1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/Passes.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CallSite.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LegacyPassManager.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <cassert>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80
81 using namespace llvm;
82
83 namespace {
84 namespace MemRef {
85 static const unsigned Read = 1;
86 static const unsigned Write = 2;
87 static const unsigned Callee = 4;
88 static const unsigned Branchee = 8;
89 } // end namespace MemRef
90
91 class Lint : public FunctionPass, public InstVisitor<Lint> {
92 friend class InstVisitor<Lint>;
93
94 void visitFunction(Function &F);
95
96 void visitCallSite(CallSite CS);
97 void visitMemoryReference(Instruction &I, Value *Ptr,
98 uint64_t Size, unsigned Align,
99 Type *Ty, unsigned Flags);
100 void visitEHBeginCatch(IntrinsicInst *II);
101 void visitEHEndCatch(IntrinsicInst *II);
102
103 void visitCallInst(CallInst &I);
104 void visitInvokeInst(InvokeInst &I);
105 void visitReturnInst(ReturnInst &I);
106 void visitLoadInst(LoadInst &I);
107 void visitStoreInst(StoreInst &I);
108 void visitXor(BinaryOperator &I);
109 void visitSub(BinaryOperator &I);
110 void visitLShr(BinaryOperator &I);
111 void visitAShr(BinaryOperator &I);
112 void visitShl(BinaryOperator &I);
113 void visitSDiv(BinaryOperator &I);
114 void visitUDiv(BinaryOperator &I);
115 void visitSRem(BinaryOperator &I);
116 void visitURem(BinaryOperator &I);
117 void visitAllocaInst(AllocaInst &I);
118 void visitVAArgInst(VAArgInst &I);
119 void visitIndirectBrInst(IndirectBrInst &I);
120 void visitExtractElementInst(ExtractElementInst &I);
121 void visitInsertElementInst(InsertElementInst &I);
122 void visitUnreachableInst(UnreachableInst &I);
123
124 Value *findValue(Value *V, bool OffsetOk) const;
125 Value *findValueImpl(Value *V, bool OffsetOk,
126 SmallPtrSetImpl<Value *> &Visited) const;
127
128 public:
129 Module *Mod;
130 const DataLayout *DL;
131 AliasAnalysis *AA;
132 AssumptionCache *AC;
133 DominatorTree *DT;
134 TargetLibraryInfo *TLI;
135
136 std::string Messages;
137 raw_string_ostream MessagesStr;
138
139 static char ID; // Pass identification, replacement for typeid
Lint()140 Lint() : FunctionPass(ID), MessagesStr(Messages) {
141 initializeLintPass(*PassRegistry::getPassRegistry());
142 }
143
144 bool runOnFunction(Function &F) override;
145
getAnalysisUsage(AnalysisUsage & AU) const146 void getAnalysisUsage(AnalysisUsage &AU) const override {
147 AU.setPreservesAll();
148 AU.addRequired<AAResultsWrapperPass>();
149 AU.addRequired<AssumptionCacheTracker>();
150 AU.addRequired<TargetLibraryInfoWrapperPass>();
151 AU.addRequired<DominatorTreeWrapperPass>();
152 }
print(raw_ostream & O,const Module * M) const153 void print(raw_ostream &O, const Module *M) const override {}
154
WriteValues(ArrayRef<const Value * > Vs)155 void WriteValues(ArrayRef<const Value *> Vs) {
156 for (const Value *V : Vs) {
157 if (!V)
158 continue;
159 if (isa<Instruction>(V)) {
160 MessagesStr << *V << '\n';
161 } else {
162 V->printAsOperand(MessagesStr, true, Mod);
163 MessagesStr << '\n';
164 }
165 }
166 }
167
168 /// A check failed, so printout out the condition and the message.
169 ///
170 /// This provides a nice place to put a breakpoint if you want to see why
171 /// something is not correct.
CheckFailed(const Twine & Message)172 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
173
174 /// A check failed (with values to print).
175 ///
176 /// This calls the Message-only version so that the above is easier to set
177 /// a breakpoint on.
178 template <typename T1, typename... Ts>
CheckFailed(const Twine & Message,const T1 & V1,const Ts &...Vs)179 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
180 CheckFailed(Message);
181 WriteValues({V1, Vs...});
182 }
183 };
184 } // end anonymous namespace
185
186 char Lint::ID = 0;
187 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
188 false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
193 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
194 false, true)
195
196 // Assert - We know that cond should be true, if not print an error message.
197 #define Assert(C, ...) \
198 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
199
200 // Lint::run - This is the main Analysis entry point for a
201 // function.
202 //
203 bool Lint::runOnFunction(Function &F) {
204 Mod = F.getParent();
205 DL = &F.getParent()->getDataLayout();
206 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
207 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
208 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
209 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
210 visit(F);
211 dbgs() << MessagesStr.str();
212 Messages.clear();
213 return false;
214 }
215
visitFunction(Function & F)216 void Lint::visitFunction(Function &F) {
217 // This isn't undefined behavior, it's just a little unusual, and it's a
218 // fairly common mistake to neglect to name a function.
219 Assert(F.hasName() || F.hasLocalLinkage(),
220 "Unusual: Unnamed function with non-local linkage", &F);
221
222 // TODO: Check for irreducible control flow.
223 }
224
visitCallSite(CallSite CS)225 void Lint::visitCallSite(CallSite CS) {
226 Instruction &I = *CS.getInstruction();
227 Value *Callee = CS.getCalledValue();
228
229 visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
230 MemRef::Callee);
231
232 if (Function *F = dyn_cast<Function>(findValue(Callee,
233 /*OffsetOk=*/false))) {
234 Assert(CS.getCallingConv() == F->getCallingConv(),
235 "Undefined behavior: Caller and callee calling convention differ",
236 &I);
237
238 FunctionType *FT = F->getFunctionType();
239 unsigned NumActualArgs = CS.arg_size();
240
241 Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
242 : FT->getNumParams() == NumActualArgs,
243 "Undefined behavior: Call argument count mismatches callee "
244 "argument count",
245 &I);
246
247 Assert(FT->getReturnType() == I.getType(),
248 "Undefined behavior: Call return type mismatches "
249 "callee return type",
250 &I);
251
252 // Check argument types (in case the callee was casted) and attributes.
253 // TODO: Verify that caller and callee attributes are compatible.
254 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
255 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
256 for (; AI != AE; ++AI) {
257 Value *Actual = *AI;
258 if (PI != PE) {
259 Argument *Formal = &*PI++;
260 Assert(Formal->getType() == Actual->getType(),
261 "Undefined behavior: Call argument type mismatches "
262 "callee parameter type",
263 &I);
264
265 // Check that noalias arguments don't alias other arguments. This is
266 // not fully precise because we don't know the sizes of the dereferenced
267 // memory regions.
268 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
269 AttributeList PAL = CS.getAttributes();
270 unsigned ArgNo = 0;
271 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) {
272 // Skip ByVal arguments since they will be memcpy'd to the callee's
273 // stack so we're not really passing the pointer anyway.
274 if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
275 continue;
276 if (AI != BI && (*BI)->getType()->isPointerTy()) {
277 AliasResult Result = AA->alias(*AI, *BI);
278 Assert(Result != MustAlias && Result != PartialAlias,
279 "Unusual: noalias argument aliases another argument", &I);
280 }
281 }
282 }
283
284 // Check that an sret argument points to valid memory.
285 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
286 Type *Ty =
287 cast<PointerType>(Formal->getType())->getElementType();
288 visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
289 DL->getABITypeAlignment(Ty), Ty,
290 MemRef::Read | MemRef::Write);
291 }
292 }
293 }
294 }
295
296 if (CS.isCall()) {
297 const CallInst *CI = cast<CallInst>(CS.getInstruction());
298 if (CI->isTailCall()) {
299 const AttributeList &PAL = CI->getAttributes();
300 unsigned ArgNo = 0;
301 for (Value *Arg : CS.args()) {
302 // Skip ByVal arguments since they will be memcpy'd to the callee's
303 // stack anyway.
304 if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
305 continue;
306 Value *Obj = findValue(Arg, /*OffsetOk=*/true);
307 Assert(!isa<AllocaInst>(Obj),
308 "Undefined behavior: Call with \"tail\" keyword references "
309 "alloca",
310 &I);
311 }
312 }
313 }
314
315
316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
317 switch (II->getIntrinsicID()) {
318 default: break;
319
320 // TODO: Check more intrinsics
321
322 case Intrinsic::memcpy: {
323 MemCpyInst *MCI = cast<MemCpyInst>(&I);
324 // TODO: If the size is known, use it.
325 visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
326 MCI->getDestAlignment(), nullptr, MemRef::Write);
327 visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
328 MCI->getSourceAlignment(), nullptr, MemRef::Read);
329
330 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
331 // isn't expressive enough for what we really want to do. Known partial
332 // overlap is not distinguished from the case where nothing is known.
333 uint64_t Size = 0;
334 if (const ConstantInt *Len =
335 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
336 /*OffsetOk=*/false)))
337 if (Len->getValue().isIntN(32))
338 Size = Len->getValue().getZExtValue();
339 Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
340 MustAlias,
341 "Undefined behavior: memcpy source and destination overlap", &I);
342 break;
343 }
344 case Intrinsic::memmove: {
345 MemMoveInst *MMI = cast<MemMoveInst>(&I);
346 // TODO: If the size is known, use it.
347 visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
348 MMI->getDestAlignment(), nullptr, MemRef::Write);
349 visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
350 MMI->getSourceAlignment(), nullptr, MemRef::Read);
351 break;
352 }
353 case Intrinsic::memset: {
354 MemSetInst *MSI = cast<MemSetInst>(&I);
355 // TODO: If the size is known, use it.
356 visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
357 MSI->getDestAlignment(), nullptr, MemRef::Write);
358 break;
359 }
360
361 case Intrinsic::vastart:
362 Assert(I.getParent()->getParent()->isVarArg(),
363 "Undefined behavior: va_start called in a non-varargs function",
364 &I);
365
366 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
367 nullptr, MemRef::Read | MemRef::Write);
368 break;
369 case Intrinsic::vacopy:
370 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
371 nullptr, MemRef::Write);
372 visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
373 nullptr, MemRef::Read);
374 break;
375 case Intrinsic::vaend:
376 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
377 nullptr, MemRef::Read | MemRef::Write);
378 break;
379
380 case Intrinsic::stackrestore:
381 // Stackrestore doesn't read or write memory, but it sets the
382 // stack pointer, which the compiler may read from or write to
383 // at any time, so check it for both readability and writeability.
384 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
385 nullptr, MemRef::Read | MemRef::Write);
386 break;
387 }
388 }
389
visitCallInst(CallInst & I)390 void Lint::visitCallInst(CallInst &I) {
391 return visitCallSite(&I);
392 }
393
visitInvokeInst(InvokeInst & I)394 void Lint::visitInvokeInst(InvokeInst &I) {
395 return visitCallSite(&I);
396 }
397
visitReturnInst(ReturnInst & I)398 void Lint::visitReturnInst(ReturnInst &I) {
399 Function *F = I.getParent()->getParent();
400 Assert(!F->doesNotReturn(),
401 "Unusual: Return statement in function with noreturn attribute", &I);
402
403 if (Value *V = I.getReturnValue()) {
404 Value *Obj = findValue(V, /*OffsetOk=*/true);
405 Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
406 }
407 }
408
409 // TODO: Check that the reference is in bounds.
410 // TODO: Check readnone/readonly function attributes.
visitMemoryReference(Instruction & I,Value * Ptr,uint64_t Size,unsigned Align,Type * Ty,unsigned Flags)411 void Lint::visitMemoryReference(Instruction &I,
412 Value *Ptr, uint64_t Size, unsigned Align,
413 Type *Ty, unsigned Flags) {
414 // If no memory is being referenced, it doesn't matter if the pointer
415 // is valid.
416 if (Size == 0)
417 return;
418
419 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
420 Assert(!isa<ConstantPointerNull>(UnderlyingObject),
421 "Undefined behavior: Null pointer dereference", &I);
422 Assert(!isa<UndefValue>(UnderlyingObject),
423 "Undefined behavior: Undef pointer dereference", &I);
424 Assert(!isa<ConstantInt>(UnderlyingObject) ||
425 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
426 "Unusual: All-ones pointer dereference", &I);
427 Assert(!isa<ConstantInt>(UnderlyingObject) ||
428 !cast<ConstantInt>(UnderlyingObject)->isOne(),
429 "Unusual: Address one pointer dereference", &I);
430
431 if (Flags & MemRef::Write) {
432 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
433 Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
434 &I);
435 Assert(!isa<Function>(UnderlyingObject) &&
436 !isa<BlockAddress>(UnderlyingObject),
437 "Undefined behavior: Write to text section", &I);
438 }
439 if (Flags & MemRef::Read) {
440 Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
441 &I);
442 Assert(!isa<BlockAddress>(UnderlyingObject),
443 "Undefined behavior: Load from block address", &I);
444 }
445 if (Flags & MemRef::Callee) {
446 Assert(!isa<BlockAddress>(UnderlyingObject),
447 "Undefined behavior: Call to block address", &I);
448 }
449 if (Flags & MemRef::Branchee) {
450 Assert(!isa<Constant>(UnderlyingObject) ||
451 isa<BlockAddress>(UnderlyingObject),
452 "Undefined behavior: Branch to non-blockaddress", &I);
453 }
454
455 // Check for buffer overflows and misalignment.
456 // Only handles memory references that read/write something simple like an
457 // alloca instruction or a global variable.
458 int64_t Offset = 0;
459 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
460 // OK, so the access is to a constant offset from Ptr. Check that Ptr is
461 // something we can handle and if so extract the size of this base object
462 // along with its alignment.
463 uint64_t BaseSize = MemoryLocation::UnknownSize;
464 unsigned BaseAlign = 0;
465
466 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
467 Type *ATy = AI->getAllocatedType();
468 if (!AI->isArrayAllocation() && ATy->isSized())
469 BaseSize = DL->getTypeAllocSize(ATy);
470 BaseAlign = AI->getAlignment();
471 if (BaseAlign == 0 && ATy->isSized())
472 BaseAlign = DL->getABITypeAlignment(ATy);
473 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
474 // If the global may be defined differently in another compilation unit
475 // then don't warn about funky memory accesses.
476 if (GV->hasDefinitiveInitializer()) {
477 Type *GTy = GV->getValueType();
478 if (GTy->isSized())
479 BaseSize = DL->getTypeAllocSize(GTy);
480 BaseAlign = GV->getAlignment();
481 if (BaseAlign == 0 && GTy->isSized())
482 BaseAlign = DL->getABITypeAlignment(GTy);
483 }
484 }
485
486 // Accesses from before the start or after the end of the object are not
487 // defined.
488 Assert(Size == MemoryLocation::UnknownSize ||
489 BaseSize == MemoryLocation::UnknownSize ||
490 (Offset >= 0 && Offset + Size <= BaseSize),
491 "Undefined behavior: Buffer overflow", &I);
492
493 // Accesses that say that the memory is more aligned than it is are not
494 // defined.
495 if (Align == 0 && Ty && Ty->isSized())
496 Align = DL->getABITypeAlignment(Ty);
497 Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
498 "Undefined behavior: Memory reference address is misaligned", &I);
499 }
500 }
501
visitLoadInst(LoadInst & I)502 void Lint::visitLoadInst(LoadInst &I) {
503 visitMemoryReference(I, I.getPointerOperand(),
504 DL->getTypeStoreSize(I.getType()), I.getAlignment(),
505 I.getType(), MemRef::Read);
506 }
507
visitStoreInst(StoreInst & I)508 void Lint::visitStoreInst(StoreInst &I) {
509 visitMemoryReference(I, I.getPointerOperand(),
510 DL->getTypeStoreSize(I.getOperand(0)->getType()),
511 I.getAlignment(),
512 I.getOperand(0)->getType(), MemRef::Write);
513 }
514
visitXor(BinaryOperator & I)515 void Lint::visitXor(BinaryOperator &I) {
516 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
517 "Undefined result: xor(undef, undef)", &I);
518 }
519
visitSub(BinaryOperator & I)520 void Lint::visitSub(BinaryOperator &I) {
521 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
522 "Undefined result: sub(undef, undef)", &I);
523 }
524
visitLShr(BinaryOperator & I)525 void Lint::visitLShr(BinaryOperator &I) {
526 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
527 /*OffsetOk=*/false)))
528 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
529 "Undefined result: Shift count out of range", &I);
530 }
531
visitAShr(BinaryOperator & I)532 void Lint::visitAShr(BinaryOperator &I) {
533 if (ConstantInt *CI =
534 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
535 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
536 "Undefined result: Shift count out of range", &I);
537 }
538
visitShl(BinaryOperator & I)539 void Lint::visitShl(BinaryOperator &I) {
540 if (ConstantInt *CI =
541 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
542 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
543 "Undefined result: Shift count out of range", &I);
544 }
545
isZero(Value * V,const DataLayout & DL,DominatorTree * DT,AssumptionCache * AC)546 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
547 AssumptionCache *AC) {
548 // Assume undef could be zero.
549 if (isa<UndefValue>(V))
550 return true;
551
552 VectorType *VecTy = dyn_cast<VectorType>(V->getType());
553 if (!VecTy) {
554 KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
555 return Known.isZero();
556 }
557
558 // Per-component check doesn't work with zeroinitializer
559 Constant *C = dyn_cast<Constant>(V);
560 if (!C)
561 return false;
562
563 if (C->isZeroValue())
564 return true;
565
566 // For a vector, KnownZero will only be true if all values are zero, so check
567 // this per component
568 for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
569 Constant *Elem = C->getAggregateElement(I);
570 if (isa<UndefValue>(Elem))
571 return true;
572
573 KnownBits Known = computeKnownBits(Elem, DL);
574 if (Known.isZero())
575 return true;
576 }
577
578 return false;
579 }
580
visitSDiv(BinaryOperator & I)581 void Lint::visitSDiv(BinaryOperator &I) {
582 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
583 "Undefined behavior: Division by zero", &I);
584 }
585
visitUDiv(BinaryOperator & I)586 void Lint::visitUDiv(BinaryOperator &I) {
587 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
588 "Undefined behavior: Division by zero", &I);
589 }
590
visitSRem(BinaryOperator & I)591 void Lint::visitSRem(BinaryOperator &I) {
592 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
593 "Undefined behavior: Division by zero", &I);
594 }
595
visitURem(BinaryOperator & I)596 void Lint::visitURem(BinaryOperator &I) {
597 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
598 "Undefined behavior: Division by zero", &I);
599 }
600
visitAllocaInst(AllocaInst & I)601 void Lint::visitAllocaInst(AllocaInst &I) {
602 if (isa<ConstantInt>(I.getArraySize()))
603 // This isn't undefined behavior, it's just an obvious pessimization.
604 Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
605 "Pessimization: Static alloca outside of entry block", &I);
606
607 // TODO: Check for an unusual size (MSB set?)
608 }
609
visitVAArgInst(VAArgInst & I)610 void Lint::visitVAArgInst(VAArgInst &I) {
611 visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
612 nullptr, MemRef::Read | MemRef::Write);
613 }
614
visitIndirectBrInst(IndirectBrInst & I)615 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
616 visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
617 nullptr, MemRef::Branchee);
618
619 Assert(I.getNumDestinations() != 0,
620 "Undefined behavior: indirectbr with no destinations", &I);
621 }
622
visitExtractElementInst(ExtractElementInst & I)623 void Lint::visitExtractElementInst(ExtractElementInst &I) {
624 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
625 /*OffsetOk=*/false)))
626 Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
627 "Undefined result: extractelement index out of range", &I);
628 }
629
visitInsertElementInst(InsertElementInst & I)630 void Lint::visitInsertElementInst(InsertElementInst &I) {
631 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
632 /*OffsetOk=*/false)))
633 Assert(CI->getValue().ult(I.getType()->getNumElements()),
634 "Undefined result: insertelement index out of range", &I);
635 }
636
visitUnreachableInst(UnreachableInst & I)637 void Lint::visitUnreachableInst(UnreachableInst &I) {
638 // This isn't undefined behavior, it's merely suspicious.
639 Assert(&I == &I.getParent()->front() ||
640 std::prev(I.getIterator())->mayHaveSideEffects(),
641 "Unusual: unreachable immediately preceded by instruction without "
642 "side effects",
643 &I);
644 }
645
646 /// findValue - Look through bitcasts and simple memory reference patterns
647 /// to identify an equivalent, but more informative, value. If OffsetOk
648 /// is true, look through getelementptrs with non-zero offsets too.
649 ///
650 /// Most analysis passes don't require this logic, because instcombine
651 /// will simplify most of these kinds of things away. But it's a goal of
652 /// this Lint pass to be useful even on non-optimized IR.
findValue(Value * V,bool OffsetOk) const653 Value *Lint::findValue(Value *V, bool OffsetOk) const {
654 SmallPtrSet<Value *, 4> Visited;
655 return findValueImpl(V, OffsetOk, Visited);
656 }
657
658 /// findValueImpl - Implementation helper for findValue.
findValueImpl(Value * V,bool OffsetOk,SmallPtrSetImpl<Value * > & Visited) const659 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
660 SmallPtrSetImpl<Value *> &Visited) const {
661 // Detect self-referential values.
662 if (!Visited.insert(V).second)
663 return UndefValue::get(V->getType());
664
665 // TODO: Look through sext or zext cast, when the result is known to
666 // be interpreted as signed or unsigned, respectively.
667 // TODO: Look through eliminable cast pairs.
668 // TODO: Look through calls with unique return values.
669 // TODO: Look through vector insert/extract/shuffle.
670 V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
671 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
672 BasicBlock::iterator BBI = L->getIterator();
673 BasicBlock *BB = L->getParent();
674 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
675 for (;;) {
676 if (!VisitedBlocks.insert(BB).second)
677 break;
678 if (Value *U =
679 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
680 return findValueImpl(U, OffsetOk, Visited);
681 if (BBI != BB->begin()) break;
682 BB = BB->getUniquePredecessor();
683 if (!BB) break;
684 BBI = BB->end();
685 }
686 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
687 if (Value *W = PN->hasConstantValue())
688 if (W != V)
689 return findValueImpl(W, OffsetOk, Visited);
690 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
691 if (CI->isNoopCast(*DL))
692 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
693 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
694 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
695 Ex->getIndices()))
696 if (W != V)
697 return findValueImpl(W, OffsetOk, Visited);
698 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
699 // Same as above, but for ConstantExpr instead of Instruction.
700 if (Instruction::isCast(CE->getOpcode())) {
701 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
702 CE->getOperand(0)->getType(), CE->getType(),
703 *DL))
704 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
705 } else if (CE->getOpcode() == Instruction::ExtractValue) {
706 ArrayRef<unsigned> Indices = CE->getIndices();
707 if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
708 if (W != V)
709 return findValueImpl(W, OffsetOk, Visited);
710 }
711 }
712
713 // As a last resort, try SimplifyInstruction or constant folding.
714 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
715 if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
716 return findValueImpl(W, OffsetOk, Visited);
717 } else if (auto *C = dyn_cast<Constant>(V)) {
718 if (Value *W = ConstantFoldConstant(C, *DL, TLI))
719 if (W && W != V)
720 return findValueImpl(W, OffsetOk, Visited);
721 }
722
723 return V;
724 }
725
726 //===----------------------------------------------------------------------===//
727 // Implement the public interfaces to this file...
728 //===----------------------------------------------------------------------===//
729
createLintPass()730 FunctionPass *llvm::createLintPass() {
731 return new Lint();
732 }
733
734 /// lintFunction - Check a function for errors, printing messages on stderr.
735 ///
lintFunction(const Function & f)736 void llvm::lintFunction(const Function &f) {
737 Function &F = const_cast<Function&>(f);
738 assert(!F.isDeclaration() && "Cannot lint external functions");
739
740 legacy::FunctionPassManager FPM(F.getParent());
741 Lint *V = new Lint();
742 FPM.add(V);
743 FPM.run(F);
744 }
745
746 /// lintModule - Check a module for errors, printing messages on stderr.
747 ///
lintModule(const Module & M)748 void llvm::lintModule(const Module &M) {
749 legacy::PassManager PM;
750 Lint *V = new Lint();
751 PM.add(V);
752 PM.run(const_cast<Module&>(M));
753 }
754