1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Argument.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalIFunc.h"
27 #include "llvm/IR/GlobalObject.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/UseListOrder.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueSymbolTable.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <iterator>
49 #include <tuple>
50 #include <utility>
51 #include <vector>
52
53 using namespace llvm;
54
55 namespace {
56
57 struct OrderMap {
58 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
59 unsigned LastGlobalConstantID = 0;
60 unsigned LastGlobalValueID = 0;
61
62 OrderMap() = default;
63
isGlobalConstant__anona55df7490111::OrderMap64 bool isGlobalConstant(unsigned ID) const {
65 return ID <= LastGlobalConstantID;
66 }
67
isGlobalValue__anona55df7490111::OrderMap68 bool isGlobalValue(unsigned ID) const {
69 return ID <= LastGlobalValueID && !isGlobalConstant(ID);
70 }
71
size__anona55df7490111::OrderMap72 unsigned size() const { return IDs.size(); }
operator []__anona55df7490111::OrderMap73 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
74
lookup__anona55df7490111::OrderMap75 std::pair<unsigned, bool> lookup(const Value *V) const {
76 return IDs.lookup(V);
77 }
78
index__anona55df7490111::OrderMap79 void index(const Value *V) {
80 // Explicitly sequence get-size and insert-value operations to avoid UB.
81 unsigned ID = IDs.size() + 1;
82 IDs[V].first = ID;
83 }
84 };
85
86 } // end anonymous namespace
87
orderValue(const Value * V,OrderMap & OM)88 static void orderValue(const Value *V, OrderMap &OM) {
89 if (OM.lookup(V).first)
90 return;
91
92 if (const Constant *C = dyn_cast<Constant>(V))
93 if (C->getNumOperands() && !isa<GlobalValue>(C))
94 for (const Value *Op : C->operands())
95 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
96 orderValue(Op, OM);
97
98 // Note: we cannot cache this lookup above, since inserting into the map
99 // changes the map's size, and thus affects the other IDs.
100 OM.index(V);
101 }
102
orderModule(const Module & M)103 static OrderMap orderModule(const Module &M) {
104 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
105 // and ValueEnumerator::incorporateFunction().
106 OrderMap OM;
107
108 // In the reader, initializers of GlobalValues are set *after* all the
109 // globals have been read. Rather than awkwardly modeling this behaviour
110 // directly in predictValueUseListOrderImpl(), just assign IDs to
111 // initializers of GlobalValues before GlobalValues themselves to model this
112 // implicitly.
113 for (const GlobalVariable &G : M.globals())
114 if (G.hasInitializer())
115 if (!isa<GlobalValue>(G.getInitializer()))
116 orderValue(G.getInitializer(), OM);
117 for (const GlobalAlias &A : M.aliases())
118 if (!isa<GlobalValue>(A.getAliasee()))
119 orderValue(A.getAliasee(), OM);
120 for (const GlobalIFunc &I : M.ifuncs())
121 if (!isa<GlobalValue>(I.getResolver()))
122 orderValue(I.getResolver(), OM);
123 for (const Function &F : M) {
124 for (const Use &U : F.operands())
125 if (!isa<GlobalValue>(U.get()))
126 orderValue(U.get(), OM);
127 }
128 OM.LastGlobalConstantID = OM.size();
129
130 // Initializers of GlobalValues are processed in
131 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
132 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
133 // by giving IDs in reverse order.
134 //
135 // Since GlobalValues never reference each other directly (just through
136 // initializers), their relative IDs only matter for determining order of
137 // uses in their initializers.
138 for (const Function &F : M)
139 orderValue(&F, OM);
140 for (const GlobalAlias &A : M.aliases())
141 orderValue(&A, OM);
142 for (const GlobalIFunc &I : M.ifuncs())
143 orderValue(&I, OM);
144 for (const GlobalVariable &G : M.globals())
145 orderValue(&G, OM);
146 OM.LastGlobalValueID = OM.size();
147
148 for (const Function &F : M) {
149 if (F.isDeclaration())
150 continue;
151 // Here we need to match the union of ValueEnumerator::incorporateFunction()
152 // and WriteFunction(). Basic blocks are implicitly declared before
153 // anything else (by declaring their size).
154 for (const BasicBlock &BB : F)
155 orderValue(&BB, OM);
156 for (const Argument &A : F.args())
157 orderValue(&A, OM);
158 for (const BasicBlock &BB : F)
159 for (const Instruction &I : BB)
160 for (const Value *Op : I.operands())
161 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
162 isa<InlineAsm>(*Op))
163 orderValue(Op, OM);
164 for (const BasicBlock &BB : F)
165 for (const Instruction &I : BB)
166 orderValue(&I, OM);
167 }
168 return OM;
169 }
170
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)171 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
172 unsigned ID, const OrderMap &OM,
173 UseListOrderStack &Stack) {
174 // Predict use-list order for this one.
175 using Entry = std::pair<const Use *, unsigned>;
176 SmallVector<Entry, 64> List;
177 for (const Use &U : V->uses())
178 // Check if this user will be serialized.
179 if (OM.lookup(U.getUser()).first)
180 List.push_back(std::make_pair(&U, List.size()));
181
182 if (List.size() < 2)
183 // We may have lost some users.
184 return;
185
186 bool IsGlobalValue = OM.isGlobalValue(ID);
187 llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
188 const Use *LU = L.first;
189 const Use *RU = R.first;
190 if (LU == RU)
191 return false;
192
193 auto LID = OM.lookup(LU->getUser()).first;
194 auto RID = OM.lookup(RU->getUser()).first;
195
196 // Global values are processed in reverse order.
197 //
198 // Moreover, initializers of GlobalValues are set *after* all the globals
199 // have been read (despite having earlier IDs). Rather than awkwardly
200 // modeling this behaviour here, orderModule() has assigned IDs to
201 // initializers of GlobalValues before GlobalValues themselves.
202 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
203 return LID < RID;
204
205 // If ID is 4, then expect: 7 6 5 1 2 3.
206 if (LID < RID) {
207 if (RID <= ID)
208 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
209 return true;
210 return false;
211 }
212 if (RID < LID) {
213 if (LID <= ID)
214 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
215 return false;
216 return true;
217 }
218
219 // LID and RID are equal, so we have different operands of the same user.
220 // Assume operands are added in order for all instructions.
221 if (LID <= ID)
222 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
223 return LU->getOperandNo() < RU->getOperandNo();
224 return LU->getOperandNo() > RU->getOperandNo();
225 });
226
227 if (std::is_sorted(
228 List.begin(), List.end(),
229 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
230 // Order is already correct.
231 return;
232
233 // Store the shuffle.
234 Stack.emplace_back(V, F, List.size());
235 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
236 for (size_t I = 0, E = List.size(); I != E; ++I)
237 Stack.back().Shuffle[I] = List[I].second;
238 }
239
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)240 static void predictValueUseListOrder(const Value *V, const Function *F,
241 OrderMap &OM, UseListOrderStack &Stack) {
242 auto &IDPair = OM[V];
243 assert(IDPair.first && "Unmapped value");
244 if (IDPair.second)
245 // Already predicted.
246 return;
247
248 // Do the actual prediction.
249 IDPair.second = true;
250 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
251 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
252
253 // Recursive descent into constants.
254 if (const Constant *C = dyn_cast<Constant>(V))
255 if (C->getNumOperands()) // Visit GlobalValues.
256 for (const Value *Op : C->operands())
257 if (isa<Constant>(Op)) // Visit GlobalValues.
258 predictValueUseListOrder(Op, F, OM, Stack);
259 }
260
predictUseListOrder(const Module & M)261 static UseListOrderStack predictUseListOrder(const Module &M) {
262 OrderMap OM = orderModule(M);
263
264 // Use-list orders need to be serialized after all the users have been added
265 // to a value, or else the shuffles will be incomplete. Store them per
266 // function in a stack.
267 //
268 // Aside from function order, the order of values doesn't matter much here.
269 UseListOrderStack Stack;
270
271 // We want to visit the functions backward now so we can list function-local
272 // constants in the last Function they're used in. Module-level constants
273 // have already been visited above.
274 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
275 const Function &F = *I;
276 if (F.isDeclaration())
277 continue;
278 for (const BasicBlock &BB : F)
279 predictValueUseListOrder(&BB, &F, OM, Stack);
280 for (const Argument &A : F.args())
281 predictValueUseListOrder(&A, &F, OM, Stack);
282 for (const BasicBlock &BB : F)
283 for (const Instruction &I : BB)
284 for (const Value *Op : I.operands())
285 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
286 predictValueUseListOrder(Op, &F, OM, Stack);
287 for (const BasicBlock &BB : F)
288 for (const Instruction &I : BB)
289 predictValueUseListOrder(&I, &F, OM, Stack);
290 }
291
292 // Visit globals last, since the module-level use-list block will be seen
293 // before the function bodies are processed.
294 for (const GlobalVariable &G : M.globals())
295 predictValueUseListOrder(&G, nullptr, OM, Stack);
296 for (const Function &F : M)
297 predictValueUseListOrder(&F, nullptr, OM, Stack);
298 for (const GlobalAlias &A : M.aliases())
299 predictValueUseListOrder(&A, nullptr, OM, Stack);
300 for (const GlobalIFunc &I : M.ifuncs())
301 predictValueUseListOrder(&I, nullptr, OM, Stack);
302 for (const GlobalVariable &G : M.globals())
303 if (G.hasInitializer())
304 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
305 for (const GlobalAlias &A : M.aliases())
306 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
307 for (const GlobalIFunc &I : M.ifuncs())
308 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
309 for (const Function &F : M) {
310 for (const Use &U : F.operands())
311 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
312 }
313
314 return Stack;
315 }
316
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)317 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
318 return V.first->getType()->isIntOrIntVectorTy();
319 }
320
ValueEnumerator(const Module & M,bool ShouldPreserveUseListOrder)321 ValueEnumerator::ValueEnumerator(const Module &M,
322 bool ShouldPreserveUseListOrder)
323 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
324 if (ShouldPreserveUseListOrder)
325 UseListOrders = predictUseListOrder(M);
326
327 // Enumerate the global variables.
328 for (const GlobalVariable &GV : M.globals())
329 EnumerateValue(&GV);
330
331 // Enumerate the functions.
332 for (const Function & F : M) {
333 EnumerateValue(&F);
334 EnumerateAttributes(F.getAttributes());
335 }
336
337 // Enumerate the aliases.
338 for (const GlobalAlias &GA : M.aliases())
339 EnumerateValue(&GA);
340
341 // Enumerate the ifuncs.
342 for (const GlobalIFunc &GIF : M.ifuncs())
343 EnumerateValue(&GIF);
344
345 // Remember what is the cutoff between globalvalue's and other constants.
346 unsigned FirstConstant = Values.size();
347
348 // Enumerate the global variable initializers and attributes.
349 for (const GlobalVariable &GV : M.globals()) {
350 if (GV.hasInitializer())
351 EnumerateValue(GV.getInitializer());
352 if (GV.hasAttributes())
353 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
354 }
355
356 // Enumerate the aliasees.
357 for (const GlobalAlias &GA : M.aliases())
358 EnumerateValue(GA.getAliasee());
359
360 // Enumerate the ifunc resolvers.
361 for (const GlobalIFunc &GIF : M.ifuncs())
362 EnumerateValue(GIF.getResolver());
363
364 // Enumerate any optional Function data.
365 for (const Function &F : M)
366 for (const Use &U : F.operands())
367 EnumerateValue(U.get());
368
369 // Enumerate the metadata type.
370 //
371 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
372 // only encodes the metadata type when it's used as a value.
373 EnumerateType(Type::getMetadataTy(M.getContext()));
374
375 // Insert constants and metadata that are named at module level into the slot
376 // pool so that the module symbol table can refer to them...
377 EnumerateValueSymbolTable(M.getValueSymbolTable());
378 EnumerateNamedMetadata(M);
379
380 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
381 for (const GlobalVariable &GV : M.globals()) {
382 MDs.clear();
383 GV.getAllMetadata(MDs);
384 for (const auto &I : MDs)
385 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
386 // to write metadata to the global variable's own metadata block
387 // (PR28134).
388 EnumerateMetadata(nullptr, I.second);
389 }
390
391 // Enumerate types used by function bodies and argument lists.
392 for (const Function &F : M) {
393 for (const Argument &A : F.args())
394 EnumerateType(A.getType());
395
396 // Enumerate metadata attached to this function.
397 MDs.clear();
398 F.getAllMetadata(MDs);
399 for (const auto &I : MDs)
400 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
401
402 for (const BasicBlock &BB : F)
403 for (const Instruction &I : BB) {
404 for (const Use &Op : I.operands()) {
405 auto *MD = dyn_cast<MetadataAsValue>(&Op);
406 if (!MD) {
407 EnumerateOperandType(Op);
408 continue;
409 }
410
411 // Local metadata is enumerated during function-incorporation.
412 if (isa<LocalAsMetadata>(MD->getMetadata()))
413 continue;
414
415 EnumerateMetadata(&F, MD->getMetadata());
416 }
417 EnumerateType(I.getType());
418 if (const CallInst *CI = dyn_cast<CallInst>(&I))
419 EnumerateAttributes(CI->getAttributes());
420 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
421 EnumerateAttributes(II->getAttributes());
422
423 // Enumerate metadata attached with this instruction.
424 MDs.clear();
425 I.getAllMetadataOtherThanDebugLoc(MDs);
426 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
427 EnumerateMetadata(&F, MDs[i].second);
428
429 // Don't enumerate the location directly -- it has a special record
430 // type -- but enumerate its operands.
431 if (DILocation *L = I.getDebugLoc())
432 for (const Metadata *Op : L->operands())
433 EnumerateMetadata(&F, Op);
434 }
435 }
436
437 // Optimize constant ordering.
438 OptimizeConstants(FirstConstant, Values.size());
439
440 // Organize metadata ordering.
441 organizeMetadata();
442 }
443
getInstructionID(const Instruction * Inst) const444 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
445 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
446 assert(I != InstructionMap.end() && "Instruction is not mapped!");
447 return I->second;
448 }
449
getComdatID(const Comdat * C) const450 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
451 unsigned ComdatID = Comdats.idFor(C);
452 assert(ComdatID && "Comdat not found!");
453 return ComdatID;
454 }
455
setInstructionID(const Instruction * I)456 void ValueEnumerator::setInstructionID(const Instruction *I) {
457 InstructionMap[I] = InstructionCount++;
458 }
459
getValueID(const Value * V) const460 unsigned ValueEnumerator::getValueID(const Value *V) const {
461 if (auto *MD = dyn_cast<MetadataAsValue>(V))
462 return getMetadataID(MD->getMetadata());
463
464 ValueMapType::const_iterator I = ValueMap.find(V);
465 assert(I != ValueMap.end() && "Value not in slotcalculator!");
466 return I->second-1;
467 }
468
469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const470 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
471 print(dbgs(), ValueMap, "Default");
472 dbgs() << '\n';
473 print(dbgs(), MetadataMap, "MetaData");
474 dbgs() << '\n';
475 }
476 #endif
477
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const478 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
479 const char *Name) const {
480 OS << "Map Name: " << Name << "\n";
481 OS << "Size: " << Map.size() << "\n";
482 for (ValueMapType::const_iterator I = Map.begin(),
483 E = Map.end(); I != E; ++I) {
484 const Value *V = I->first;
485 if (V->hasName())
486 OS << "Value: " << V->getName();
487 else
488 OS << "Value: [null]\n";
489 V->print(errs());
490 errs() << '\n';
491
492 OS << " Uses(" << V->getNumUses() << "):";
493 for (const Use &U : V->uses()) {
494 if (&U != &*V->use_begin())
495 OS << ",";
496 if(U->hasName())
497 OS << " " << U->getName();
498 else
499 OS << " [null]";
500
501 }
502 OS << "\n\n";
503 }
504 }
505
print(raw_ostream & OS,const MetadataMapType & Map,const char * Name) const506 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
507 const char *Name) const {
508 OS << "Map Name: " << Name << "\n";
509 OS << "Size: " << Map.size() << "\n";
510 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
511 const Metadata *MD = I->first;
512 OS << "Metadata: slot = " << I->second.ID << "\n";
513 OS << "Metadata: function = " << I->second.F << "\n";
514 MD->print(OS);
515 OS << "\n";
516 }
517 }
518
519 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)520 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
521 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
522
523 if (ShouldPreserveUseListOrder)
524 // Optimizing constants makes the use-list order difficult to predict.
525 // Disable it for now when trying to preserve the order.
526 return;
527
528 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
529 [this](const std::pair<const Value *, unsigned> &LHS,
530 const std::pair<const Value *, unsigned> &RHS) {
531 // Sort by plane.
532 if (LHS.first->getType() != RHS.first->getType())
533 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
534 // Then by frequency.
535 return LHS.second > RHS.second;
536 });
537
538 // Ensure that integer and vector of integer constants are at the start of the
539 // constant pool. This is important so that GEP structure indices come before
540 // gep constant exprs.
541 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
542 isIntOrIntVectorValue);
543
544 // Rebuild the modified portion of ValueMap.
545 for (; CstStart != CstEnd; ++CstStart)
546 ValueMap[Values[CstStart].first] = CstStart+1;
547 }
548
549 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
550 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)551 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
552 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
553 VI != VE; ++VI)
554 EnumerateValue(VI->getValue());
555 }
556
557 /// Insert all of the values referenced by named metadata in the specified
558 /// module.
EnumerateNamedMetadata(const Module & M)559 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
560 for (const auto &I : M.named_metadata())
561 EnumerateNamedMDNode(&I);
562 }
563
EnumerateNamedMDNode(const NamedMDNode * MD)564 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
565 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
566 EnumerateMetadata(nullptr, MD->getOperand(i));
567 }
568
getMetadataFunctionID(const Function * F) const569 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
570 return F ? getValueID(F) + 1 : 0;
571 }
572
EnumerateMetadata(const Function * F,const Metadata * MD)573 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
574 EnumerateMetadata(getMetadataFunctionID(F), MD);
575 }
576
EnumerateFunctionLocalMetadata(const Function & F,const LocalAsMetadata * Local)577 void ValueEnumerator::EnumerateFunctionLocalMetadata(
578 const Function &F, const LocalAsMetadata *Local) {
579 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
580 }
581
dropFunctionFromMetadata(MetadataMapType::value_type & FirstMD)582 void ValueEnumerator::dropFunctionFromMetadata(
583 MetadataMapType::value_type &FirstMD) {
584 SmallVector<const MDNode *, 64> Worklist;
585 auto push = [&Worklist](MetadataMapType::value_type &MD) {
586 auto &Entry = MD.second;
587
588 // Nothing to do if this metadata isn't tagged.
589 if (!Entry.F)
590 return;
591
592 // Drop the function tag.
593 Entry.F = 0;
594
595 // If this is has an ID and is an MDNode, then its operands have entries as
596 // well. We need to drop the function from them too.
597 if (Entry.ID)
598 if (auto *N = dyn_cast<MDNode>(MD.first))
599 Worklist.push_back(N);
600 };
601 push(FirstMD);
602 while (!Worklist.empty())
603 for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
604 if (!Op)
605 continue;
606 auto MD = MetadataMap.find(Op);
607 if (MD != MetadataMap.end())
608 push(*MD);
609 }
610 }
611
EnumerateMetadata(unsigned F,const Metadata * MD)612 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
613 // It's vital for reader efficiency that uniqued subgraphs are done in
614 // post-order; it's expensive when their operands have forward references.
615 // If a distinct node is referenced from a uniqued node, it'll be delayed
616 // until the uniqued subgraph has been completely traversed.
617 SmallVector<const MDNode *, 32> DelayedDistinctNodes;
618
619 // Start by enumerating MD, and then work through its transitive operands in
620 // post-order. This requires a depth-first search.
621 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
622 if (const MDNode *N = enumerateMetadataImpl(F, MD))
623 Worklist.push_back(std::make_pair(N, N->op_begin()));
624
625 while (!Worklist.empty()) {
626 const MDNode *N = Worklist.back().first;
627
628 // Enumerate operands until we hit a new node. We need to traverse these
629 // nodes' operands before visiting the rest of N's operands.
630 MDNode::op_iterator I = std::find_if(
631 Worklist.back().second, N->op_end(),
632 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
633 if (I != N->op_end()) {
634 auto *Op = cast<MDNode>(*I);
635 Worklist.back().second = ++I;
636
637 // Delay traversing Op if it's a distinct node and N is uniqued.
638 if (Op->isDistinct() && !N->isDistinct())
639 DelayedDistinctNodes.push_back(Op);
640 else
641 Worklist.push_back(std::make_pair(Op, Op->op_begin()));
642 continue;
643 }
644
645 // All the operands have been visited. Now assign an ID.
646 Worklist.pop_back();
647 MDs.push_back(N);
648 MetadataMap[N].ID = MDs.size();
649
650 // Flush out any delayed distinct nodes; these are all the distinct nodes
651 // that are leaves in last uniqued subgraph.
652 if (Worklist.empty() || Worklist.back().first->isDistinct()) {
653 for (const MDNode *N : DelayedDistinctNodes)
654 Worklist.push_back(std::make_pair(N, N->op_begin()));
655 DelayedDistinctNodes.clear();
656 }
657 }
658 }
659
enumerateMetadataImpl(unsigned F,const Metadata * MD)660 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
661 if (!MD)
662 return nullptr;
663
664 assert(
665 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
666 "Invalid metadata kind");
667
668 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
669 MDIndex &Entry = Insertion.first->second;
670 if (!Insertion.second) {
671 // Already mapped. If F doesn't match the function tag, drop it.
672 if (Entry.hasDifferentFunction(F))
673 dropFunctionFromMetadata(*Insertion.first);
674 return nullptr;
675 }
676
677 // Don't assign IDs to metadata nodes.
678 if (auto *N = dyn_cast<MDNode>(MD))
679 return N;
680
681 // Save the metadata.
682 MDs.push_back(MD);
683 Entry.ID = MDs.size();
684
685 // Enumerate the constant, if any.
686 if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
687 EnumerateValue(C->getValue());
688
689 return nullptr;
690 }
691
692 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
693 /// information reachable from the metadata.
EnumerateFunctionLocalMetadata(unsigned F,const LocalAsMetadata * Local)694 void ValueEnumerator::EnumerateFunctionLocalMetadata(
695 unsigned F, const LocalAsMetadata *Local) {
696 assert(F && "Expected a function");
697
698 // Check to see if it's already in!
699 MDIndex &Index = MetadataMap[Local];
700 if (Index.ID) {
701 assert(Index.F == F && "Expected the same function");
702 return;
703 }
704
705 MDs.push_back(Local);
706 Index.F = F;
707 Index.ID = MDs.size();
708
709 EnumerateValue(Local->getValue());
710 }
711
getMetadataTypeOrder(const Metadata * MD)712 static unsigned getMetadataTypeOrder(const Metadata *MD) {
713 // Strings are emitted in bulk and must come first.
714 if (isa<MDString>(MD))
715 return 0;
716
717 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
718 // to the front since we can detect it.
719 auto *N = dyn_cast<MDNode>(MD);
720 if (!N)
721 return 1;
722
723 // The reader is fast forward references for distinct node operands, but slow
724 // when uniqued operands are unresolved.
725 return N->isDistinct() ? 2 : 3;
726 }
727
organizeMetadata()728 void ValueEnumerator::organizeMetadata() {
729 assert(MetadataMap.size() == MDs.size() &&
730 "Metadata map and vector out of sync");
731
732 if (MDs.empty())
733 return;
734
735 // Copy out the index information from MetadataMap in order to choose a new
736 // order.
737 SmallVector<MDIndex, 64> Order;
738 Order.reserve(MetadataMap.size());
739 for (const Metadata *MD : MDs)
740 Order.push_back(MetadataMap.lookup(MD));
741
742 // Partition:
743 // - by function, then
744 // - by isa<MDString>
745 // and then sort by the original/current ID. Since the IDs are guaranteed to
746 // be unique, the result of std::sort will be deterministic. There's no need
747 // for std::stable_sort.
748 llvm::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
749 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
750 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
751 });
752
753 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
754 // and fix up MetadataMap.
755 std::vector<const Metadata *> OldMDs = std::move(MDs);
756 MDs.reserve(OldMDs.size());
757 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
758 auto *MD = Order[I].get(OldMDs);
759 MDs.push_back(MD);
760 MetadataMap[MD].ID = I + 1;
761 if (isa<MDString>(MD))
762 ++NumMDStrings;
763 }
764
765 // Return early if there's nothing for the functions.
766 if (MDs.size() == Order.size())
767 return;
768
769 // Build the function metadata ranges.
770 MDRange R;
771 FunctionMDs.reserve(OldMDs.size());
772 unsigned PrevF = 0;
773 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
774 ++I) {
775 unsigned F = Order[I].F;
776 if (!PrevF) {
777 PrevF = F;
778 } else if (PrevF != F) {
779 R.Last = FunctionMDs.size();
780 std::swap(R, FunctionMDInfo[PrevF]);
781 R.First = FunctionMDs.size();
782
783 ID = MDs.size();
784 PrevF = F;
785 }
786
787 auto *MD = Order[I].get(OldMDs);
788 FunctionMDs.push_back(MD);
789 MetadataMap[MD].ID = ++ID;
790 if (isa<MDString>(MD))
791 ++R.NumStrings;
792 }
793 R.Last = FunctionMDs.size();
794 FunctionMDInfo[PrevF] = R;
795 }
796
incorporateFunctionMetadata(const Function & F)797 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
798 NumModuleMDs = MDs.size();
799
800 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
801 NumMDStrings = R.NumStrings;
802 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
803 FunctionMDs.begin() + R.Last);
804 }
805
EnumerateValue(const Value * V)806 void ValueEnumerator::EnumerateValue(const Value *V) {
807 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
808 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
809
810 // Check to see if it's already in!
811 unsigned &ValueID = ValueMap[V];
812 if (ValueID) {
813 // Increment use count.
814 Values[ValueID-1].second++;
815 return;
816 }
817
818 if (auto *GO = dyn_cast<GlobalObject>(V))
819 if (const Comdat *C = GO->getComdat())
820 Comdats.insert(C);
821
822 // Enumerate the type of this value.
823 EnumerateType(V->getType());
824
825 if (const Constant *C = dyn_cast<Constant>(V)) {
826 if (isa<GlobalValue>(C)) {
827 // Initializers for globals are handled explicitly elsewhere.
828 } else if (C->getNumOperands()) {
829 // If a constant has operands, enumerate them. This makes sure that if a
830 // constant has uses (for example an array of const ints), that they are
831 // inserted also.
832
833 // We prefer to enumerate them with values before we enumerate the user
834 // itself. This makes it more likely that we can avoid forward references
835 // in the reader. We know that there can be no cycles in the constants
836 // graph that don't go through a global variable.
837 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
838 I != E; ++I)
839 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
840 EnumerateValue(*I);
841
842 // Finally, add the value. Doing this could make the ValueID reference be
843 // dangling, don't reuse it.
844 Values.push_back(std::make_pair(V, 1U));
845 ValueMap[V] = Values.size();
846 return;
847 }
848 }
849
850 // Add the value.
851 Values.push_back(std::make_pair(V, 1U));
852 ValueID = Values.size();
853 }
854
855
EnumerateType(Type * Ty)856 void ValueEnumerator::EnumerateType(Type *Ty) {
857 unsigned *TypeID = &TypeMap[Ty];
858
859 // We've already seen this type.
860 if (*TypeID)
861 return;
862
863 // If it is a non-anonymous struct, mark the type as being visited so that we
864 // don't recursively visit it. This is safe because we allow forward
865 // references of these in the bitcode reader.
866 if (StructType *STy = dyn_cast<StructType>(Ty))
867 if (!STy->isLiteral())
868 *TypeID = ~0U;
869
870 // Enumerate all of the subtypes before we enumerate this type. This ensures
871 // that the type will be enumerated in an order that can be directly built.
872 for (Type *SubTy : Ty->subtypes())
873 EnumerateType(SubTy);
874
875 // Refresh the TypeID pointer in case the table rehashed.
876 TypeID = &TypeMap[Ty];
877
878 // Check to see if we got the pointer another way. This can happen when
879 // enumerating recursive types that hit the base case deeper than they start.
880 //
881 // If this is actually a struct that we are treating as forward ref'able,
882 // then emit the definition now that all of its contents are available.
883 if (*TypeID && *TypeID != ~0U)
884 return;
885
886 // Add this type now that its contents are all happily enumerated.
887 Types.push_back(Ty);
888
889 *TypeID = Types.size();
890 }
891
892 // Enumerate the types for the specified value. If the value is a constant,
893 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)894 void ValueEnumerator::EnumerateOperandType(const Value *V) {
895 EnumerateType(V->getType());
896
897 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
898
899 const Constant *C = dyn_cast<Constant>(V);
900 if (!C)
901 return;
902
903 // If this constant is already enumerated, ignore it, we know its type must
904 // be enumerated.
905 if (ValueMap.count(C))
906 return;
907
908 // This constant may have operands, make sure to enumerate the types in
909 // them.
910 for (const Value *Op : C->operands()) {
911 // Don't enumerate basic blocks here, this happens as operands to
912 // blockaddress.
913 if (isa<BasicBlock>(Op))
914 continue;
915
916 EnumerateOperandType(Op);
917 }
918 }
919
EnumerateAttributes(AttributeList PAL)920 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
921 if (PAL.isEmpty()) return; // null is always 0.
922
923 // Do a lookup.
924 unsigned &Entry = AttributeListMap[PAL];
925 if (Entry == 0) {
926 // Never saw this before, add it.
927 AttributeLists.push_back(PAL);
928 Entry = AttributeLists.size();
929 }
930
931 // Do lookups for all attribute groups.
932 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
933 AttributeSet AS = PAL.getAttributes(i);
934 if (!AS.hasAttributes())
935 continue;
936 IndexAndAttrSet Pair = {i, AS};
937 unsigned &Entry = AttributeGroupMap[Pair];
938 if (Entry == 0) {
939 AttributeGroups.push_back(Pair);
940 Entry = AttributeGroups.size();
941 }
942 }
943 }
944
incorporateFunction(const Function & F)945 void ValueEnumerator::incorporateFunction(const Function &F) {
946 InstructionCount = 0;
947 NumModuleValues = Values.size();
948
949 // Add global metadata to the function block. This doesn't include
950 // LocalAsMetadata.
951 incorporateFunctionMetadata(F);
952
953 // Adding function arguments to the value table.
954 for (const auto &I : F.args())
955 EnumerateValue(&I);
956
957 FirstFuncConstantID = Values.size();
958
959 // Add all function-level constants to the value table.
960 for (const BasicBlock &BB : F) {
961 for (const Instruction &I : BB)
962 for (const Use &OI : I.operands()) {
963 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
964 EnumerateValue(OI);
965 }
966 BasicBlocks.push_back(&BB);
967 ValueMap[&BB] = BasicBlocks.size();
968 }
969
970 // Optimize the constant layout.
971 OptimizeConstants(FirstFuncConstantID, Values.size());
972
973 // Add the function's parameter attributes so they are available for use in
974 // the function's instruction.
975 EnumerateAttributes(F.getAttributes());
976
977 FirstInstID = Values.size();
978
979 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
980 // Add all of the instructions.
981 for (const BasicBlock &BB : F) {
982 for (const Instruction &I : BB) {
983 for (const Use &OI : I.operands()) {
984 if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
985 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
986 // Enumerate metadata after the instructions they might refer to.
987 FnLocalMDVector.push_back(Local);
988 }
989
990 if (!I.getType()->isVoidTy())
991 EnumerateValue(&I);
992 }
993 }
994
995 // Add all of the function-local metadata.
996 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
997 // At this point, every local values have been incorporated, we shouldn't
998 // have a metadata operand that references a value that hasn't been seen.
999 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1000 "Missing value for metadata operand");
1001 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1002 }
1003 }
1004
purgeFunction()1005 void ValueEnumerator::purgeFunction() {
1006 /// Remove purged values from the ValueMap.
1007 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1008 ValueMap.erase(Values[i].first);
1009 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1010 MetadataMap.erase(MDs[i]);
1011 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1012 ValueMap.erase(BasicBlocks[i]);
1013
1014 Values.resize(NumModuleValues);
1015 MDs.resize(NumModuleMDs);
1016 BasicBlocks.clear();
1017 NumMDStrings = 0;
1018 }
1019
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)1020 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1021 DenseMap<const BasicBlock*, unsigned> &IDMap) {
1022 unsigned Counter = 0;
1023 for (const BasicBlock &BB : *F)
1024 IDMap[&BB] = ++Counter;
1025 }
1026
1027 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1028 /// specified basic block. This is relatively expensive information, so it
1029 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const1030 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1031 unsigned &Idx = GlobalBasicBlockIDs[BB];
1032 if (Idx != 0)
1033 return Idx-1;
1034
1035 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1036 return getGlobalBasicBlockID(BB);
1037 }
1038
computeBitsRequiredForTypeIndicies() const1039 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1040 return Log2_32_Ceil(getTypes().size() + 1);
1041 }
1042