1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines vectorizer utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/VectorUtils.h"
15 #include "llvm/ADT/EquivalenceClasses.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30
31 /// Identify if the intrinsic is trivially vectorizable.
32 /// This method returns true if the intrinsic's argument types are all
33 /// scalars for the scalar form of the intrinsic and all vectors for
34 /// the vector form of the intrinsic.
isTriviallyVectorizable(Intrinsic::ID ID)35 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
36 switch (ID) {
37 case Intrinsic::sqrt:
38 case Intrinsic::sin:
39 case Intrinsic::cos:
40 case Intrinsic::exp:
41 case Intrinsic::exp2:
42 case Intrinsic::log:
43 case Intrinsic::log10:
44 case Intrinsic::log2:
45 case Intrinsic::fabs:
46 case Intrinsic::minnum:
47 case Intrinsic::maxnum:
48 case Intrinsic::copysign:
49 case Intrinsic::floor:
50 case Intrinsic::ceil:
51 case Intrinsic::trunc:
52 case Intrinsic::rint:
53 case Intrinsic::nearbyint:
54 case Intrinsic::round:
55 case Intrinsic::bswap:
56 case Intrinsic::bitreverse:
57 case Intrinsic::ctpop:
58 case Intrinsic::pow:
59 case Intrinsic::fma:
60 case Intrinsic::fmuladd:
61 case Intrinsic::ctlz:
62 case Intrinsic::cttz:
63 case Intrinsic::powi:
64 return true;
65 default:
66 return false;
67 }
68 }
69
70 /// Identifies if the intrinsic has a scalar operand. It check for
71 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,unsigned ScalarOpdIdx)72 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
73 unsigned ScalarOpdIdx) {
74 switch (ID) {
75 case Intrinsic::ctlz:
76 case Intrinsic::cttz:
77 case Intrinsic::powi:
78 return (ScalarOpdIdx == 1);
79 default:
80 return false;
81 }
82 }
83
84 /// Returns intrinsic ID for call.
85 /// For the input call instruction it finds mapping intrinsic and returns
86 /// its ID, in case it does not found it return not_intrinsic.
getVectorIntrinsicIDForCall(const CallInst * CI,const TargetLibraryInfo * TLI)87 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
88 const TargetLibraryInfo *TLI) {
89 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
90 if (ID == Intrinsic::not_intrinsic)
91 return Intrinsic::not_intrinsic;
92
93 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
94 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
95 ID == Intrinsic::sideeffect)
96 return ID;
97 return Intrinsic::not_intrinsic;
98 }
99
100 /// Find the operand of the GEP that should be checked for consecutive
101 /// stores. This ignores trailing indices that have no effect on the final
102 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)103 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
104 const DataLayout &DL = Gep->getModule()->getDataLayout();
105 unsigned LastOperand = Gep->getNumOperands() - 1;
106 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
107
108 // Walk backwards and try to peel off zeros.
109 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
110 // Find the type we're currently indexing into.
111 gep_type_iterator GEPTI = gep_type_begin(Gep);
112 std::advance(GEPTI, LastOperand - 2);
113
114 // If it's a type with the same allocation size as the result of the GEP we
115 // can peel off the zero index.
116 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
117 break;
118 --LastOperand;
119 }
120
121 return LastOperand;
122 }
123
124 /// If the argument is a GEP, then returns the operand identified by
125 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
126 /// operand, it returns that instead.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)127 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
128 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
129 if (!GEP)
130 return Ptr;
131
132 unsigned InductionOperand = getGEPInductionOperand(GEP);
133
134 // Check that all of the gep indices are uniform except for our induction
135 // operand.
136 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
137 if (i != InductionOperand &&
138 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
139 return Ptr;
140 return GEP->getOperand(InductionOperand);
141 }
142
143 /// If a value has only one user that is a CastInst, return it.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)144 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
145 Value *UniqueCast = nullptr;
146 for (User *U : Ptr->users()) {
147 CastInst *CI = dyn_cast<CastInst>(U);
148 if (CI && CI->getType() == Ty) {
149 if (!UniqueCast)
150 UniqueCast = CI;
151 else
152 return nullptr;
153 }
154 }
155 return UniqueCast;
156 }
157
158 /// Get the stride of a pointer access in a loop. Looks for symbolic
159 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)160 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
161 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
162 if (!PtrTy || PtrTy->isAggregateType())
163 return nullptr;
164
165 // Try to remove a gep instruction to make the pointer (actually index at this
166 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
167 // pointer, otherwise, we are analyzing the index.
168 Value *OrigPtr = Ptr;
169
170 // The size of the pointer access.
171 int64_t PtrAccessSize = 1;
172
173 Ptr = stripGetElementPtr(Ptr, SE, Lp);
174 const SCEV *V = SE->getSCEV(Ptr);
175
176 if (Ptr != OrigPtr)
177 // Strip off casts.
178 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
179 V = C->getOperand();
180
181 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
182 if (!S)
183 return nullptr;
184
185 V = S->getStepRecurrence(*SE);
186 if (!V)
187 return nullptr;
188
189 // Strip off the size of access multiplication if we are still analyzing the
190 // pointer.
191 if (OrigPtr == Ptr) {
192 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
193 if (M->getOperand(0)->getSCEVType() != scConstant)
194 return nullptr;
195
196 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
197
198 // Huge step value - give up.
199 if (APStepVal.getBitWidth() > 64)
200 return nullptr;
201
202 int64_t StepVal = APStepVal.getSExtValue();
203 if (PtrAccessSize != StepVal)
204 return nullptr;
205 V = M->getOperand(1);
206 }
207 }
208
209 // Strip off casts.
210 Type *StripedOffRecurrenceCast = nullptr;
211 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
212 StripedOffRecurrenceCast = C->getType();
213 V = C->getOperand();
214 }
215
216 // Look for the loop invariant symbolic value.
217 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
218 if (!U)
219 return nullptr;
220
221 Value *Stride = U->getValue();
222 if (!Lp->isLoopInvariant(Stride))
223 return nullptr;
224
225 // If we have stripped off the recurrence cast we have to make sure that we
226 // return the value that is used in this loop so that we can replace it later.
227 if (StripedOffRecurrenceCast)
228 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
229
230 return Stride;
231 }
232
233 /// Given a vector and an element number, see if the scalar value is
234 /// already around as a register, for example if it were inserted then extracted
235 /// from the vector.
findScalarElement(Value * V,unsigned EltNo)236 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
237 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
238 VectorType *VTy = cast<VectorType>(V->getType());
239 unsigned Width = VTy->getNumElements();
240 if (EltNo >= Width) // Out of range access.
241 return UndefValue::get(VTy->getElementType());
242
243 if (Constant *C = dyn_cast<Constant>(V))
244 return C->getAggregateElement(EltNo);
245
246 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
247 // If this is an insert to a variable element, we don't know what it is.
248 if (!isa<ConstantInt>(III->getOperand(2)))
249 return nullptr;
250 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
251
252 // If this is an insert to the element we are looking for, return the
253 // inserted value.
254 if (EltNo == IIElt)
255 return III->getOperand(1);
256
257 // Otherwise, the insertelement doesn't modify the value, recurse on its
258 // vector input.
259 return findScalarElement(III->getOperand(0), EltNo);
260 }
261
262 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
263 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
264 int InEl = SVI->getMaskValue(EltNo);
265 if (InEl < 0)
266 return UndefValue::get(VTy->getElementType());
267 if (InEl < (int)LHSWidth)
268 return findScalarElement(SVI->getOperand(0), InEl);
269 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
270 }
271
272 // Extract a value from a vector add operation with a constant zero.
273 Value *Val = nullptr; Constant *Con = nullptr;
274 if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
275 if (Constant *Elt = Con->getAggregateElement(EltNo))
276 if (Elt->isNullValue())
277 return findScalarElement(Val, EltNo);
278
279 // Otherwise, we don't know.
280 return nullptr;
281 }
282
283 /// Get splat value if the input is a splat vector or return nullptr.
284 /// This function is not fully general. It checks only 2 cases:
285 /// the input value is (1) a splat constants vector or (2) a sequence
286 /// of instructions that broadcast a single value into a vector.
287 ///
getSplatValue(const Value * V)288 const llvm::Value *llvm::getSplatValue(const Value *V) {
289
290 if (auto *C = dyn_cast<Constant>(V))
291 if (isa<VectorType>(V->getType()))
292 return C->getSplatValue();
293
294 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
295 if (!ShuffleInst)
296 return nullptr;
297 // All-zero (or undef) shuffle mask elements.
298 for (int MaskElt : ShuffleInst->getShuffleMask())
299 if (MaskElt != 0 && MaskElt != -1)
300 return nullptr;
301 // The first shuffle source is 'insertelement' with index 0.
302 auto *InsertEltInst =
303 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
304 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
305 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
306 return nullptr;
307
308 return InsertEltInst->getOperand(1);
309 }
310
311 MapVector<Instruction *, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock * > Blocks,DemandedBits & DB,const TargetTransformInfo * TTI)312 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
313 const TargetTransformInfo *TTI) {
314
315 // DemandedBits will give us every value's live-out bits. But we want
316 // to ensure no extra casts would need to be inserted, so every DAG
317 // of connected values must have the same minimum bitwidth.
318 EquivalenceClasses<Value *> ECs;
319 SmallVector<Value *, 16> Worklist;
320 SmallPtrSet<Value *, 4> Roots;
321 SmallPtrSet<Value *, 16> Visited;
322 DenseMap<Value *, uint64_t> DBits;
323 SmallPtrSet<Instruction *, 4> InstructionSet;
324 MapVector<Instruction *, uint64_t> MinBWs;
325
326 // Determine the roots. We work bottom-up, from truncs or icmps.
327 bool SeenExtFromIllegalType = false;
328 for (auto *BB : Blocks)
329 for (auto &I : *BB) {
330 InstructionSet.insert(&I);
331
332 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
333 !TTI->isTypeLegal(I.getOperand(0)->getType()))
334 SeenExtFromIllegalType = true;
335
336 // Only deal with non-vector integers up to 64-bits wide.
337 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
338 !I.getType()->isVectorTy() &&
339 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
340 // Don't make work for ourselves. If we know the loaded type is legal,
341 // don't add it to the worklist.
342 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
343 continue;
344
345 Worklist.push_back(&I);
346 Roots.insert(&I);
347 }
348 }
349 // Early exit.
350 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
351 return MinBWs;
352
353 // Now proceed breadth-first, unioning values together.
354 while (!Worklist.empty()) {
355 Value *Val = Worklist.pop_back_val();
356 Value *Leader = ECs.getOrInsertLeaderValue(Val);
357
358 if (Visited.count(Val))
359 continue;
360 Visited.insert(Val);
361
362 // Non-instructions terminate a chain successfully.
363 if (!isa<Instruction>(Val))
364 continue;
365 Instruction *I = cast<Instruction>(Val);
366
367 // If we encounter a type that is larger than 64 bits, we can't represent
368 // it so bail out.
369 if (DB.getDemandedBits(I).getBitWidth() > 64)
370 return MapVector<Instruction *, uint64_t>();
371
372 uint64_t V = DB.getDemandedBits(I).getZExtValue();
373 DBits[Leader] |= V;
374 DBits[I] = V;
375
376 // Casts, loads and instructions outside of our range terminate a chain
377 // successfully.
378 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
379 !InstructionSet.count(I))
380 continue;
381
382 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
383 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
384 // transform anything that relies on them.
385 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
386 !I->getType()->isIntegerTy()) {
387 DBits[Leader] |= ~0ULL;
388 continue;
389 }
390
391 // We don't modify the types of PHIs. Reductions will already have been
392 // truncated if possible, and inductions' sizes will have been chosen by
393 // indvars.
394 if (isa<PHINode>(I))
395 continue;
396
397 if (DBits[Leader] == ~0ULL)
398 // All bits demanded, no point continuing.
399 continue;
400
401 for (Value *O : cast<User>(I)->operands()) {
402 ECs.unionSets(Leader, O);
403 Worklist.push_back(O);
404 }
405 }
406
407 // Now we've discovered all values, walk them to see if there are
408 // any users we didn't see. If there are, we can't optimize that
409 // chain.
410 for (auto &I : DBits)
411 for (auto *U : I.first->users())
412 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
413 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
414
415 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
416 uint64_t LeaderDemandedBits = 0;
417 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
418 LeaderDemandedBits |= DBits[*MI];
419
420 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
421 llvm::countLeadingZeros(LeaderDemandedBits);
422 // Round up to a power of 2
423 if (!isPowerOf2_64((uint64_t)MinBW))
424 MinBW = NextPowerOf2(MinBW);
425
426 // We don't modify the types of PHIs. Reductions will already have been
427 // truncated if possible, and inductions' sizes will have been chosen by
428 // indvars.
429 // If we are required to shrink a PHI, abandon this entire equivalence class.
430 bool Abort = false;
431 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
432 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
433 Abort = true;
434 break;
435 }
436 if (Abort)
437 continue;
438
439 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
440 if (!isa<Instruction>(*MI))
441 continue;
442 Type *Ty = (*MI)->getType();
443 if (Roots.count(*MI))
444 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
445 if (MinBW < Ty->getScalarSizeInBits())
446 MinBWs[cast<Instruction>(*MI)] = MinBW;
447 }
448 }
449
450 return MinBWs;
451 }
452
453 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * Inst,ArrayRef<Value * > VL)454 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
455 Instruction *I0 = cast<Instruction>(VL[0]);
456 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
457 I0->getAllMetadataOtherThanDebugLoc(Metadata);
458
459 for (auto Kind :
460 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
461 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
462 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
463 MDNode *MD = I0->getMetadata(Kind);
464
465 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
466 const Instruction *IJ = cast<Instruction>(VL[J]);
467 MDNode *IMD = IJ->getMetadata(Kind);
468 switch (Kind) {
469 case LLVMContext::MD_tbaa:
470 MD = MDNode::getMostGenericTBAA(MD, IMD);
471 break;
472 case LLVMContext::MD_alias_scope:
473 MD = MDNode::getMostGenericAliasScope(MD, IMD);
474 break;
475 case LLVMContext::MD_fpmath:
476 MD = MDNode::getMostGenericFPMath(MD, IMD);
477 break;
478 case LLVMContext::MD_noalias:
479 case LLVMContext::MD_nontemporal:
480 case LLVMContext::MD_invariant_load:
481 MD = MDNode::intersect(MD, IMD);
482 break;
483 default:
484 llvm_unreachable("unhandled metadata");
485 }
486 }
487
488 Inst->setMetadata(Kind, MD);
489 }
490
491 return Inst;
492 }
493
createInterleaveMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVecs)494 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
495 unsigned NumVecs) {
496 SmallVector<Constant *, 16> Mask;
497 for (unsigned i = 0; i < VF; i++)
498 for (unsigned j = 0; j < NumVecs; j++)
499 Mask.push_back(Builder.getInt32(j * VF + i));
500
501 return ConstantVector::get(Mask);
502 }
503
createStrideMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)504 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
505 unsigned Stride, unsigned VF) {
506 SmallVector<Constant *, 16> Mask;
507 for (unsigned i = 0; i < VF; i++)
508 Mask.push_back(Builder.getInt32(Start + i * Stride));
509
510 return ConstantVector::get(Mask);
511 }
512
createSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumInts,unsigned NumUndefs)513 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
514 unsigned NumInts, unsigned NumUndefs) {
515 SmallVector<Constant *, 16> Mask;
516 for (unsigned i = 0; i < NumInts; i++)
517 Mask.push_back(Builder.getInt32(Start + i));
518
519 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
520 for (unsigned i = 0; i < NumUndefs; i++)
521 Mask.push_back(Undef);
522
523 return ConstantVector::get(Mask);
524 }
525
526 /// A helper function for concatenating vectors. This function concatenates two
527 /// vectors having the same element type. If the second vector has fewer
528 /// elements than the first, it is padded with undefs.
concatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)529 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
530 Value *V2) {
531 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
532 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
533 assert(VecTy1 && VecTy2 &&
534 VecTy1->getScalarType() == VecTy2->getScalarType() &&
535 "Expect two vectors with the same element type");
536
537 unsigned NumElts1 = VecTy1->getNumElements();
538 unsigned NumElts2 = VecTy2->getNumElements();
539 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
540
541 if (NumElts1 > NumElts2) {
542 // Extend with UNDEFs.
543 Constant *ExtMask =
544 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
545 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
546 }
547
548 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
549 return Builder.CreateShuffleVector(V1, V2, Mask);
550 }
551
concatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > Vecs)552 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
553 unsigned NumVecs = Vecs.size();
554 assert(NumVecs > 1 && "Should be at least two vectors");
555
556 SmallVector<Value *, 8> ResList;
557 ResList.append(Vecs.begin(), Vecs.end());
558 do {
559 SmallVector<Value *, 8> TmpList;
560 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
561 Value *V0 = ResList[i], *V1 = ResList[i + 1];
562 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
563 "Only the last vector may have a different type");
564
565 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
566 }
567
568 // Push the last vector if the total number of vectors is odd.
569 if (NumVecs % 2 != 0)
570 TmpList.push_back(ResList[NumVecs - 1]);
571
572 ResList = TmpList;
573 NumVecs = ResList.size();
574 } while (NumVecs > 1);
575
576 return ResList[0];
577 }
578