• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
16 #define SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
17 
18 #include <memory>
19 #include <unordered_map>
20 #include <unordered_set>
21 #include <vector>
22 
23 #include "source/util/make_unique.h"
24 
25 namespace spvtools {
26 namespace fuzz {
27 
28 // A class for representing an equivalence relation on objects of type |T|,
29 // which should be a value type.  The type |T| is required to have a copy
30 // constructor, and |PointerHashT| and |PointerEqualsT| must be functors
31 // providing hashing and equality testing functionality for pointers to objects
32 // of type |T|.
33 //
34 // A disjoint-set (a.k.a. union-find or merge-find) data structure is used to
35 // represent the equivalence relation.  Path compression is used.  Union by
36 // rank/size is not used.
37 //
38 // Each disjoint set is represented as a tree, rooted at the representative
39 // of the set.
40 //
41 // Getting the representative of a value simply requires chasing parent pointers
42 // from the value until you reach the root.
43 //
44 // Checking equivalence of two elements requires checking that the
45 // representatives are equal.
46 //
47 // Traversing the tree rooted at a value's representative visits the value's
48 // equivalence class.
49 //
50 // |PointerHashT| and |PointerEqualsT| are used to define *equality* between
51 // values, and otherwise are *not* used to define the equivalence relation
52 // (except that equal values are equivalent).  The equivalence relation is
53 // constructed by repeatedly adding pairs of (typically non-equal) values that
54 // are deemed to be equivalent.
55 //
56 // For example in an equivalence relation on integers, 1 and 5 might be added
57 // as equivalent, so that IsEquivalent(1, 5) holds, because they represent
58 // IDs in a SPIR-V binary that are known to contain the same value at run time,
59 // but clearly 1 != 5.  Since 1 and 1 are equal, IsEquivalent(1, 1) will also
60 // hold.
61 //
62 // Each unique (up to equality) value added to the relation is copied into
63 // |owned_values_|, so there is one canonical memory address per unique value.
64 // Uniqueness is ensured by storing (and checking) a set of pointers to these
65 // values in |value_set_|, which uses |PointerHashT| and |PointerEqualsT|.
66 //
67 // |parent_| and |children_| encode the equivalence relation, i.e., the trees.
68 template <typename T, typename PointerHashT, typename PointerEqualsT>
69 class EquivalenceRelation {
70  public:
71   // Merges the equivalence classes associated with |value1| and |value2|.
72   // If any of these values was not previously in the equivalence relation, it
73   // is added to the pool of values known to be in the relation.
MakeEquivalent(const T & value1,const T & value2)74   void MakeEquivalent(const T& value1, const T& value2) {
75     // Register each value if necessary.
76     for (auto value : {value1, value2}) {
77       if (!Exists(value)) {
78         // Register the value in the equivalence relation.  This relies on
79         // T having a copy constructor.
80         auto unique_pointer_to_value = MakeUnique<T>(value);
81         auto pointer_to_value = unique_pointer_to_value.get();
82         owned_values_.push_back(std::move(unique_pointer_to_value));
83         value_set_.insert(pointer_to_value);
84 
85         // Initially say that the value is its own parent and that it has no
86         // children.
87         assert(pointer_to_value && "Representatives should never be null.");
88         parent_[pointer_to_value] = pointer_to_value;
89         children_[pointer_to_value] = std::vector<const T*>();
90       }
91     }
92 
93     // Look up canonical pointers to each of the values in the value pool.
94     const T* value1_ptr = *value_set_.find(&value1);
95     const T* value2_ptr = *value_set_.find(&value2);
96 
97     // If the values turn out to be identical, they are already in the same
98     // equivalence class so there is nothing to do.
99     if (value1_ptr == value2_ptr) {
100       return;
101     }
102 
103     // Find the representative for each value's equivalence class, and if they
104     // are not already in the same class, make one the parent of the other.
105     const T* representative1 = Find(value1_ptr);
106     const T* representative2 = Find(value2_ptr);
107     assert(representative1 && "Representatives should never be null.");
108     assert(representative2 && "Representatives should never be null.");
109     if (representative1 != representative2) {
110       parent_[representative1] = representative2;
111       children_[representative2].push_back(representative1);
112     }
113   }
114 
115   // Returns exactly one representative per equivalence class.
GetEquivalenceClassRepresentatives()116   std::vector<const T*> GetEquivalenceClassRepresentatives() const {
117     std::vector<const T*> result;
118     for (auto& value : owned_values_) {
119       if (parent_[value.get()] == value.get()) {
120         result.push_back(value.get());
121       }
122     }
123     return result;
124   }
125 
126   // Returns pointers to all values in the equivalence class of |value|, which
127   // must already be part of the equivalence relation.
GetEquivalenceClass(const T & value)128   std::vector<const T*> GetEquivalenceClass(const T& value) const {
129     assert(Exists(value));
130 
131     std::vector<const T*> result;
132 
133     // Traverse the tree of values rooted at the representative of the
134     // equivalence class to which |value| belongs, and collect up all the values
135     // that are encountered.  This constitutes the whole equivalence class.
136     std::vector<const T*> stack;
137     stack.push_back(Find(*value_set_.find(&value)));
138     while (!stack.empty()) {
139       const T* item = stack.back();
140       result.push_back(item);
141       stack.pop_back();
142       for (auto child : children_[item]) {
143         stack.push_back(child);
144       }
145     }
146     return result;
147   }
148 
149   // Returns true if and only if |value1| and |value2| are in the same
150   // equivalence class.  Both values must already be known to the equivalence
151   // relation.
IsEquivalent(const T & value1,const T & value2)152   bool IsEquivalent(const T& value1, const T& value2) const {
153     return Find(&value1) == Find(&value2);
154   }
155 
156   // Returns all values known to be part of the equivalence relation.
GetAllKnownValues()157   std::vector<const T*> GetAllKnownValues() const {
158     std::vector<const T*> result;
159     for (auto& value : owned_values_) {
160       result.push_back(value.get());
161     }
162     return result;
163   }
164 
165   // Returns true if and only if |value| is known to be part of the equivalence
166   // relation.
Exists(const T & value)167   bool Exists(const T& value) const {
168     return value_set_.find(&value) != value_set_.end();
169   }
170 
171  private:
172   // Returns the representative of the equivalence class of |value|, which must
173   // already be known to the equivalence relation.  This is the 'Find' operation
174   // in a classic union-find data structure.
Find(const T * value)175   const T* Find(const T* value) const {
176     assert(Exists(*value));
177 
178     // Get the canonical pointer to the value from the value pool.
179     const T* known_value = *value_set_.find(value);
180     assert(parent_[known_value] && "Every known value should have a parent.");
181 
182     // Compute the result by chasing parents until we find a value that is its
183     // own parent.
184     const T* result = known_value;
185     while (parent_[result] != result) {
186       result = parent_[result];
187     }
188     assert(result && "Representatives should never be null.");
189 
190     // At this point, |result| is the representative of the equivalence class.
191     // Now perform the 'path compression' optimization by doing another pass up
192     // the parent chain, setting the parent of each node to be the
193     // representative, and rewriting children correspondingly.
194     const T* current = known_value;
195     while (parent_[current] != result) {
196       const T* next = parent_[current];
197       parent_[current] = result;
198       children_[result].push_back(current);
199       auto child_iterator =
200           std::find(children_[next].begin(), children_[next].end(), current);
201       assert(child_iterator != children_[next].end() &&
202              "'next' is the parent of 'current', so 'current' should be a "
203              "child of 'next'");
204       children_[next].erase(child_iterator);
205       current = next;
206     }
207     return result;
208   }
209 
210   // Maps every value to a parent.  The representative of an equivalence class
211   // is its own parent.  A value's representative can be found by walking its
212   // chain of ancestors.
213   //
214   // Mutable because the intuitively const method, 'Find', performs path
215   // compression.
216   mutable std::unordered_map<const T*, const T*> parent_;
217 
218   // Stores the children of each value.  This allows the equivalence class of
219   // a value to be calculated by traversing all descendents of the class's
220   // representative.
221   //
222   // Mutable because the intuitively const method, 'Find', performs path
223   // compression.
224   mutable std::unordered_map<const T*, std::vector<const T*>> children_;
225 
226   // The values known to the equivalence relation are allocated in
227   // |owned_values_|, and |value_pool_| provides (via |PointerHashT| and
228   // |PointerEqualsT|) a means for mapping a value of interest to a pointer
229   // into an equivalent value in |owned_values_|.
230   std::unordered_set<const T*, PointerHashT, PointerEqualsT> value_set_;
231   std::vector<std::unique_ptr<T>> owned_values_;
232 };
233 
234 }  // namespace fuzz
235 }  // namespace spvtools
236 
237 #endif  // SOURCE_FUZZ_EQUIVALENCE_RELATION_H_
238