1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass lowers LLVM IR exception handling into something closer to what the
11 // backend wants for functions using a personality function from a runtime
12 // provided by MSVC. Functions with other personality functions are left alone
13 // and may be prepared by other passes. In particular, all supported MSVC
14 // personality functions require cleanup code to be outlined, and the C++
15 // personality requires catch handler code to be outlined.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/SSAUpdater.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "winehprepare"
40
41 static cl::opt<bool> DisableDemotion(
42 "disable-demotion", cl::Hidden,
43 cl::desc(
44 "Clone multicolor basic blocks but do not demote cross scopes"),
45 cl::init(false));
46
47 static cl::opt<bool> DisableCleanups(
48 "disable-cleanups", cl::Hidden,
49 cl::desc("Do not remove implausible terminators or other similar cleanups"),
50 cl::init(false));
51
52 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
53 "demote-catchswitch-only", cl::Hidden,
54 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
55
56 namespace {
57
58 class WinEHPrepare : public FunctionPass {
59 public:
60 static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(bool DemoteCatchSwitchPHIOnly=false)61 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
62 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
63
64 bool runOnFunction(Function &Fn) override;
65
66 bool doFinalization(Module &M) override;
67
68 void getAnalysisUsage(AnalysisUsage &AU) const override;
69
getPassName() const70 StringRef getPassName() const override {
71 return "Windows exception handling preparation";
72 }
73
74 private:
75 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
76 void
77 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
78 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
79 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
80 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
81 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
82 bool prepareExplicitEH(Function &F);
83 void colorFunclets(Function &F);
84
85 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
86 void cloneCommonBlocks(Function &F);
87 void removeImplausibleInstructions(Function &F);
88 void cleanupPreparedFunclets(Function &F);
89 void verifyPreparedFunclets(Function &F);
90
91 bool DemoteCatchSwitchPHIOnly;
92
93 // All fields are reset by runOnFunction.
94 EHPersonality Personality = EHPersonality::Unknown;
95
96 const DataLayout *DL = nullptr;
97 DenseMap<BasicBlock *, ColorVector> BlockColors;
98 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
99 };
100
101 } // end anonymous namespace
102
103 char WinEHPrepare::ID = 0;
104 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
105 false, false)
106
createWinEHPass(bool DemoteCatchSwitchPHIOnly)107 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
108 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
109 }
110
runOnFunction(Function & Fn)111 bool WinEHPrepare::runOnFunction(Function &Fn) {
112 if (!Fn.hasPersonalityFn())
113 return false;
114
115 // Classify the personality to see what kind of preparation we need.
116 Personality = classifyEHPersonality(Fn.getPersonalityFn());
117
118 // Do nothing if this is not a scope-based personality.
119 if (!isScopedEHPersonality(Personality))
120 return false;
121
122 DL = &Fn.getParent()->getDataLayout();
123 return prepareExplicitEH(Fn);
124 }
125
doFinalization(Module & M)126 bool WinEHPrepare::doFinalization(Module &M) { return false; }
127
getAnalysisUsage(AnalysisUsage & AU) const128 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
129
addUnwindMapEntry(WinEHFuncInfo & FuncInfo,int ToState,const BasicBlock * BB)130 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
131 const BasicBlock *BB) {
132 CxxUnwindMapEntry UME;
133 UME.ToState = ToState;
134 UME.Cleanup = BB;
135 FuncInfo.CxxUnwindMap.push_back(UME);
136 return FuncInfo.getLastStateNumber();
137 }
138
addTryBlockMapEntry(WinEHFuncInfo & FuncInfo,int TryLow,int TryHigh,int CatchHigh,ArrayRef<const CatchPadInst * > Handlers)139 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
140 int TryHigh, int CatchHigh,
141 ArrayRef<const CatchPadInst *> Handlers) {
142 WinEHTryBlockMapEntry TBME;
143 TBME.TryLow = TryLow;
144 TBME.TryHigh = TryHigh;
145 TBME.CatchHigh = CatchHigh;
146 assert(TBME.TryLow <= TBME.TryHigh);
147 for (const CatchPadInst *CPI : Handlers) {
148 WinEHHandlerType HT;
149 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
150 if (TypeInfo->isNullValue())
151 HT.TypeDescriptor = nullptr;
152 else
153 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
154 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
155 HT.Handler = CPI->getParent();
156 if (auto *AI =
157 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
158 HT.CatchObj.Alloca = AI;
159 else
160 HT.CatchObj.Alloca = nullptr;
161 TBME.HandlerArray.push_back(HT);
162 }
163 FuncInfo.TryBlockMap.push_back(TBME);
164 }
165
getCleanupRetUnwindDest(const CleanupPadInst * CleanupPad)166 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
167 for (const User *U : CleanupPad->users())
168 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
169 return CRI->getUnwindDest();
170 return nullptr;
171 }
172
calculateStateNumbersForInvokes(const Function * Fn,WinEHFuncInfo & FuncInfo)173 static void calculateStateNumbersForInvokes(const Function *Fn,
174 WinEHFuncInfo &FuncInfo) {
175 auto *F = const_cast<Function *>(Fn);
176 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
177 for (BasicBlock &BB : *F) {
178 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
179 if (!II)
180 continue;
181
182 auto &BBColors = BlockColors[&BB];
183 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
184 BasicBlock *FuncletEntryBB = BBColors.front();
185
186 BasicBlock *FuncletUnwindDest;
187 auto *FuncletPad =
188 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
189 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
190 if (!FuncletPad)
191 FuncletUnwindDest = nullptr;
192 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
193 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
194 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
195 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
196 else
197 llvm_unreachable("unexpected funclet pad!");
198
199 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
200 int BaseState = -1;
201 if (FuncletUnwindDest == InvokeUnwindDest) {
202 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
203 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
204 BaseState = BaseStateI->second;
205 }
206
207 if (BaseState != -1) {
208 FuncInfo.InvokeStateMap[II] = BaseState;
209 } else {
210 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
211 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
212 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
213 }
214 }
215 }
216
217 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
218 // to. If the unwind edge came from an invoke, return null.
getEHPadFromPredecessor(const BasicBlock * BB,Value * ParentPad)219 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
220 Value *ParentPad) {
221 const TerminatorInst *TI = BB->getTerminator();
222 if (isa<InvokeInst>(TI))
223 return nullptr;
224 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
225 if (CatchSwitch->getParentPad() != ParentPad)
226 return nullptr;
227 return BB;
228 }
229 assert(!TI->isEHPad() && "unexpected EHPad!");
230 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
231 if (CleanupPad->getParentPad() != ParentPad)
232 return nullptr;
233 return CleanupPad->getParent();
234 }
235
calculateCXXStateNumbers(WinEHFuncInfo & FuncInfo,const Instruction * FirstNonPHI,int ParentState)236 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
237 const Instruction *FirstNonPHI,
238 int ParentState) {
239 const BasicBlock *BB = FirstNonPHI->getParent();
240 assert(BB->isEHPad() && "not a funclet!");
241
242 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
243 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
244 "shouldn't revist catch funclets!");
245
246 SmallVector<const CatchPadInst *, 2> Handlers;
247 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
248 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
249 Handlers.push_back(CatchPad);
250 }
251 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
252 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
253 for (const BasicBlock *PredBlock : predecessors(BB))
254 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
255 CatchSwitch->getParentPad())))
256 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
257 TryLow);
258 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
259
260 // catchpads are separate funclets in C++ EH due to the way rethrow works.
261 int TryHigh = CatchLow - 1;
262 for (const auto *CatchPad : Handlers) {
263 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
264 for (const User *U : CatchPad->users()) {
265 const auto *UserI = cast<Instruction>(U);
266 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
267 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
268 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
269 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
270 }
271 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
272 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
273 // If a nested cleanup pad reports a null unwind destination and the
274 // enclosing catch pad doesn't it must be post-dominated by an
275 // unreachable instruction.
276 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
277 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
278 }
279 }
280 }
281 int CatchHigh = FuncInfo.getLastStateNumber();
282 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
283 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
284 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
285 << '\n');
286 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
287 << '\n');
288 } else {
289 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
290
291 // It's possible for a cleanup to be visited twice: it might have multiple
292 // cleanupret instructions.
293 if (FuncInfo.EHPadStateMap.count(CleanupPad))
294 return;
295
296 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
297 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
298 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
299 << BB->getName() << '\n');
300 for (const BasicBlock *PredBlock : predecessors(BB)) {
301 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
302 CleanupPad->getParentPad()))) {
303 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
304 CleanupState);
305 }
306 }
307 for (const User *U : CleanupPad->users()) {
308 const auto *UserI = cast<Instruction>(U);
309 if (UserI->isEHPad())
310 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
311 "contain exceptional actions");
312 }
313 }
314 }
315
addSEHExcept(WinEHFuncInfo & FuncInfo,int ParentState,const Function * Filter,const BasicBlock * Handler)316 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
317 const Function *Filter, const BasicBlock *Handler) {
318 SEHUnwindMapEntry Entry;
319 Entry.ToState = ParentState;
320 Entry.IsFinally = false;
321 Entry.Filter = Filter;
322 Entry.Handler = Handler;
323 FuncInfo.SEHUnwindMap.push_back(Entry);
324 return FuncInfo.SEHUnwindMap.size() - 1;
325 }
326
addSEHFinally(WinEHFuncInfo & FuncInfo,int ParentState,const BasicBlock * Handler)327 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
328 const BasicBlock *Handler) {
329 SEHUnwindMapEntry Entry;
330 Entry.ToState = ParentState;
331 Entry.IsFinally = true;
332 Entry.Filter = nullptr;
333 Entry.Handler = Handler;
334 FuncInfo.SEHUnwindMap.push_back(Entry);
335 return FuncInfo.SEHUnwindMap.size() - 1;
336 }
337
calculateSEHStateNumbers(WinEHFuncInfo & FuncInfo,const Instruction * FirstNonPHI,int ParentState)338 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
339 const Instruction *FirstNonPHI,
340 int ParentState) {
341 const BasicBlock *BB = FirstNonPHI->getParent();
342 assert(BB->isEHPad() && "no a funclet!");
343
344 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
345 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
346 "shouldn't revist catch funclets!");
347
348 // Extract the filter function and the __except basic block and create a
349 // state for them.
350 assert(CatchSwitch->getNumHandlers() == 1 &&
351 "SEH doesn't have multiple handlers per __try");
352 const auto *CatchPad =
353 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
354 const BasicBlock *CatchPadBB = CatchPad->getParent();
355 const Constant *FilterOrNull =
356 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
357 const Function *Filter = dyn_cast<Function>(FilterOrNull);
358 assert((Filter || FilterOrNull->isNullValue()) &&
359 "unexpected filter value");
360 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
361
362 // Everything in the __try block uses TryState as its parent state.
363 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
364 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
365 << CatchPadBB->getName() << '\n');
366 for (const BasicBlock *PredBlock : predecessors(BB))
367 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
368 CatchSwitch->getParentPad())))
369 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
370 TryState);
371
372 // Everything in the __except block unwinds to ParentState, just like code
373 // outside the __try.
374 for (const User *U : CatchPad->users()) {
375 const auto *UserI = cast<Instruction>(U);
376 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
377 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
378 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
379 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
380 }
381 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
382 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
383 // If a nested cleanup pad reports a null unwind destination and the
384 // enclosing catch pad doesn't it must be post-dominated by an
385 // unreachable instruction.
386 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
387 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
388 }
389 }
390 } else {
391 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
392
393 // It's possible for a cleanup to be visited twice: it might have multiple
394 // cleanupret instructions.
395 if (FuncInfo.EHPadStateMap.count(CleanupPad))
396 return;
397
398 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
399 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
400 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
401 << BB->getName() << '\n');
402 for (const BasicBlock *PredBlock : predecessors(BB))
403 if ((PredBlock =
404 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
405 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
406 CleanupState);
407 for (const User *U : CleanupPad->users()) {
408 const auto *UserI = cast<Instruction>(U);
409 if (UserI->isEHPad())
410 report_fatal_error("Cleanup funclets for the SEH personality cannot "
411 "contain exceptional actions");
412 }
413 }
414 }
415
isTopLevelPadForMSVC(const Instruction * EHPad)416 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
417 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
418 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
419 CatchSwitch->unwindsToCaller();
420 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
421 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
422 getCleanupRetUnwindDest(CleanupPad) == nullptr;
423 if (isa<CatchPadInst>(EHPad))
424 return false;
425 llvm_unreachable("unexpected EHPad!");
426 }
427
calculateSEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)428 void llvm::calculateSEHStateNumbers(const Function *Fn,
429 WinEHFuncInfo &FuncInfo) {
430 // Don't compute state numbers twice.
431 if (!FuncInfo.SEHUnwindMap.empty())
432 return;
433
434 for (const BasicBlock &BB : *Fn) {
435 if (!BB.isEHPad())
436 continue;
437 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
438 if (!isTopLevelPadForMSVC(FirstNonPHI))
439 continue;
440 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
441 }
442
443 calculateStateNumbersForInvokes(Fn, FuncInfo);
444 }
445
calculateWinCXXEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)446 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
447 WinEHFuncInfo &FuncInfo) {
448 // Return if it's already been done.
449 if (!FuncInfo.EHPadStateMap.empty())
450 return;
451
452 for (const BasicBlock &BB : *Fn) {
453 if (!BB.isEHPad())
454 continue;
455 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
456 if (!isTopLevelPadForMSVC(FirstNonPHI))
457 continue;
458 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
459 }
460
461 calculateStateNumbersForInvokes(Fn, FuncInfo);
462 }
463
addClrEHHandler(WinEHFuncInfo & FuncInfo,int HandlerParentState,int TryParentState,ClrHandlerType HandlerType,uint32_t TypeToken,const BasicBlock * Handler)464 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
465 int TryParentState, ClrHandlerType HandlerType,
466 uint32_t TypeToken, const BasicBlock *Handler) {
467 ClrEHUnwindMapEntry Entry;
468 Entry.HandlerParentState = HandlerParentState;
469 Entry.TryParentState = TryParentState;
470 Entry.Handler = Handler;
471 Entry.HandlerType = HandlerType;
472 Entry.TypeToken = TypeToken;
473 FuncInfo.ClrEHUnwindMap.push_back(Entry);
474 return FuncInfo.ClrEHUnwindMap.size() - 1;
475 }
476
calculateClrEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)477 void llvm::calculateClrEHStateNumbers(const Function *Fn,
478 WinEHFuncInfo &FuncInfo) {
479 // Return if it's already been done.
480 if (!FuncInfo.EHPadStateMap.empty())
481 return;
482
483 // This numbering assigns one state number to each catchpad and cleanuppad.
484 // It also computes two tree-like relations over states:
485 // 1) Each state has a "HandlerParentState", which is the state of the next
486 // outer handler enclosing this state's handler (same as nearest ancestor
487 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
488 // 2) Each state has a "TryParentState", which:
489 // a) for a catchpad that's not the last handler on its catchswitch, is
490 // the state of the next catchpad on that catchswitch
491 // b) for all other pads, is the state of the pad whose try region is the
492 // next outer try region enclosing this state's try region. The "try
493 // regions are not present as such in the IR, but will be inferred
494 // based on the placement of invokes and pads which reach each other
495 // by exceptional exits
496 // Catchswitches do not get their own states, but each gets mapped to the
497 // state of its first catchpad.
498
499 // Step one: walk down from outermost to innermost funclets, assigning each
500 // catchpad and cleanuppad a state number. Add an entry to the
501 // ClrEHUnwindMap for each state, recording its HandlerParentState and
502 // handler attributes. Record the TryParentState as well for each catchpad
503 // that's not the last on its catchswitch, but initialize all other entries'
504 // TryParentStates to a sentinel -1 value that the next pass will update.
505
506 // Seed a worklist with pads that have no parent.
507 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
508 for (const BasicBlock &BB : *Fn) {
509 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
510 const Value *ParentPad;
511 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
512 ParentPad = CPI->getParentPad();
513 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
514 ParentPad = CSI->getParentPad();
515 else
516 continue;
517 if (isa<ConstantTokenNone>(ParentPad))
518 Worklist.emplace_back(FirstNonPHI, -1);
519 }
520
521 // Use the worklist to visit all pads, from outer to inner. Record
522 // HandlerParentState for all pads. Record TryParentState only for catchpads
523 // that aren't the last on their catchswitch (setting all other entries'
524 // TryParentStates to an initial value of -1). This loop is also responsible
525 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
526 // catchswitches.
527 while (!Worklist.empty()) {
528 const Instruction *Pad;
529 int HandlerParentState;
530 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
531
532 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
533 // Create the entry for this cleanup with the appropriate handler
534 // properties. Finally and fault handlers are distinguished by arity.
535 ClrHandlerType HandlerType =
536 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
537 : ClrHandlerType::Finally);
538 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
539 HandlerType, 0, Pad->getParent());
540 // Queue any child EH pads on the worklist.
541 for (const User *U : Cleanup->users())
542 if (const auto *I = dyn_cast<Instruction>(U))
543 if (I->isEHPad())
544 Worklist.emplace_back(I, CleanupState);
545 // Remember this pad's state.
546 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
547 } else {
548 // Walk the handlers of this catchswitch in reverse order since all but
549 // the last need to set the following one as its TryParentState.
550 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
551 int CatchState = -1, FollowerState = -1;
552 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
553 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
554 CBI != CBE; ++CBI, FollowerState = CatchState) {
555 const BasicBlock *CatchBlock = *CBI;
556 // Create the entry for this catch with the appropriate handler
557 // properties.
558 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
559 uint32_t TypeToken = static_cast<uint32_t>(
560 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
561 CatchState =
562 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
563 ClrHandlerType::Catch, TypeToken, CatchBlock);
564 // Queue any child EH pads on the worklist.
565 for (const User *U : Catch->users())
566 if (const auto *I = dyn_cast<Instruction>(U))
567 if (I->isEHPad())
568 Worklist.emplace_back(I, CatchState);
569 // Remember this catch's state.
570 FuncInfo.EHPadStateMap[Catch] = CatchState;
571 }
572 // Associate the catchswitch with the state of its first catch.
573 assert(CatchSwitch->getNumHandlers());
574 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
575 }
576 }
577
578 // Step two: record the TryParentState of each state. For cleanuppads that
579 // don't have cleanuprets, we may need to infer this from their child pads,
580 // so visit pads in descendant-most to ancestor-most order.
581 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
582 End = FuncInfo.ClrEHUnwindMap.rend();
583 Entry != End; ++Entry) {
584 const Instruction *Pad =
585 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
586 // For most pads, the TryParentState is the state associated with the
587 // unwind dest of exceptional exits from it.
588 const BasicBlock *UnwindDest;
589 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
590 // If a catch is not the last in its catchswitch, its TryParentState is
591 // the state associated with the next catch in the switch, even though
592 // that's not the unwind dest of exceptions escaping the catch. Those
593 // cases were already assigned a TryParentState in the first pass, so
594 // skip them.
595 if (Entry->TryParentState != -1)
596 continue;
597 // Otherwise, get the unwind dest from the catchswitch.
598 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
599 } else {
600 const auto *Cleanup = cast<CleanupPadInst>(Pad);
601 UnwindDest = nullptr;
602 for (const User *U : Cleanup->users()) {
603 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
604 // Common and unambiguous case -- cleanupret indicates cleanup's
605 // unwind dest.
606 UnwindDest = CleanupRet->getUnwindDest();
607 break;
608 }
609
610 // Get an unwind dest for the user
611 const BasicBlock *UserUnwindDest = nullptr;
612 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
613 UserUnwindDest = Invoke->getUnwindDest();
614 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
615 UserUnwindDest = CatchSwitch->getUnwindDest();
616 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
617 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
618 int UserUnwindState =
619 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
620 if (UserUnwindState != -1)
621 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
622 .Handler.get<const BasicBlock *>();
623 }
624
625 // Not having an unwind dest for this user might indicate that it
626 // doesn't unwind, so can't be taken as proof that the cleanup itself
627 // may unwind to caller (see e.g. SimplifyUnreachable and
628 // RemoveUnwindEdge).
629 if (!UserUnwindDest)
630 continue;
631
632 // Now we have an unwind dest for the user, but we need to see if it
633 // unwinds all the way out of the cleanup or if it stays within it.
634 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
635 const Value *UserUnwindParent;
636 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
637 UserUnwindParent = CSI->getParentPad();
638 else
639 UserUnwindParent =
640 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
641
642 // The unwind stays within the cleanup iff it targets a child of the
643 // cleanup.
644 if (UserUnwindParent == Cleanup)
645 continue;
646
647 // This unwind exits the cleanup, so its dest is the cleanup's dest.
648 UnwindDest = UserUnwindDest;
649 break;
650 }
651 }
652
653 // Record the state of the unwind dest as the TryParentState.
654 int UnwindDestState;
655
656 // If UnwindDest is null at this point, either the pad in question can
657 // be exited by unwind to caller, or it cannot be exited by unwind. In
658 // either case, reporting such cases as unwinding to caller is correct.
659 // This can lead to EH tables that "look strange" -- if this pad's is in
660 // a parent funclet which has other children that do unwind to an enclosing
661 // pad, the try region for this pad will be missing the "duplicate" EH
662 // clause entries that you'd expect to see covering the whole parent. That
663 // should be benign, since the unwind never actually happens. If it were
664 // an issue, we could add a subsequent pass that pushes unwind dests down
665 // from parents that have them to children that appear to unwind to caller.
666 if (!UnwindDest) {
667 UnwindDestState = -1;
668 } else {
669 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
670 }
671
672 Entry->TryParentState = UnwindDestState;
673 }
674
675 // Step three: transfer information from pads to invokes.
676 calculateStateNumbersForInvokes(Fn, FuncInfo);
677 }
678
colorFunclets(Function & F)679 void WinEHPrepare::colorFunclets(Function &F) {
680 BlockColors = colorEHFunclets(F);
681
682 // Invert the map from BB to colors to color to BBs.
683 for (BasicBlock &BB : F) {
684 ColorVector &Colors = BlockColors[&BB];
685 for (BasicBlock *Color : Colors)
686 FuncletBlocks[Color].push_back(&BB);
687 }
688 }
689
demotePHIsOnFunclets(Function & F,bool DemoteCatchSwitchPHIOnly)690 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
691 bool DemoteCatchSwitchPHIOnly) {
692 // Strip PHI nodes off of EH pads.
693 SmallVector<PHINode *, 16> PHINodes;
694 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
695 BasicBlock *BB = &*FI++;
696 if (!BB->isEHPad())
697 continue;
698 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
699 continue;
700
701 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
702 Instruction *I = &*BI++;
703 auto *PN = dyn_cast<PHINode>(I);
704 // Stop at the first non-PHI.
705 if (!PN)
706 break;
707
708 AllocaInst *SpillSlot = insertPHILoads(PN, F);
709 if (SpillSlot)
710 insertPHIStores(PN, SpillSlot);
711
712 PHINodes.push_back(PN);
713 }
714 }
715
716 for (auto *PN : PHINodes) {
717 // There may be lingering uses on other EH PHIs being removed
718 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
719 PN->eraseFromParent();
720 }
721 }
722
cloneCommonBlocks(Function & F)723 void WinEHPrepare::cloneCommonBlocks(Function &F) {
724 // We need to clone all blocks which belong to multiple funclets. Values are
725 // remapped throughout the funclet to propagate both the new instructions
726 // *and* the new basic blocks themselves.
727 for (auto &Funclets : FuncletBlocks) {
728 BasicBlock *FuncletPadBB = Funclets.first;
729 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
730 Value *FuncletToken;
731 if (FuncletPadBB == &F.getEntryBlock())
732 FuncletToken = ConstantTokenNone::get(F.getContext());
733 else
734 FuncletToken = FuncletPadBB->getFirstNonPHI();
735
736 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
737 ValueToValueMapTy VMap;
738 for (BasicBlock *BB : BlocksInFunclet) {
739 ColorVector &ColorsForBB = BlockColors[BB];
740 // We don't need to do anything if the block is monochromatic.
741 size_t NumColorsForBB = ColorsForBB.size();
742 if (NumColorsForBB == 1)
743 continue;
744
745 DEBUG_WITH_TYPE("winehprepare-coloring",
746 dbgs() << " Cloning block \'" << BB->getName()
747 << "\' for funclet \'" << FuncletPadBB->getName()
748 << "\'.\n");
749
750 // Create a new basic block and copy instructions into it!
751 BasicBlock *CBB =
752 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
753 // Insert the clone immediately after the original to ensure determinism
754 // and to keep the same relative ordering of any funclet's blocks.
755 CBB->insertInto(&F, BB->getNextNode());
756
757 // Add basic block mapping.
758 VMap[BB] = CBB;
759
760 // Record delta operations that we need to perform to our color mappings.
761 Orig2Clone.emplace_back(BB, CBB);
762 }
763
764 // If nothing was cloned, we're done cloning in this funclet.
765 if (Orig2Clone.empty())
766 continue;
767
768 // Update our color mappings to reflect that one block has lost a color and
769 // another has gained a color.
770 for (auto &BBMapping : Orig2Clone) {
771 BasicBlock *OldBlock = BBMapping.first;
772 BasicBlock *NewBlock = BBMapping.second;
773
774 BlocksInFunclet.push_back(NewBlock);
775 ColorVector &NewColors = BlockColors[NewBlock];
776 assert(NewColors.empty() && "A new block should only have one color!");
777 NewColors.push_back(FuncletPadBB);
778
779 DEBUG_WITH_TYPE("winehprepare-coloring",
780 dbgs() << " Assigned color \'" << FuncletPadBB->getName()
781 << "\' to block \'" << NewBlock->getName()
782 << "\'.\n");
783
784 BlocksInFunclet.erase(
785 std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
786 BlocksInFunclet.end());
787 ColorVector &OldColors = BlockColors[OldBlock];
788 OldColors.erase(
789 std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
790 OldColors.end());
791
792 DEBUG_WITH_TYPE("winehprepare-coloring",
793 dbgs() << " Removed color \'" << FuncletPadBB->getName()
794 << "\' from block \'" << OldBlock->getName()
795 << "\'.\n");
796 }
797
798 // Loop over all of the instructions in this funclet, fixing up operand
799 // references as we go. This uses VMap to do all the hard work.
800 for (BasicBlock *BB : BlocksInFunclet)
801 // Loop over all instructions, fixing each one as we find it...
802 for (Instruction &I : *BB)
803 RemapInstruction(&I, VMap,
804 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
805
806 // Catchrets targeting cloned blocks need to be updated separately from
807 // the loop above because they are not in the current funclet.
808 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
809 for (auto &BBMapping : Orig2Clone) {
810 BasicBlock *OldBlock = BBMapping.first;
811 BasicBlock *NewBlock = BBMapping.second;
812
813 FixupCatchrets.clear();
814 for (BasicBlock *Pred : predecessors(OldBlock))
815 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
816 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
817 FixupCatchrets.push_back(CatchRet);
818
819 for (CatchReturnInst *CatchRet : FixupCatchrets)
820 CatchRet->setSuccessor(NewBlock);
821 }
822
823 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
824 unsigned NumPreds = PN->getNumIncomingValues();
825 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
826 ++PredIdx) {
827 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
828 bool EdgeTargetsFunclet;
829 if (auto *CRI =
830 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
831 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
832 } else {
833 ColorVector &IncomingColors = BlockColors[IncomingBlock];
834 assert(!IncomingColors.empty() && "Block not colored!");
835 assert((IncomingColors.size() == 1 ||
836 llvm::all_of(IncomingColors,
837 [&](BasicBlock *Color) {
838 return Color != FuncletPadBB;
839 })) &&
840 "Cloning should leave this funclet's blocks monochromatic");
841 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
842 }
843 if (IsForOldBlock != EdgeTargetsFunclet)
844 continue;
845 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
846 // Revisit the next entry.
847 --PredIdx;
848 --PredEnd;
849 }
850 };
851
852 for (auto &BBMapping : Orig2Clone) {
853 BasicBlock *OldBlock = BBMapping.first;
854 BasicBlock *NewBlock = BBMapping.second;
855 for (PHINode &OldPN : OldBlock->phis()) {
856 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
857 }
858 for (PHINode &NewPN : NewBlock->phis()) {
859 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
860 }
861 }
862
863 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
864 // the PHI nodes for NewBB now.
865 for (auto &BBMapping : Orig2Clone) {
866 BasicBlock *OldBlock = BBMapping.first;
867 BasicBlock *NewBlock = BBMapping.second;
868 for (BasicBlock *SuccBB : successors(NewBlock)) {
869 for (PHINode &SuccPN : SuccBB->phis()) {
870 // Ok, we have a PHI node. Figure out what the incoming value was for
871 // the OldBlock.
872 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
873 if (OldBlockIdx == -1)
874 break;
875 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
876
877 // Remap the value if necessary.
878 if (auto *Inst = dyn_cast<Instruction>(IV)) {
879 ValueToValueMapTy::iterator I = VMap.find(Inst);
880 if (I != VMap.end())
881 IV = I->second;
882 }
883
884 SuccPN.addIncoming(IV, NewBlock);
885 }
886 }
887 }
888
889 for (ValueToValueMapTy::value_type VT : VMap) {
890 // If there were values defined in BB that are used outside the funclet,
891 // then we now have to update all uses of the value to use either the
892 // original value, the cloned value, or some PHI derived value. This can
893 // require arbitrary PHI insertion, of which we are prepared to do, clean
894 // these up now.
895 SmallVector<Use *, 16> UsesToRename;
896
897 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
898 if (!OldI)
899 continue;
900 auto *NewI = cast<Instruction>(VT.second);
901 // Scan all uses of this instruction to see if it is used outside of its
902 // funclet, and if so, record them in UsesToRename.
903 for (Use &U : OldI->uses()) {
904 Instruction *UserI = cast<Instruction>(U.getUser());
905 BasicBlock *UserBB = UserI->getParent();
906 ColorVector &ColorsForUserBB = BlockColors[UserBB];
907 assert(!ColorsForUserBB.empty());
908 if (ColorsForUserBB.size() > 1 ||
909 *ColorsForUserBB.begin() != FuncletPadBB)
910 UsesToRename.push_back(&U);
911 }
912
913 // If there are no uses outside the block, we're done with this
914 // instruction.
915 if (UsesToRename.empty())
916 continue;
917
918 // We found a use of OldI outside of the funclet. Rename all uses of OldI
919 // that are outside its funclet to be uses of the appropriate PHI node
920 // etc.
921 SSAUpdater SSAUpdate;
922 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
923 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
924 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
925
926 while (!UsesToRename.empty())
927 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
928 }
929 }
930 }
931
removeImplausibleInstructions(Function & F)932 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
933 // Remove implausible terminators and replace them with UnreachableInst.
934 for (auto &Funclet : FuncletBlocks) {
935 BasicBlock *FuncletPadBB = Funclet.first;
936 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
937 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
938 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
939 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
940 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
941
942 for (BasicBlock *BB : BlocksInFunclet) {
943 for (Instruction &I : *BB) {
944 CallSite CS(&I);
945 if (!CS)
946 continue;
947
948 Value *FuncletBundleOperand = nullptr;
949 if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
950 FuncletBundleOperand = BU->Inputs.front();
951
952 if (FuncletBundleOperand == FuncletPad)
953 continue;
954
955 // Skip call sites which are nounwind intrinsics or inline asm.
956 auto *CalledFn =
957 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
958 if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
959 CS.isInlineAsm()))
960 continue;
961
962 // This call site was not part of this funclet, remove it.
963 if (CS.isInvoke()) {
964 // Remove the unwind edge if it was an invoke.
965 removeUnwindEdge(BB);
966 // Get a pointer to the new call.
967 BasicBlock::iterator CallI =
968 std::prev(BB->getTerminator()->getIterator());
969 auto *CI = cast<CallInst>(&*CallI);
970 changeToUnreachable(CI, /*UseLLVMTrap=*/false);
971 } else {
972 changeToUnreachable(&I, /*UseLLVMTrap=*/false);
973 }
974
975 // There are no more instructions in the block (except for unreachable),
976 // we are done.
977 break;
978 }
979
980 TerminatorInst *TI = BB->getTerminator();
981 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
982 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
983 // The token consumed by a CatchReturnInst must match the funclet token.
984 bool IsUnreachableCatchret = false;
985 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
986 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
987 // The token consumed by a CleanupReturnInst must match the funclet token.
988 bool IsUnreachableCleanupret = false;
989 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
990 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
991 if (IsUnreachableRet || IsUnreachableCatchret ||
992 IsUnreachableCleanupret) {
993 changeToUnreachable(TI, /*UseLLVMTrap=*/false);
994 } else if (isa<InvokeInst>(TI)) {
995 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
996 // Invokes within a cleanuppad for the MSVC++ personality never
997 // transfer control to their unwind edge: the personality will
998 // terminate the program.
999 removeUnwindEdge(BB);
1000 }
1001 }
1002 }
1003 }
1004 }
1005
cleanupPreparedFunclets(Function & F)1006 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1007 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1008 // branches, etc.
1009 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
1010 BasicBlock *BB = &*FI++;
1011 SimplifyInstructionsInBlock(BB);
1012 ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
1013 MergeBlockIntoPredecessor(BB);
1014 }
1015
1016 // We might have some unreachable blocks after cleaning up some impossible
1017 // control flow.
1018 removeUnreachableBlocks(F);
1019 }
1020
1021 #ifndef NDEBUG
verifyPreparedFunclets(Function & F)1022 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1023 for (BasicBlock &BB : F) {
1024 size_t NumColors = BlockColors[&BB].size();
1025 assert(NumColors == 1 && "Expected monochromatic BB!");
1026 if (NumColors == 0)
1027 report_fatal_error("Uncolored BB!");
1028 if (NumColors > 1)
1029 report_fatal_error("Multicolor BB!");
1030 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1031 "EH Pad still has a PHI!");
1032 }
1033 }
1034 #endif
1035
prepareExplicitEH(Function & F)1036 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1037 // Remove unreachable blocks. It is not valuable to assign them a color and
1038 // their existence can trick us into thinking values are alive when they are
1039 // not.
1040 removeUnreachableBlocks(F);
1041
1042 // Determine which blocks are reachable from which funclet entries.
1043 colorFunclets(F);
1044
1045 cloneCommonBlocks(F);
1046
1047 if (!DisableDemotion)
1048 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1049 DemoteCatchSwitchPHIOnlyOpt);
1050
1051 if (!DisableCleanups) {
1052 LLVM_DEBUG(verifyFunction(F));
1053 removeImplausibleInstructions(F);
1054
1055 LLVM_DEBUG(verifyFunction(F));
1056 cleanupPreparedFunclets(F);
1057 }
1058
1059 LLVM_DEBUG(verifyPreparedFunclets(F));
1060 // Recolor the CFG to verify that all is well.
1061 LLVM_DEBUG(colorFunclets(F));
1062 LLVM_DEBUG(verifyPreparedFunclets(F));
1063
1064 BlockColors.clear();
1065 FuncletBlocks.clear();
1066
1067 return true;
1068 }
1069
1070 // TODO: Share loads when one use dominates another, or when a catchpad exit
1071 // dominates uses (needs dominators).
insertPHILoads(PHINode * PN,Function & F)1072 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1073 BasicBlock *PHIBlock = PN->getParent();
1074 AllocaInst *SpillSlot = nullptr;
1075 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1076
1077 if (!isa<TerminatorInst>(EHPad)) {
1078 // If the EHPad isn't a terminator, then we can insert a load in this block
1079 // that will dominate all uses.
1080 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1081 Twine(PN->getName(), ".wineh.spillslot"),
1082 &F.getEntryBlock().front());
1083 Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
1084 &*PHIBlock->getFirstInsertionPt());
1085 PN->replaceAllUsesWith(V);
1086 return SpillSlot;
1087 }
1088
1089 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1090 // loads of the slot before every use.
1091 DenseMap<BasicBlock *, Value *> Loads;
1092 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1093 UI != UE;) {
1094 Use &U = *UI++;
1095 auto *UsingInst = cast<Instruction>(U.getUser());
1096 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1097 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1098 // stores for it separately.
1099 continue;
1100 }
1101 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1102 }
1103 return SpillSlot;
1104 }
1105
1106 // TODO: improve store placement. Inserting at def is probably good, but need
1107 // to be careful not to introduce interfering stores (needs liveness analysis).
1108 // TODO: identify related phi nodes that can share spill slots, and share them
1109 // (also needs liveness).
insertPHIStores(PHINode * OriginalPHI,AllocaInst * SpillSlot)1110 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1111 AllocaInst *SpillSlot) {
1112 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1113 // stored to the spill slot by the end of the given Block.
1114 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1115
1116 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1117
1118 while (!Worklist.empty()) {
1119 BasicBlock *EHBlock;
1120 Value *InVal;
1121 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1122
1123 PHINode *PN = dyn_cast<PHINode>(InVal);
1124 if (PN && PN->getParent() == EHBlock) {
1125 // The value is defined by another PHI we need to remove, with no room to
1126 // insert a store after the PHI, so each predecessor needs to store its
1127 // incoming value.
1128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1129 Value *PredVal = PN->getIncomingValue(i);
1130
1131 // Undef can safely be skipped.
1132 if (isa<UndefValue>(PredVal))
1133 continue;
1134
1135 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1136 }
1137 } else {
1138 // We need to store InVal, which dominates EHBlock, but can't put a store
1139 // in EHBlock, so need to put stores in each predecessor.
1140 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1141 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1142 }
1143 }
1144 }
1145 }
1146
insertPHIStore(BasicBlock * PredBlock,Value * PredVal,AllocaInst * SpillSlot,SmallVectorImpl<std::pair<BasicBlock *,Value * >> & Worklist)1147 void WinEHPrepare::insertPHIStore(
1148 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1149 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1150
1151 if (PredBlock->isEHPad() &&
1152 isa<TerminatorInst>(PredBlock->getFirstNonPHI())) {
1153 // Pred is unsplittable, so we need to queue it on the worklist.
1154 Worklist.push_back({PredBlock, PredVal});
1155 return;
1156 }
1157
1158 // Otherwise, insert the store at the end of the basic block.
1159 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1160 }
1161
replaceUseWithLoad(Value * V,Use & U,AllocaInst * & SpillSlot,DenseMap<BasicBlock *,Value * > & Loads,Function & F)1162 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1163 DenseMap<BasicBlock *, Value *> &Loads,
1164 Function &F) {
1165 // Lazilly create the spill slot.
1166 if (!SpillSlot)
1167 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1168 Twine(V->getName(), ".wineh.spillslot"),
1169 &F.getEntryBlock().front());
1170
1171 auto *UsingInst = cast<Instruction>(U.getUser());
1172 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1173 // If this is a PHI node, we can't insert a load of the value before
1174 // the use. Instead insert the load in the predecessor block
1175 // corresponding to the incoming value.
1176 //
1177 // Note that if there are multiple edges from a basic block to this
1178 // PHI node that we cannot have multiple loads. The problem is that
1179 // the resulting PHI node will have multiple values (from each load)
1180 // coming in from the same block, which is illegal SSA form.
1181 // For this reason, we keep track of and reuse loads we insert.
1182 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1183 if (auto *CatchRet =
1184 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1185 // Putting a load above a catchret and use on the phi would still leave
1186 // a cross-funclet def/use. We need to split the edge, change the
1187 // catchret to target the new block, and put the load there.
1188 BasicBlock *PHIBlock = UsingInst->getParent();
1189 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1190 // SplitEdge gives us:
1191 // IncomingBlock:
1192 // ...
1193 // br label %NewBlock
1194 // NewBlock:
1195 // catchret label %PHIBlock
1196 // But we need:
1197 // IncomingBlock:
1198 // ...
1199 // catchret label %NewBlock
1200 // NewBlock:
1201 // br label %PHIBlock
1202 // So move the terminators to each others' blocks and swap their
1203 // successors.
1204 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1205 Goto->removeFromParent();
1206 CatchRet->removeFromParent();
1207 IncomingBlock->getInstList().push_back(CatchRet);
1208 NewBlock->getInstList().push_back(Goto);
1209 Goto->setSuccessor(0, PHIBlock);
1210 CatchRet->setSuccessor(NewBlock);
1211 // Update the color mapping for the newly split edge.
1212 // Grab a reference to the ColorVector to be inserted before getting the
1213 // reference to the vector we are copying because inserting the new
1214 // element in BlockColors might cause the map to be reallocated.
1215 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1216 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1217 ColorsForNewBlock = ColorsForPHIBlock;
1218 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1219 FuncletBlocks[FuncletPad].push_back(NewBlock);
1220 // Treat the new block as incoming for load insertion.
1221 IncomingBlock = NewBlock;
1222 }
1223 Value *&Load = Loads[IncomingBlock];
1224 // Insert the load into the predecessor block
1225 if (!Load)
1226 Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1227 /*Volatile=*/false, IncomingBlock->getTerminator());
1228
1229 U.set(Load);
1230 } else {
1231 // Reload right before the old use.
1232 auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1233 /*Volatile=*/false, UsingInst);
1234 U.set(Load);
1235 }
1236 }
1237
addIPToStateRange(const InvokeInst * II,MCSymbol * InvokeBegin,MCSymbol * InvokeEnd)1238 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1239 MCSymbol *InvokeBegin,
1240 MCSymbol *InvokeEnd) {
1241 assert(InvokeStateMap.count(II) &&
1242 "should get invoke with precomputed state");
1243 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1244 }
1245
WinEHFuncInfo()1246 WinEHFuncInfo::WinEHFuncInfo() {}
1247