• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MappedBlockStream.cpp - Reads stream data from an MSF file ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/DebugInfo/MSF/MappedBlockStream.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/DebugInfo/MSF/MSFCommon.h"
14 #include "llvm/Support/BinaryStreamWriter.h"
15 #include "llvm/Support/Endian.h"
16 #include "llvm/Support/Error.h"
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cstdint>
21 #include <cstring>
22 #include <utility>
23 #include <vector>
24 
25 using namespace llvm;
26 using namespace llvm::msf;
27 
28 namespace {
29 
30 template <typename Base> class MappedBlockStreamImpl : public Base {
31 public:
32   template <typename... Args>
MappedBlockStreamImpl(Args &&...Params)33   MappedBlockStreamImpl(Args &&... Params)
34       : Base(std::forward<Args>(Params)...) {}
35 };
36 
37 } // end anonymous namespace
38 
39 using Interval = std::pair<uint32_t, uint32_t>;
40 
intersect(const Interval & I1,const Interval & I2)41 static Interval intersect(const Interval &I1, const Interval &I2) {
42   return std::make_pair(std::max(I1.first, I2.first),
43                         std::min(I1.second, I2.second));
44 }
45 
MappedBlockStream(uint32_t BlockSize,const MSFStreamLayout & Layout,BinaryStreamRef MsfData,BumpPtrAllocator & Allocator)46 MappedBlockStream::MappedBlockStream(uint32_t BlockSize,
47                                      const MSFStreamLayout &Layout,
48                                      BinaryStreamRef MsfData,
49                                      BumpPtrAllocator &Allocator)
50     : BlockSize(BlockSize), StreamLayout(Layout), MsfData(MsfData),
51       Allocator(Allocator) {}
52 
createStream(uint32_t BlockSize,const MSFStreamLayout & Layout,BinaryStreamRef MsfData,BumpPtrAllocator & Allocator)53 std::unique_ptr<MappedBlockStream> MappedBlockStream::createStream(
54     uint32_t BlockSize, const MSFStreamLayout &Layout, BinaryStreamRef MsfData,
55     BumpPtrAllocator &Allocator) {
56   return llvm::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
57       BlockSize, Layout, MsfData, Allocator);
58 }
59 
createIndexedStream(const MSFLayout & Layout,BinaryStreamRef MsfData,uint32_t StreamIndex,BumpPtrAllocator & Allocator)60 std::unique_ptr<MappedBlockStream> MappedBlockStream::createIndexedStream(
61     const MSFLayout &Layout, BinaryStreamRef MsfData, uint32_t StreamIndex,
62     BumpPtrAllocator &Allocator) {
63   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
64   MSFStreamLayout SL;
65   SL.Blocks = Layout.StreamMap[StreamIndex];
66   SL.Length = Layout.StreamSizes[StreamIndex];
67   return llvm::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
68       Layout.SB->BlockSize, SL, MsfData, Allocator);
69 }
70 
71 std::unique_ptr<MappedBlockStream>
createDirectoryStream(const MSFLayout & Layout,BinaryStreamRef MsfData,BumpPtrAllocator & Allocator)72 MappedBlockStream::createDirectoryStream(const MSFLayout &Layout,
73                                          BinaryStreamRef MsfData,
74                                          BumpPtrAllocator &Allocator) {
75   MSFStreamLayout SL;
76   SL.Blocks = Layout.DirectoryBlocks;
77   SL.Length = Layout.SB->NumDirectoryBytes;
78   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
79 }
80 
81 std::unique_ptr<MappedBlockStream>
createFpmStream(const MSFLayout & Layout,BinaryStreamRef MsfData,BumpPtrAllocator & Allocator)82 MappedBlockStream::createFpmStream(const MSFLayout &Layout,
83                                    BinaryStreamRef MsfData,
84                                    BumpPtrAllocator &Allocator) {
85   MSFStreamLayout SL(getFpmStreamLayout(Layout));
86   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
87 }
88 
readBytes(uint32_t Offset,uint32_t Size,ArrayRef<uint8_t> & Buffer)89 Error MappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
90                                    ArrayRef<uint8_t> &Buffer) {
91   // Make sure we aren't trying to read beyond the end of the stream.
92   if (auto EC = checkOffsetForRead(Offset, Size))
93     return EC;
94 
95   if (tryReadContiguously(Offset, Size, Buffer))
96     return Error::success();
97 
98   auto CacheIter = CacheMap.find(Offset);
99   if (CacheIter != CacheMap.end()) {
100     // Try to find an alloc that was large enough for this request.
101     for (auto &Entry : CacheIter->second) {
102       if (Entry.size() >= Size) {
103         Buffer = Entry.slice(0, Size);
104         return Error::success();
105       }
106     }
107   }
108 
109   // We couldn't find a buffer that started at the correct offset (the most
110   // common scenario).  Try to see if there is a buffer that starts at some
111   // other offset but overlaps the desired range.
112   for (auto &CacheItem : CacheMap) {
113     Interval RequestExtent = std::make_pair(Offset, Offset + Size);
114 
115     // We already checked this one on the fast path above.
116     if (CacheItem.first == Offset)
117       continue;
118     // If the initial extent of the cached item is beyond the ending extent
119     // of the request, there is no overlap.
120     if (CacheItem.first >= Offset + Size)
121       continue;
122 
123     // We really only have to check the last item in the list, since we append
124     // in order of increasing length.
125     if (CacheItem.second.empty())
126       continue;
127 
128     auto CachedAlloc = CacheItem.second.back();
129     // If the initial extent of the request is beyond the ending extent of
130     // the cached item, there is no overlap.
131     Interval CachedExtent =
132         std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
133     if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
134       continue;
135 
136     Interval Intersection = intersect(CachedExtent, RequestExtent);
137     // Only use this if the entire request extent is contained in the cached
138     // extent.
139     if (Intersection != RequestExtent)
140       continue;
141 
142     uint32_t CacheRangeOffset =
143         AbsoluteDifference(CachedExtent.first, Intersection.first);
144     Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
145     return Error::success();
146   }
147 
148   // Otherwise allocate a large enough buffer in the pool, memcpy the data
149   // into it, and return an ArrayRef to that.  Do not touch existing pool
150   // allocations, as existing clients may be holding a pointer which must
151   // not be invalidated.
152   uint8_t *WriteBuffer = static_cast<uint8_t *>(Allocator.Allocate(Size, 8));
153   if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
154     return EC;
155 
156   if (CacheIter != CacheMap.end()) {
157     CacheIter->second.emplace_back(WriteBuffer, Size);
158   } else {
159     std::vector<CacheEntry> List;
160     List.emplace_back(WriteBuffer, Size);
161     CacheMap.insert(std::make_pair(Offset, List));
162   }
163   Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
164   return Error::success();
165 }
166 
readLongestContiguousChunk(uint32_t Offset,ArrayRef<uint8_t> & Buffer)167 Error MappedBlockStream::readLongestContiguousChunk(uint32_t Offset,
168                                                     ArrayRef<uint8_t> &Buffer) {
169   // Make sure we aren't trying to read beyond the end of the stream.
170   if (auto EC = checkOffsetForRead(Offset, 1))
171     return EC;
172 
173   uint32_t First = Offset / BlockSize;
174   uint32_t Last = First;
175 
176   while (Last < getNumBlocks() - 1) {
177     if (StreamLayout.Blocks[Last] != StreamLayout.Blocks[Last + 1] - 1)
178       break;
179     ++Last;
180   }
181 
182   uint32_t OffsetInFirstBlock = Offset % BlockSize;
183   uint32_t BytesFromFirstBlock = BlockSize - OffsetInFirstBlock;
184   uint32_t BlockSpan = Last - First + 1;
185   uint32_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * BlockSize;
186 
187   ArrayRef<uint8_t> BlockData;
188   uint32_t MsfOffset = blockToOffset(StreamLayout.Blocks[First], BlockSize);
189   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData))
190     return EC;
191 
192   BlockData = BlockData.drop_front(OffsetInFirstBlock);
193   Buffer = ArrayRef<uint8_t>(BlockData.data(), ByteSpan);
194   return Error::success();
195 }
196 
getLength()197 uint32_t MappedBlockStream::getLength() { return StreamLayout.Length; }
198 
tryReadContiguously(uint32_t Offset,uint32_t Size,ArrayRef<uint8_t> & Buffer)199 bool MappedBlockStream::tryReadContiguously(uint32_t Offset, uint32_t Size,
200                                             ArrayRef<uint8_t> &Buffer) {
201   if (Size == 0) {
202     Buffer = ArrayRef<uint8_t>();
203     return true;
204   }
205   // Attempt to fulfill the request with a reference directly into the stream.
206   // This can work even if the request crosses a block boundary, provided that
207   // all subsequent blocks are contiguous.  For example, a 10k read with a 4k
208   // block size can be filled with a reference if, from the starting offset,
209   // 3 blocks in a row are contiguous.
210   uint32_t BlockNum = Offset / BlockSize;
211   uint32_t OffsetInBlock = Offset % BlockSize;
212   uint32_t BytesFromFirstBlock = std::min(Size, BlockSize - OffsetInBlock);
213   uint32_t NumAdditionalBlocks =
214       alignTo(Size - BytesFromFirstBlock, BlockSize) / BlockSize;
215 
216   uint32_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
217   uint32_t E = StreamLayout.Blocks[BlockNum];
218   for (uint32_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
219     if (StreamLayout.Blocks[I + BlockNum] != E)
220       return false;
221   }
222 
223   // Read out the entire block where the requested offset starts.  Then drop
224   // bytes from the beginning so that the actual starting byte lines up with
225   // the requested starting byte.  Then, since we know this is a contiguous
226   // cross-block span, explicitly resize the ArrayRef to cover the entire
227   // request length.
228   ArrayRef<uint8_t> BlockData;
229   uint32_t FirstBlockAddr = StreamLayout.Blocks[BlockNum];
230   uint32_t MsfOffset = blockToOffset(FirstBlockAddr, BlockSize);
231   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData)) {
232     consumeError(std::move(EC));
233     return false;
234   }
235   BlockData = BlockData.drop_front(OffsetInBlock);
236   Buffer = ArrayRef<uint8_t>(BlockData.data(), Size);
237   return true;
238 }
239 
readBytes(uint32_t Offset,MutableArrayRef<uint8_t> Buffer)240 Error MappedBlockStream::readBytes(uint32_t Offset,
241                                    MutableArrayRef<uint8_t> Buffer) {
242   uint32_t BlockNum = Offset / BlockSize;
243   uint32_t OffsetInBlock = Offset % BlockSize;
244 
245   // Make sure we aren't trying to read beyond the end of the stream.
246   if (auto EC = checkOffsetForRead(Offset, Buffer.size()))
247     return EC;
248 
249   uint32_t BytesLeft = Buffer.size();
250   uint32_t BytesWritten = 0;
251   uint8_t *WriteBuffer = Buffer.data();
252   while (BytesLeft > 0) {
253     uint32_t StreamBlockAddr = StreamLayout.Blocks[BlockNum];
254 
255     ArrayRef<uint8_t> BlockData;
256     uint32_t Offset = blockToOffset(StreamBlockAddr, BlockSize);
257     if (auto EC = MsfData.readBytes(Offset, BlockSize, BlockData))
258       return EC;
259 
260     const uint8_t *ChunkStart = BlockData.data() + OffsetInBlock;
261     uint32_t BytesInChunk = std::min(BytesLeft, BlockSize - OffsetInBlock);
262     ::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);
263 
264     BytesWritten += BytesInChunk;
265     BytesLeft -= BytesInChunk;
266     ++BlockNum;
267     OffsetInBlock = 0;
268   }
269 
270   return Error::success();
271 }
272 
invalidateCache()273 void MappedBlockStream::invalidateCache() { CacheMap.shrink_and_clear(); }
274 
fixCacheAfterWrite(uint32_t Offset,ArrayRef<uint8_t> Data) const275 void MappedBlockStream::fixCacheAfterWrite(uint32_t Offset,
276                                            ArrayRef<uint8_t> Data) const {
277   // If this write overlapped a read which previously came from the pool,
278   // someone may still be holding a pointer to that alloc which is now invalid.
279   // Compute the overlapping range and update the cache entry, so any
280   // outstanding buffers are automatically updated.
281   for (const auto &MapEntry : CacheMap) {
282     // If the end of the written extent precedes the beginning of the cached
283     // extent, ignore this map entry.
284     if (Offset + Data.size() < MapEntry.first)
285       continue;
286     for (const auto &Alloc : MapEntry.second) {
287       // If the end of the cached extent precedes the beginning of the written
288       // extent, ignore this alloc.
289       if (MapEntry.first + Alloc.size() < Offset)
290         continue;
291 
292       // If we get here, they are guaranteed to overlap.
293       Interval WriteInterval = std::make_pair(Offset, Offset + Data.size());
294       Interval CachedInterval =
295           std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
296       // If they overlap, we need to write the new data into the overlapping
297       // range.
298       auto Intersection = intersect(WriteInterval, CachedInterval);
299       assert(Intersection.first <= Intersection.second);
300 
301       uint32_t Length = Intersection.second - Intersection.first;
302       uint32_t SrcOffset =
303           AbsoluteDifference(WriteInterval.first, Intersection.first);
304       uint32_t DestOffset =
305           AbsoluteDifference(CachedInterval.first, Intersection.first);
306       ::memcpy(Alloc.data() + DestOffset, Data.data() + SrcOffset, Length);
307     }
308   }
309 }
310 
WritableMappedBlockStream(uint32_t BlockSize,const MSFStreamLayout & Layout,WritableBinaryStreamRef MsfData,BumpPtrAllocator & Allocator)311 WritableMappedBlockStream::WritableMappedBlockStream(
312     uint32_t BlockSize, const MSFStreamLayout &Layout,
313     WritableBinaryStreamRef MsfData, BumpPtrAllocator &Allocator)
314     : ReadInterface(BlockSize, Layout, MsfData, Allocator),
315       WriteInterface(MsfData) {}
316 
317 std::unique_ptr<WritableMappedBlockStream>
createStream(uint32_t BlockSize,const MSFStreamLayout & Layout,WritableBinaryStreamRef MsfData,BumpPtrAllocator & Allocator)318 WritableMappedBlockStream::createStream(uint32_t BlockSize,
319                                         const MSFStreamLayout &Layout,
320                                         WritableBinaryStreamRef MsfData,
321                                         BumpPtrAllocator &Allocator) {
322   return llvm::make_unique<MappedBlockStreamImpl<WritableMappedBlockStream>>(
323       BlockSize, Layout, MsfData, Allocator);
324 }
325 
326 std::unique_ptr<WritableMappedBlockStream>
createIndexedStream(const MSFLayout & Layout,WritableBinaryStreamRef MsfData,uint32_t StreamIndex,BumpPtrAllocator & Allocator)327 WritableMappedBlockStream::createIndexedStream(const MSFLayout &Layout,
328                                                WritableBinaryStreamRef MsfData,
329                                                uint32_t StreamIndex,
330                                                BumpPtrAllocator &Allocator) {
331   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
332   MSFStreamLayout SL;
333   SL.Blocks = Layout.StreamMap[StreamIndex];
334   SL.Length = Layout.StreamSizes[StreamIndex];
335   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
336 }
337 
338 std::unique_ptr<WritableMappedBlockStream>
createDirectoryStream(const MSFLayout & Layout,WritableBinaryStreamRef MsfData,BumpPtrAllocator & Allocator)339 WritableMappedBlockStream::createDirectoryStream(
340     const MSFLayout &Layout, WritableBinaryStreamRef MsfData,
341     BumpPtrAllocator &Allocator) {
342   MSFStreamLayout SL;
343   SL.Blocks = Layout.DirectoryBlocks;
344   SL.Length = Layout.SB->NumDirectoryBytes;
345   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
346 }
347 
348 std::unique_ptr<WritableMappedBlockStream>
createFpmStream(const MSFLayout & Layout,WritableBinaryStreamRef MsfData,BumpPtrAllocator & Allocator,bool AltFpm)349 WritableMappedBlockStream::createFpmStream(const MSFLayout &Layout,
350                                            WritableBinaryStreamRef MsfData,
351                                            BumpPtrAllocator &Allocator,
352                                            bool AltFpm) {
353   // We only want to give the user a stream containing the bytes of the FPM that
354   // are actually valid, but we want to initialize all of the bytes, even those
355   // that come from reserved FPM blocks where the entire block is unused.  To do
356   // this, we first create the full layout, which gives us a stream with all
357   // bytes and all blocks, and initialize everything to 0xFF (all blocks in the
358   // file are unused).  Then we create the minimal layout (which contains only a
359   // subset of the bytes previously initialized), and return that to the user.
360   MSFStreamLayout MinLayout(getFpmStreamLayout(Layout, false, AltFpm));
361 
362   MSFStreamLayout FullLayout(getFpmStreamLayout(Layout, true, AltFpm));
363   auto Result =
364       createStream(Layout.SB->BlockSize, FullLayout, MsfData, Allocator);
365   if (!Result)
366     return Result;
367   std::vector<uint8_t> InitData(Layout.SB->BlockSize, 0xFF);
368   BinaryStreamWriter Initializer(*Result);
369   while (Initializer.bytesRemaining() > 0)
370     cantFail(Initializer.writeBytes(InitData));
371   return createStream(Layout.SB->BlockSize, MinLayout, MsfData, Allocator);
372 }
373 
readBytes(uint32_t Offset,uint32_t Size,ArrayRef<uint8_t> & Buffer)374 Error WritableMappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
375                                            ArrayRef<uint8_t> &Buffer) {
376   return ReadInterface.readBytes(Offset, Size, Buffer);
377 }
378 
readLongestContiguousChunk(uint32_t Offset,ArrayRef<uint8_t> & Buffer)379 Error WritableMappedBlockStream::readLongestContiguousChunk(
380     uint32_t Offset, ArrayRef<uint8_t> &Buffer) {
381   return ReadInterface.readLongestContiguousChunk(Offset, Buffer);
382 }
383 
getLength()384 uint32_t WritableMappedBlockStream::getLength() {
385   return ReadInterface.getLength();
386 }
387 
writeBytes(uint32_t Offset,ArrayRef<uint8_t> Buffer)388 Error WritableMappedBlockStream::writeBytes(uint32_t Offset,
389                                             ArrayRef<uint8_t> Buffer) {
390   // Make sure we aren't trying to write beyond the end of the stream.
391   if (auto EC = checkOffsetForWrite(Offset, Buffer.size()))
392     return EC;
393 
394   uint32_t BlockNum = Offset / getBlockSize();
395   uint32_t OffsetInBlock = Offset % getBlockSize();
396 
397   uint32_t BytesLeft = Buffer.size();
398   uint32_t BytesWritten = 0;
399   while (BytesLeft > 0) {
400     uint32_t StreamBlockAddr = getStreamLayout().Blocks[BlockNum];
401     uint32_t BytesToWriteInChunk =
402         std::min(BytesLeft, getBlockSize() - OffsetInBlock);
403 
404     const uint8_t *Chunk = Buffer.data() + BytesWritten;
405     ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
406     uint32_t MsfOffset = blockToOffset(StreamBlockAddr, getBlockSize());
407     MsfOffset += OffsetInBlock;
408     if (auto EC = WriteInterface.writeBytes(MsfOffset, ChunkData))
409       return EC;
410 
411     BytesLeft -= BytesToWriteInChunk;
412     BytesWritten += BytesToWriteInChunk;
413     ++BlockNum;
414     OffsetInBlock = 0;
415   }
416 
417   ReadInterface.fixCacheAfterWrite(Offset, Buffer);
418 
419   return Error::success();
420 }
421 
commit()422 Error WritableMappedBlockStream::commit() { return WriteInterface.commit(); }
423