count, int x, int y) {
734     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
735 
736     const SkBitmapProcStateAutoMapper mapper(s, x, y);
737     *xy++ = int_mirror(mapper.intY(), s.fPixmap.height());
738     int xpos = mapper.intX();
739 
740     const int width = s.fPixmap.width();
741     if (1 == width) {
742         // all of the following X values must be 0
743         memset(xy, 0, count * sizeof(uint16_t));
744         return;
745     }
746 
747     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
748     // need to know our start, and our initial phase (forward or backward)
749     bool forward;
750     int n;
751     int start = sk_int_mod(xpos, 2 * width);
752     if (start >= width) {
753         start = width + ~(start - width);
754         forward = false;
755         n = start + 1;  // [start .. 0]
756     } else {
757         forward = true;
758         n = width - start;  // [start .. width)
759     }
760     if (n > count) {
761         n = count;
762     }
763     if (forward) {
764         fill_sequential(xptr, start, n);
765     } else {
766         fill_backwards(xptr, start, n);
767     }
768     forward = !forward;
769     xptr += n;
770     count -= n;
771 
772     while (count >= width) {
773         if (forward) {
774             fill_sequential(xptr, 0, width);
775         } else {
776             fill_backwards(xptr, width - 1, width);
777         }
778         forward = !forward;
779         xptr += width;
780         count -= width;
781     }
782 
783     if (count > 0) {
784         if (forward) {
785             fill_sequential(xptr, 0, count);
786         } else {
787             fill_backwards(xptr, width - 1, count);
788         }
789     }
790 }
791 
792 ///////////////////////////////////////////////////////////////////////////////
793 // The main entry point to the file, choosing between everything above.
794 
chooseMatrixProc(bool translate_only_matrix)795 SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) {
796     SkASSERT(fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
797     SkASSERT(fTileModeX == fTileModeY);
798     SkASSERT(fTileModeX != SkShader::kDecal_TileMode);
799 
800     // Check for our special case translate methods when there is no scale/affine/perspective.
801     if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) {
802         switch (fTileModeX) {
803             default: SkASSERT(false);
804             case SkShader::kClamp_TileMode:  return  clampx_nofilter_trans;
805             case SkShader::kRepeat_TileMode: return repeatx_nofilter_trans;
806             case SkShader::kMirror_TileMode: return mirrorx_nofilter_trans;
807         }
808     }
809 
810     // The arrays are all [ nofilter, filter ].
811     int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0;
812 
813     if (fTileModeX == SkShader::kClamp_TileMode) {
814         // clamp gets special version of filterOne, working in non-normalized space (allowing decal)
815         fFilterOneX = SK_Fixed1;
816         fFilterOneY = SK_Fixed1;
817         return ClampX_ClampY_Procs[index];
818     }
819 
820     // all remaining procs use this form for filterOne, putting them into normalized space.
821     fFilterOneX = SK_Fixed1 / fPixmap.width();
822     fFilterOneY = SK_Fixed1 / fPixmap.height();
823 
824     if (fTileModeX == SkShader::kRepeat_TileMode) {
825         return RepeatX_RepeatY_Procs[index];
826     }
827 
828     return MirrorX_MirrorY_Procs[index];
829 }
830