• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/Binary.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/BinaryStreamReader.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45 
46 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48   if (M.getBufferSize() < Size) {
49     EC = object_error::unexpected_eof;
50     return false;
51   }
52   return true;
53 }
54 
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))58 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
59                                  const void *Ptr,
60                                  const uint64_t Size = sizeof(T)) {
61   uintptr_t Addr = uintptr_t(Ptr);
62   if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
63     return EC;
64   Obj = reinterpret_cast<const T *>(Addr);
65   return std::error_code();
66 }
67 
68 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
69 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)70 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
71   assert(Str.size() <= 6 && "String too long, possible overflow.");
72   if (Str.size() > 6)
73     return true;
74 
75   uint64_t Value = 0;
76   while (!Str.empty()) {
77     unsigned CharVal;
78     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
79       CharVal = Str[0] - 'A';
80     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
81       CharVal = Str[0] - 'a' + 26;
82     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
83       CharVal = Str[0] - '0' + 52;
84     else if (Str[0] == '+') // 62
85       CharVal = 62;
86     else if (Str[0] == '/') // 63
87       CharVal = 63;
88     else
89       return true;
90 
91     Value = (Value * 64) + CharVal;
92     Str = Str.substr(1);
93   }
94 
95   if (Value > std::numeric_limits<uint32_t>::max())
96     return true;
97 
98   Result = static_cast<uint32_t>(Value);
99   return false;
100 }
101 
102 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const103 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
104   const coff_symbol_type *Addr =
105       reinterpret_cast<const coff_symbol_type *>(Ref.p);
106 
107   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
108 #ifndef NDEBUG
109   // Verify that the symbol points to a valid entry in the symbol table.
110   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111 
112   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113          "Symbol did not point to the beginning of a symbol");
114 #endif
115 
116   return Addr;
117 }
118 
toSec(DataRefImpl Ref) const119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 
122 #ifndef NDEBUG
123   // Verify that the section points to a valid entry in the section table.
124   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125     report_fatal_error("Section was outside of section table.");
126 
127   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
128   assert(Offset % sizeof(coff_section) == 0 &&
129          "Section did not point to the beginning of a section");
130 #endif
131 
132   return Addr;
133 }
134 
moveSymbolNext(DataRefImpl & Ref) const135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136   auto End = reinterpret_cast<uintptr_t>(StringTable);
137   if (SymbolTable16) {
138     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139     Symb += 1 + Symb->NumberOfAuxSymbols;
140     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141   } else if (SymbolTable32) {
142     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143     Symb += 1 + Symb->NumberOfAuxSymbols;
144     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145   } else {
146     llvm_unreachable("no symbol table pointer!");
147   }
148 }
149 
getSymbolName(DataRefImpl Ref) const150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151   COFFSymbolRef Symb = getCOFFSymbol(Ref);
152   StringRef Result;
153   if (std::error_code EC = getSymbolName(Symb, Result))
154     return errorCodeToError(EC);
155   return Result;
156 }
157 
getSymbolValueImpl(DataRefImpl Ref) const158 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
159   return getCOFFSymbol(Ref).getValue();
160 }
161 
getSymbolAlignment(DataRefImpl Ref) const162 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
163   // MSVC/link.exe seems to align symbols to the next-power-of-2
164   // up to 32 bytes.
165   COFFSymbolRef Symb = getCOFFSymbol(Ref);
166   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
167 }
168 
getSymbolAddress(DataRefImpl Ref) const169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
170   uint64_t Result = getSymbolValue(Ref);
171   COFFSymbolRef Symb = getCOFFSymbol(Ref);
172   int32_t SectionNumber = Symb.getSectionNumber();
173 
174   if (Symb.isAnyUndefined() || Symb.isCommon() ||
175       COFF::isReservedSectionNumber(SectionNumber))
176     return Result;
177 
178   const coff_section *Section = nullptr;
179   if (std::error_code EC = getSection(SectionNumber, Section))
180     return errorCodeToError(EC);
181   Result += Section->VirtualAddress;
182 
183   // The section VirtualAddress does not include ImageBase, and we want to
184   // return virtual addresses.
185   Result += getImageBase();
186 
187   return Result;
188 }
189 
getSymbolType(DataRefImpl Ref) const190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
191   COFFSymbolRef Symb = getCOFFSymbol(Ref);
192   int32_t SectionNumber = Symb.getSectionNumber();
193 
194   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
195     return SymbolRef::ST_Function;
196   if (Symb.isAnyUndefined())
197     return SymbolRef::ST_Unknown;
198   if (Symb.isCommon())
199     return SymbolRef::ST_Data;
200   if (Symb.isFileRecord())
201     return SymbolRef::ST_File;
202 
203   // TODO: perhaps we need a new symbol type ST_Section.
204   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
205     return SymbolRef::ST_Debug;
206 
207   if (!COFF::isReservedSectionNumber(SectionNumber))
208     return SymbolRef::ST_Data;
209 
210   return SymbolRef::ST_Other;
211 }
212 
getSymbolFlags(DataRefImpl Ref) const213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
214   COFFSymbolRef Symb = getCOFFSymbol(Ref);
215   uint32_t Result = SymbolRef::SF_None;
216 
217   if (Symb.isExternal() || Symb.isWeakExternal())
218     Result |= SymbolRef::SF_Global;
219 
220   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
221     Result |= SymbolRef::SF_Weak;
222     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
223       Result |= SymbolRef::SF_Undefined;
224   }
225 
226   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
227     Result |= SymbolRef::SF_Absolute;
228 
229   if (Symb.isFileRecord())
230     Result |= SymbolRef::SF_FormatSpecific;
231 
232   if (Symb.isSectionDefinition())
233     Result |= SymbolRef::SF_FormatSpecific;
234 
235   if (Symb.isCommon())
236     Result |= SymbolRef::SF_Common;
237 
238   if (Symb.isUndefined())
239     Result |= SymbolRef::SF_Undefined;
240 
241   return Result;
242 }
243 
getCommonSymbolSizeImpl(DataRefImpl Ref) const244 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
245   COFFSymbolRef Symb = getCOFFSymbol(Ref);
246   return Symb.getValue();
247 }
248 
249 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const250 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
251   COFFSymbolRef Symb = getCOFFSymbol(Ref);
252   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
253     return section_end();
254   const coff_section *Sec = nullptr;
255   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
256     return errorCodeToError(EC);
257   DataRefImpl Ret;
258   Ret.p = reinterpret_cast<uintptr_t>(Sec);
259   return section_iterator(SectionRef(Ret, this));
260 }
261 
getSymbolSectionID(SymbolRef Sym) const262 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
263   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
264   return Symb.getSectionNumber();
265 }
266 
moveSectionNext(DataRefImpl & Ref) const267 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
268   const coff_section *Sec = toSec(Ref);
269   Sec += 1;
270   Ref.p = reinterpret_cast<uintptr_t>(Sec);
271 }
272 
getSectionName(DataRefImpl Ref,StringRef & Result) const273 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
274                                                StringRef &Result) const {
275   const coff_section *Sec = toSec(Ref);
276   return getSectionName(Sec, Result);
277 }
278 
getSectionAddress(DataRefImpl Ref) const279 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
280   const coff_section *Sec = toSec(Ref);
281   uint64_t Result = Sec->VirtualAddress;
282 
283   // The section VirtualAddress does not include ImageBase, and we want to
284   // return virtual addresses.
285   Result += getImageBase();
286   return Result;
287 }
288 
getSectionIndex(DataRefImpl Sec) const289 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
290   return toSec(Sec) - SectionTable;
291 }
292 
getSectionSize(DataRefImpl Ref) const293 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
294   return getSectionSize(toSec(Ref));
295 }
296 
getSectionContents(DataRefImpl Ref,StringRef & Result) const297 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
298                                                    StringRef &Result) const {
299   const coff_section *Sec = toSec(Ref);
300   ArrayRef<uint8_t> Res;
301   std::error_code EC = getSectionContents(Sec, Res);
302   Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
303   return EC;
304 }
305 
getSectionAlignment(DataRefImpl Ref) const306 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
307   const coff_section *Sec = toSec(Ref);
308   return Sec->getAlignment();
309 }
310 
isSectionCompressed(DataRefImpl Sec) const311 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
312   return false;
313 }
314 
isSectionText(DataRefImpl Ref) const315 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
316   const coff_section *Sec = toSec(Ref);
317   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 }
319 
isSectionData(DataRefImpl Ref) const320 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
321   const coff_section *Sec = toSec(Ref);
322   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 }
324 
isSectionBSS(DataRefImpl Ref) const325 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
326   const coff_section *Sec = toSec(Ref);
327   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
328                             COFF::IMAGE_SCN_MEM_READ |
329                             COFF::IMAGE_SCN_MEM_WRITE;
330   return (Sec->Characteristics & BssFlags) == BssFlags;
331 }
332 
getSectionID(SectionRef Sec) const333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
334   uintptr_t Offset =
335       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
336   assert((Offset % sizeof(coff_section)) == 0);
337   return (Offset / sizeof(coff_section)) + 1;
338 }
339 
isSectionVirtual(DataRefImpl Ref) const340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
341   const coff_section *Sec = toSec(Ref);
342   // In COFF, a virtual section won't have any in-file
343   // content, so the file pointer to the content will be zero.
344   return Sec->PointerToRawData == 0;
345 }
346 
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)347 static uint32_t getNumberOfRelocations(const coff_section *Sec,
348                                        MemoryBufferRef M, const uint8_t *base) {
349   // The field for the number of relocations in COFF section table is only
350   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
351   // NumberOfRelocations field, and the actual relocation count is stored in the
352   // VirtualAddress field in the first relocation entry.
353   if (Sec->hasExtendedRelocations()) {
354     const coff_relocation *FirstReloc;
355     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
356         base + Sec->PointerToRelocations)))
357       return 0;
358     // -1 to exclude this first relocation entry.
359     return FirstReloc->VirtualAddress - 1;
360   }
361   return Sec->NumberOfRelocations;
362 }
363 
364 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
366   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
367   if (!NumRelocs)
368     return nullptr;
369   auto begin = reinterpret_cast<const coff_relocation *>(
370       Base + Sec->PointerToRelocations);
371   if (Sec->hasExtendedRelocations()) {
372     // Skip the first relocation entry repurposed to store the number of
373     // relocations.
374     begin++;
375   }
376   if (Binary::checkOffset(M, uintptr_t(begin),
377                           sizeof(coff_relocation) * NumRelocs))
378     return nullptr;
379   return begin;
380 }
381 
section_rel_begin(DataRefImpl Ref) const382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
383   const coff_section *Sec = toSec(Ref);
384   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
385   if (begin && Sec->VirtualAddress != 0)
386     report_fatal_error("Sections with relocations should have an address of 0");
387   DataRefImpl Ret;
388   Ret.p = reinterpret_cast<uintptr_t>(begin);
389   return relocation_iterator(RelocationRef(Ret, this));
390 }
391 
section_rel_end(DataRefImpl Ref) const392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
393   const coff_section *Sec = toSec(Ref);
394   const coff_relocation *I = getFirstReloc(Sec, Data, base());
395   if (I)
396     I += getNumberOfRelocations(Sec, Data, base());
397   DataRefImpl Ret;
398   Ret.p = reinterpret_cast<uintptr_t>(I);
399   return relocation_iterator(RelocationRef(Ret, this));
400 }
401 
402 // Initialize the pointer to the symbol table.
initSymbolTablePtr()403 std::error_code COFFObjectFile::initSymbolTablePtr() {
404   if (COFFHeader)
405     if (std::error_code EC = getObject(
406             SymbolTable16, Data, base() + getPointerToSymbolTable(),
407             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
408       return EC;
409 
410   if (COFFBigObjHeader)
411     if (std::error_code EC = getObject(
412             SymbolTable32, Data, base() + getPointerToSymbolTable(),
413             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
414       return EC;
415 
416   // Find string table. The first four byte of the string table contains the
417   // total size of the string table, including the size field itself. If the
418   // string table is empty, the value of the first four byte would be 4.
419   uint32_t StringTableOffset = getPointerToSymbolTable() +
420                                getNumberOfSymbols() * getSymbolTableEntrySize();
421   const uint8_t *StringTableAddr = base() + StringTableOffset;
422   const ulittle32_t *StringTableSizePtr;
423   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
424     return EC;
425   StringTableSize = *StringTableSizePtr;
426   if (std::error_code EC =
427           getObject(StringTable, Data, StringTableAddr, StringTableSize))
428     return EC;
429 
430   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
431   // tools like cvtres write a size of 0 for an empty table instead of 4.
432   if (StringTableSize < 4)
433       StringTableSize = 4;
434 
435   // Check that the string table is null terminated if has any in it.
436   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
437     return  object_error::parse_failed;
438   return std::error_code();
439 }
440 
getImageBase() const441 uint64_t COFFObjectFile::getImageBase() const {
442   if (PE32Header)
443     return PE32Header->ImageBase;
444   else if (PE32PlusHeader)
445     return PE32PlusHeader->ImageBase;
446   // This actually comes up in practice.
447   return 0;
448 }
449 
450 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
452   uint64_t ImageBase = getImageBase();
453   uint64_t Rva = Addr - ImageBase;
454   assert(Rva <= UINT32_MAX);
455   return getRvaPtr((uint32_t)Rva, Res);
456 }
457 
458 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
460   for (const SectionRef &S : sections()) {
461     const coff_section *Section = getCOFFSection(S);
462     uint32_t SectionStart = Section->VirtualAddress;
463     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
464     if (SectionStart <= Addr && Addr < SectionEnd) {
465       uint32_t Offset = Addr - SectionStart;
466       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
467       return std::error_code();
468     }
469   }
470   return object_error::parse_failed;
471 }
472 
473 std::error_code
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents) const474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
475                                      ArrayRef<uint8_t> &Contents) const {
476   for (const SectionRef &S : sections()) {
477     const coff_section *Section = getCOFFSection(S);
478     uint32_t SectionStart = Section->VirtualAddress;
479     // Check if this RVA is within the section bounds. Be careful about integer
480     // overflow.
481     uint32_t OffsetIntoSection = RVA - SectionStart;
482     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
483         Size <= Section->VirtualSize - OffsetIntoSection) {
484       uintptr_t Begin =
485           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
486       Contents =
487           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
488       return std::error_code();
489     }
490   }
491   return object_error::parse_failed;
492 }
493 
494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
495 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
497                                             StringRef &Name) const {
498   uintptr_t IntPtr = 0;
499   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
500     return EC;
501   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
502   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
503   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
504   return std::error_code();
505 }
506 
507 std::error_code
getDebugPDBInfo(const debug_directory * DebugDir,const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
509                                 const codeview::DebugInfo *&PDBInfo,
510                                 StringRef &PDBFileName) const {
511   ArrayRef<uint8_t> InfoBytes;
512   if (std::error_code EC = getRvaAndSizeAsBytes(
513           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
514     return EC;
515   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
516     return object_error::parse_failed;
517   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
518   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
519   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
520                           InfoBytes.size());
521   // Truncate the name at the first null byte. Ignore any padding.
522   PDBFileName = PDBFileName.split('\0').first;
523   return std::error_code();
524 }
525 
526 std::error_code
getDebugPDBInfo(const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
528                                 StringRef &PDBFileName) const {
529   for (const debug_directory &D : debug_directories())
530     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
531       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
532   // If we get here, there is no PDB info to return.
533   PDBInfo = nullptr;
534   PDBFileName = StringRef();
535   return std::error_code();
536 }
537 
538 // Find the import table.
initImportTablePtr()539 std::error_code COFFObjectFile::initImportTablePtr() {
540   // First, we get the RVA of the import table. If the file lacks a pointer to
541   // the import table, do nothing.
542   const data_directory *DataEntry;
543   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
544     return std::error_code();
545 
546   // Do nothing if the pointer to import table is NULL.
547   if (DataEntry->RelativeVirtualAddress == 0)
548     return std::error_code();
549 
550   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
551 
552   // Find the section that contains the RVA. This is needed because the RVA is
553   // the import table's memory address which is different from its file offset.
554   uintptr_t IntPtr = 0;
555   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
556     return EC;
557   if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
558     return EC;
559   ImportDirectory = reinterpret_cast<
560       const coff_import_directory_table_entry *>(IntPtr);
561   return std::error_code();
562 }
563 
564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()565 std::error_code COFFObjectFile::initDelayImportTablePtr() {
566   const data_directory *DataEntry;
567   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
568     return std::error_code();
569   if (DataEntry->RelativeVirtualAddress == 0)
570     return std::error_code();
571 
572   uint32_t RVA = DataEntry->RelativeVirtualAddress;
573   NumberOfDelayImportDirectory = DataEntry->Size /
574       sizeof(delay_import_directory_table_entry) - 1;
575 
576   uintptr_t IntPtr = 0;
577   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
578     return EC;
579   DelayImportDirectory = reinterpret_cast<
580       const delay_import_directory_table_entry *>(IntPtr);
581   return std::error_code();
582 }
583 
584 // Find the export table.
initExportTablePtr()585 std::error_code COFFObjectFile::initExportTablePtr() {
586   // First, we get the RVA of the export table. If the file lacks a pointer to
587   // the export table, do nothing.
588   const data_directory *DataEntry;
589   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
590     return std::error_code();
591 
592   // Do nothing if the pointer to export table is NULL.
593   if (DataEntry->RelativeVirtualAddress == 0)
594     return std::error_code();
595 
596   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
597   uintptr_t IntPtr = 0;
598   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
599     return EC;
600   ExportDirectory =
601       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
602   return std::error_code();
603 }
604 
initBaseRelocPtr()605 std::error_code COFFObjectFile::initBaseRelocPtr() {
606   const data_directory *DataEntry;
607   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
608     return std::error_code();
609   if (DataEntry->RelativeVirtualAddress == 0)
610     return std::error_code();
611 
612   uintptr_t IntPtr = 0;
613   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
614     return EC;
615   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
616       IntPtr);
617   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
618       IntPtr + DataEntry->Size);
619   return std::error_code();
620 }
621 
initDebugDirectoryPtr()622 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623   // Get the RVA of the debug directory. Do nothing if it does not exist.
624   const data_directory *DataEntry;
625   if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626     return std::error_code();
627 
628   // Do nothing if the RVA is NULL.
629   if (DataEntry->RelativeVirtualAddress == 0)
630     return std::error_code();
631 
632   // Check that the size is a multiple of the entry size.
633   if (DataEntry->Size % sizeof(debug_directory) != 0)
634     return object_error::parse_failed;
635 
636   uintptr_t IntPtr = 0;
637   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638     return EC;
639   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640   if (std::error_code EC = getRvaPtr(
641           DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr))
642     return EC;
643   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr);
644   return std::error_code();
645 }
646 
initLoadConfigPtr()647 std::error_code COFFObjectFile::initLoadConfigPtr() {
648   // Get the RVA of the debug directory. Do nothing if it does not exist.
649   const data_directory *DataEntry;
650   if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651     return std::error_code();
652 
653   // Do nothing if the RVA is NULL.
654   if (DataEntry->RelativeVirtualAddress == 0)
655     return std::error_code();
656   uintptr_t IntPtr = 0;
657   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658     return EC;
659 
660   LoadConfig = (const void *)IntPtr;
661   return std::error_code();
662 }
663 
COFFObjectFile(MemoryBufferRef Object,std::error_code & EC)664 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669       ImportDirectory(nullptr),
670       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671       ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673   // Check that we at least have enough room for a header.
674   if (!checkSize(Data, EC, sizeof(coff_file_header)))
675     return;
676 
677   // The current location in the file where we are looking at.
678   uint64_t CurPtr = 0;
679 
680   // PE header is optional and is present only in executables. If it exists,
681   // it is placed right after COFF header.
682   bool HasPEHeader = false;
683 
684   // Check if this is a PE/COFF file.
685   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687     // PE signature to find 'normal' COFF header.
688     const auto *DH = reinterpret_cast<const dos_header *>(base());
689     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690       CurPtr = DH->AddressOfNewExeHeader;
691       // Check the PE magic bytes. ("PE\0\0")
692       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693         EC = object_error::parse_failed;
694         return;
695       }
696       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697       HasPEHeader = true;
698     }
699   }
700 
701   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702     return;
703 
704   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
705   // import libraries share a common prefix but bigobj is more restrictive.
706   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710       return;
711 
712     // Verify that we are dealing with bigobj.
713     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715                     sizeof(COFF::BigObjMagic)) == 0) {
716       COFFHeader = nullptr;
717       CurPtr += sizeof(coff_bigobj_file_header);
718     } else {
719       // It's not a bigobj.
720       COFFBigObjHeader = nullptr;
721     }
722   }
723   if (COFFHeader) {
724     // The prior checkSize call may have failed.  This isn't a hard error
725     // because we were just trying to sniff out bigobj.
726     EC = std::error_code();
727     CurPtr += sizeof(coff_file_header);
728 
729     if (COFFHeader->isImportLibrary())
730       return;
731   }
732 
733   if (HasPEHeader) {
734     const pe32_header *Header;
735     if ((EC = getObject(Header, Data, base() + CurPtr)))
736       return;
737 
738     const uint8_t *DataDirAddr;
739     uint64_t DataDirSize;
740     if (Header->Magic == COFF::PE32Header::PE32) {
741       PE32Header = Header;
742       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748     } else {
749       // It's neither PE32 nor PE32+.
750       EC = object_error::parse_failed;
751       return;
752     }
753     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754       return;
755   }
756 
757   if (COFFHeader)
758     CurPtr += COFFHeader->SizeOfOptionalHeader;
759 
760   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762     return;
763 
764   // Initialize the pointer to the symbol table.
765   if (getPointerToSymbolTable() != 0) {
766     if ((EC = initSymbolTablePtr())) {
767       SymbolTable16 = nullptr;
768       SymbolTable32 = nullptr;
769       StringTable = nullptr;
770       StringTableSize = 0;
771     }
772   } else {
773     // We had better not have any symbols if we don't have a symbol table.
774     if (getNumberOfSymbols() != 0) {
775       EC = object_error::parse_failed;
776       return;
777     }
778   }
779 
780   // Initialize the pointer to the beginning of the import table.
781   if ((EC = initImportTablePtr()))
782     return;
783   if ((EC = initDelayImportTablePtr()))
784     return;
785 
786   // Initialize the pointer to the export table.
787   if ((EC = initExportTablePtr()))
788     return;
789 
790   // Initialize the pointer to the base relocation table.
791   if ((EC = initBaseRelocPtr()))
792     return;
793 
794   // Initialize the pointer to the export table.
795   if ((EC = initDebugDirectoryPtr()))
796     return;
797 
798   if ((EC = initLoadConfigPtr()))
799     return;
800 
801   EC = std::error_code();
802 }
803 
symbol_begin() const804 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805   DataRefImpl Ret;
806   Ret.p = getSymbolTable();
807   return basic_symbol_iterator(SymbolRef(Ret, this));
808 }
809 
symbol_end() const810 basic_symbol_iterator COFFObjectFile::symbol_end() const {
811   // The symbol table ends where the string table begins.
812   DataRefImpl Ret;
813   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814   return basic_symbol_iterator(SymbolRef(Ret, this));
815 }
816 
import_directory_begin() const817 import_directory_iterator COFFObjectFile::import_directory_begin() const {
818   if (!ImportDirectory)
819     return import_directory_end();
820   if (ImportDirectory->isNull())
821     return import_directory_end();
822   return import_directory_iterator(
823       ImportDirectoryEntryRef(ImportDirectory, 0, this));
824 }
825 
import_directory_end() const826 import_directory_iterator COFFObjectFile::import_directory_end() const {
827   return import_directory_iterator(
828       ImportDirectoryEntryRef(nullptr, -1, this));
829 }
830 
831 delay_import_directory_iterator
delay_import_directory_begin() const832 COFFObjectFile::delay_import_directory_begin() const {
833   return delay_import_directory_iterator(
834       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
835 }
836 
837 delay_import_directory_iterator
delay_import_directory_end() const838 COFFObjectFile::delay_import_directory_end() const {
839   return delay_import_directory_iterator(
840       DelayImportDirectoryEntryRef(
841           DelayImportDirectory, NumberOfDelayImportDirectory, this));
842 }
843 
export_directory_begin() const844 export_directory_iterator COFFObjectFile::export_directory_begin() const {
845   return export_directory_iterator(
846       ExportDirectoryEntryRef(ExportDirectory, 0, this));
847 }
848 
export_directory_end() const849 export_directory_iterator COFFObjectFile::export_directory_end() const {
850   if (!ExportDirectory)
851     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852   ExportDirectoryEntryRef Ref(ExportDirectory,
853                               ExportDirectory->AddressTableEntries, this);
854   return export_directory_iterator(Ref);
855 }
856 
section_begin() const857 section_iterator COFFObjectFile::section_begin() const {
858   DataRefImpl Ret;
859   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860   return section_iterator(SectionRef(Ret, this));
861 }
862 
section_end() const863 section_iterator COFFObjectFile::section_end() const {
864   DataRefImpl Ret;
865   int NumSections =
866       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868   return section_iterator(SectionRef(Ret, this));
869 }
870 
base_reloc_begin() const871 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
873 }
874 
base_reloc_end() const875 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
877 }
878 
getBytesInAddress() const879 uint8_t COFFObjectFile::getBytesInAddress() const {
880   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
881 }
882 
getFileFormatName() const883 StringRef COFFObjectFile::getFileFormatName() const {
884   switch(getMachine()) {
885   case COFF::IMAGE_FILE_MACHINE_I386:
886     return "COFF-i386";
887   case COFF::IMAGE_FILE_MACHINE_AMD64:
888     return "COFF-x86-64";
889   case COFF::IMAGE_FILE_MACHINE_ARMNT:
890     return "COFF-ARM";
891   case COFF::IMAGE_FILE_MACHINE_ARM64:
892     return "COFF-ARM64";
893   default:
894     return "COFF-<unknown arch>";
895   }
896 }
897 
getArch() const898 Triple::ArchType COFFObjectFile::getArch() const {
899   switch (getMachine()) {
900   case COFF::IMAGE_FILE_MACHINE_I386:
901     return Triple::x86;
902   case COFF::IMAGE_FILE_MACHINE_AMD64:
903     return Triple::x86_64;
904   case COFF::IMAGE_FILE_MACHINE_ARMNT:
905     return Triple::thumb;
906   case COFF::IMAGE_FILE_MACHINE_ARM64:
907     return Triple::aarch64;
908   default:
909     return Triple::UnknownArch;
910   }
911 }
912 
getStartAddress() const913 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
914   if (PE32Header)
915     return PE32Header->AddressOfEntryPoint;
916   return 0;
917 }
918 
919 iterator_range<import_directory_iterator>
import_directories() const920 COFFObjectFile::import_directories() const {
921   return make_range(import_directory_begin(), import_directory_end());
922 }
923 
924 iterator_range<delay_import_directory_iterator>
delay_import_directories() const925 COFFObjectFile::delay_import_directories() const {
926   return make_range(delay_import_directory_begin(),
927                     delay_import_directory_end());
928 }
929 
930 iterator_range<export_directory_iterator>
export_directories() const931 COFFObjectFile::export_directories() const {
932   return make_range(export_directory_begin(), export_directory_end());
933 }
934 
base_relocs() const935 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
936   return make_range(base_reloc_begin(), base_reloc_end());
937 }
938 
getPE32Header(const pe32_header * & Res) const939 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
940   Res = PE32Header;
941   return std::error_code();
942 }
943 
944 std::error_code
getPE32PlusHeader(const pe32plus_header * & Res) const945 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
946   Res = PE32PlusHeader;
947   return std::error_code();
948 }
949 
950 std::error_code
getDataDirectory(uint32_t Index,const data_directory * & Res) const951 COFFObjectFile::getDataDirectory(uint32_t Index,
952                                  const data_directory *&Res) const {
953   // Error if there's no data directory or the index is out of range.
954   if (!DataDirectory) {
955     Res = nullptr;
956     return object_error::parse_failed;
957   }
958   assert(PE32Header || PE32PlusHeader);
959   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
960                                : PE32PlusHeader->NumberOfRvaAndSize;
961   if (Index >= NumEnt) {
962     Res = nullptr;
963     return object_error::parse_failed;
964   }
965   Res = &DataDirectory[Index];
966   return std::error_code();
967 }
968 
getSection(int32_t Index,const coff_section * & Result) const969 std::error_code COFFObjectFile::getSection(int32_t Index,
970                                            const coff_section *&Result) const {
971   Result = nullptr;
972   if (COFF::isReservedSectionNumber(Index))
973     return std::error_code();
974   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
975     // We already verified the section table data, so no need to check again.
976     Result = SectionTable + (Index - 1);
977     return std::error_code();
978   }
979   return object_error::parse_failed;
980 }
981 
getSection(StringRef SectionName,const coff_section * & Result) const982 std::error_code COFFObjectFile::getSection(StringRef SectionName,
983                                            const coff_section *&Result) const {
984   Result = nullptr;
985   StringRef SecName;
986   for (const SectionRef &Section : sections()) {
987     if (std::error_code E = Section.getName(SecName))
988       return E;
989     if (SecName == SectionName) {
990       Result = getCOFFSection(Section);
991       return std::error_code();
992     }
993   }
994   return object_error::parse_failed;
995 }
996 
getString(uint32_t Offset,StringRef & Result) const997 std::error_code COFFObjectFile::getString(uint32_t Offset,
998                                           StringRef &Result) const {
999   if (StringTableSize <= 4)
1000     // Tried to get a string from an empty string table.
1001     return object_error::parse_failed;
1002   if (Offset >= StringTableSize)
1003     return object_error::unexpected_eof;
1004   Result = StringRef(StringTable + Offset);
1005   return std::error_code();
1006 }
1007 
getSymbolName(COFFSymbolRef Symbol,StringRef & Res) const1008 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
1009                                               StringRef &Res) const {
1010   return getSymbolName(Symbol.getGeneric(), Res);
1011 }
1012 
getSymbolName(const coff_symbol_generic * Symbol,StringRef & Res) const1013 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1014                                               StringRef &Res) const {
1015   // Check for string table entry. First 4 bytes are 0.
1016   if (Symbol->Name.Offset.Zeroes == 0) {
1017     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1018       return EC;
1019     return std::error_code();
1020   }
1021 
1022   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1023     // Null terminated, let ::strlen figure out the length.
1024     Res = StringRef(Symbol->Name.ShortName);
1025   else
1026     // Not null terminated, use all 8 bytes.
1027     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1028   return std::error_code();
1029 }
1030 
1031 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const1032 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1033   const uint8_t *Aux = nullptr;
1034 
1035   size_t SymbolSize = getSymbolTableEntrySize();
1036   if (Symbol.getNumberOfAuxSymbols() > 0) {
1037     // AUX data comes immediately after the symbol in COFF
1038     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1039 #ifndef NDEBUG
1040     // Verify that the Aux symbol points to a valid entry in the symbol table.
1041     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1042     if (Offset < getPointerToSymbolTable() ||
1043         Offset >=
1044             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1045       report_fatal_error("Aux Symbol data was outside of symbol table.");
1046 
1047     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1048            "Aux Symbol data did not point to the beginning of a symbol");
1049 #endif
1050   }
1051   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1052 }
1053 
getSectionName(const coff_section * Sec,StringRef & Res) const1054 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
1055                                                StringRef &Res) const {
1056   StringRef Name;
1057   if (Sec->Name[COFF::NameSize - 1] == 0)
1058     // Null terminated, let ::strlen figure out the length.
1059     Name = Sec->Name;
1060   else
1061     // Not null terminated, use all 8 bytes.
1062     Name = StringRef(Sec->Name, COFF::NameSize);
1063 
1064   // Check for string table entry. First byte is '/'.
1065   if (Name.startswith("/")) {
1066     uint32_t Offset;
1067     if (Name.startswith("//")) {
1068       if (decodeBase64StringEntry(Name.substr(2), Offset))
1069         return object_error::parse_failed;
1070     } else {
1071       if (Name.substr(1).getAsInteger(10, Offset))
1072         return object_error::parse_failed;
1073     }
1074     if (std::error_code EC = getString(Offset, Name))
1075       return EC;
1076   }
1077 
1078   Res = Name;
1079   return std::error_code();
1080 }
1081 
getSectionSize(const coff_section * Sec) const1082 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1083   // SizeOfRawData and VirtualSize change what they represent depending on
1084   // whether or not we have an executable image.
1085   //
1086   // For object files, SizeOfRawData contains the size of section's data;
1087   // VirtualSize should be zero but isn't due to buggy COFF writers.
1088   //
1089   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1090   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1091   // be greater than SizeOfRawData; the contents past that point should be
1092   // considered to be zero.
1093   if (getDOSHeader())
1094     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1095   return Sec->SizeOfRawData;
1096 }
1097 
1098 std::error_code
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1099 COFFObjectFile::getSectionContents(const coff_section *Sec,
1100                                    ArrayRef<uint8_t> &Res) const {
1101   // In COFF, a virtual section won't have any in-file
1102   // content, so the file pointer to the content will be zero.
1103   if (Sec->PointerToRawData == 0)
1104     return std::error_code();
1105   // The only thing that we need to verify is that the contents is contained
1106   // within the file bounds. We don't need to make sure it doesn't cover other
1107   // data, as there's nothing that says that is not allowed.
1108   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1109   uint32_t SectionSize = getSectionSize(Sec);
1110   if (checkOffset(Data, ConStart, SectionSize))
1111     return object_error::parse_failed;
1112   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1113   return std::error_code();
1114 }
1115 
toRel(DataRefImpl Rel) const1116 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1117   return reinterpret_cast<const coff_relocation*>(Rel.p);
1118 }
1119 
moveRelocationNext(DataRefImpl & Rel) const1120 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1121   Rel.p = reinterpret_cast<uintptr_t>(
1122             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1123 }
1124 
getRelocationOffset(DataRefImpl Rel) const1125 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1126   const coff_relocation *R = toRel(Rel);
1127   return R->VirtualAddress;
1128 }
1129 
getRelocationSymbol(DataRefImpl Rel) const1130 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1131   const coff_relocation *R = toRel(Rel);
1132   DataRefImpl Ref;
1133   if (R->SymbolTableIndex >= getNumberOfSymbols())
1134     return symbol_end();
1135   if (SymbolTable16)
1136     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1137   else if (SymbolTable32)
1138     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1139   else
1140     llvm_unreachable("no symbol table pointer!");
1141   return symbol_iterator(SymbolRef(Ref, this));
1142 }
1143 
getRelocationType(DataRefImpl Rel) const1144 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1145   const coff_relocation* R = toRel(Rel);
1146   return R->Type;
1147 }
1148 
1149 const coff_section *
getCOFFSection(const SectionRef & Section) const1150 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1151   return toSec(Section.getRawDataRefImpl());
1152 }
1153 
getCOFFSymbol(const DataRefImpl & Ref) const1154 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1155   if (SymbolTable16)
1156     return toSymb<coff_symbol16>(Ref);
1157   if (SymbolTable32)
1158     return toSymb<coff_symbol32>(Ref);
1159   llvm_unreachable("no symbol table pointer!");
1160 }
1161 
getCOFFSymbol(const SymbolRef & Symbol) const1162 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1163   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1164 }
1165 
1166 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1167 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1168   return toRel(Reloc.getRawDataRefImpl());
1169 }
1170 
1171 ArrayRef<coff_relocation>
getRelocations(const coff_section * Sec) const1172 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1173   return {getFirstReloc(Sec, Data, base()),
1174           getNumberOfRelocations(Sec, Data, base())};
1175 }
1176 
1177 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1178   case COFF::reloc_type:                                                       \
1179     Res = #reloc_type;                                                         \
1180     break;
1181 
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1182 void COFFObjectFile::getRelocationTypeName(
1183     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1184   const coff_relocation *Reloc = toRel(Rel);
1185   StringRef Res;
1186   switch (getMachine()) {
1187   case COFF::IMAGE_FILE_MACHINE_AMD64:
1188     switch (Reloc->Type) {
1189     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1190     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1191     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1192     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1193     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1194     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1195     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1196     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1197     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1198     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1199     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1200     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1201     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1202     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1203     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1204     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1205     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1206     default:
1207       Res = "Unknown";
1208     }
1209     break;
1210   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1211     switch (Reloc->Type) {
1212     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1213     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1214     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1215     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1216     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1217     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1218     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1219     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1220     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1221     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1222     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1223     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1224     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1225     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1226     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1227     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1228     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1229     default:
1230       Res = "Unknown";
1231     }
1232     break;
1233   case COFF::IMAGE_FILE_MACHINE_ARM64:
1234     switch (Reloc->Type) {
1235     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1236     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1237     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1238     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1239     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1240     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1241     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1242     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1243     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1244     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1245     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1246     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1247     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1248     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1249     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1250     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1251     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1252     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1253     default:
1254       Res = "Unknown";
1255     }
1256     break;
1257   case COFF::IMAGE_FILE_MACHINE_I386:
1258     switch (Reloc->Type) {
1259     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1260     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1261     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1262     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1263     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1264     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1265     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1266     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1267     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1268     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1269     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1270     default:
1271       Res = "Unknown";
1272     }
1273     break;
1274   default:
1275     Res = "Unknown";
1276   }
1277   Result.append(Res.begin(), Res.end());
1278 }
1279 
1280 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1281 
isRelocatableObject() const1282 bool COFFObjectFile::isRelocatableObject() const {
1283   return !DataDirectory;
1284 }
1285 
1286 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1287 operator==(const ImportDirectoryEntryRef &Other) const {
1288   return ImportTable == Other.ImportTable && Index == Other.Index;
1289 }
1290 
moveNext()1291 void ImportDirectoryEntryRef::moveNext() {
1292   ++Index;
1293   if (ImportTable[Index].isNull()) {
1294     Index = -1;
1295     ImportTable = nullptr;
1296   }
1297 }
1298 
getImportTableEntry(const coff_import_directory_table_entry * & Result) const1299 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1300     const coff_import_directory_table_entry *&Result) const {
1301   return getObject(Result, OwningObject->Data, ImportTable + Index);
1302 }
1303 
1304 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1305 makeImportedSymbolIterator(const COFFObjectFile *Object,
1306                            uintptr_t Ptr, int Index) {
1307   if (Object->getBytesInAddress() == 4) {
1308     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1309     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1310   }
1311   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1312   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1313 }
1314 
1315 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1316 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1317   uintptr_t IntPtr = 0;
1318   Object->getRvaPtr(RVA, IntPtr);
1319   return makeImportedSymbolIterator(Object, IntPtr, 0);
1320 }
1321 
1322 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1323 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1324   uintptr_t IntPtr = 0;
1325   Object->getRvaPtr(RVA, IntPtr);
1326   // Forward the pointer to the last entry which is null.
1327   int Index = 0;
1328   if (Object->getBytesInAddress() == 4) {
1329     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1330     while (*Entry++)
1331       ++Index;
1332   } else {
1333     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1334     while (*Entry++)
1335       ++Index;
1336   }
1337   return makeImportedSymbolIterator(Object, IntPtr, Index);
1338 }
1339 
1340 imported_symbol_iterator
imported_symbol_begin() const1341 ImportDirectoryEntryRef::imported_symbol_begin() const {
1342   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1343                              OwningObject);
1344 }
1345 
1346 imported_symbol_iterator
imported_symbol_end() const1347 ImportDirectoryEntryRef::imported_symbol_end() const {
1348   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1349                            OwningObject);
1350 }
1351 
1352 iterator_range<imported_symbol_iterator>
imported_symbols() const1353 ImportDirectoryEntryRef::imported_symbols() const {
1354   return make_range(imported_symbol_begin(), imported_symbol_end());
1355 }
1356 
lookup_table_begin() const1357 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1358   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1359                              OwningObject);
1360 }
1361 
lookup_table_end() const1362 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1363   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1364                            OwningObject);
1365 }
1366 
1367 iterator_range<imported_symbol_iterator>
lookup_table_symbols() const1368 ImportDirectoryEntryRef::lookup_table_symbols() const {
1369   return make_range(lookup_table_begin(), lookup_table_end());
1370 }
1371 
getName(StringRef & Result) const1372 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1373   uintptr_t IntPtr = 0;
1374   if (std::error_code EC =
1375           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1376     return EC;
1377   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1378   return std::error_code();
1379 }
1380 
1381 std::error_code
getImportLookupTableRVA(uint32_t & Result) const1382 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1383   Result = ImportTable[Index].ImportLookupTableRVA;
1384   return std::error_code();
1385 }
1386 
1387 std::error_code
getImportAddressTableRVA(uint32_t & Result) const1388 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1389   Result = ImportTable[Index].ImportAddressTableRVA;
1390   return std::error_code();
1391 }
1392 
1393 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1394 operator==(const DelayImportDirectoryEntryRef &Other) const {
1395   return Table == Other.Table && Index == Other.Index;
1396 }
1397 
moveNext()1398 void DelayImportDirectoryEntryRef::moveNext() {
1399   ++Index;
1400 }
1401 
1402 imported_symbol_iterator
imported_symbol_begin() const1403 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1404   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1405                              OwningObject);
1406 }
1407 
1408 imported_symbol_iterator
imported_symbol_end() const1409 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1410   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1411                            OwningObject);
1412 }
1413 
1414 iterator_range<imported_symbol_iterator>
imported_symbols() const1415 DelayImportDirectoryEntryRef::imported_symbols() const {
1416   return make_range(imported_symbol_begin(), imported_symbol_end());
1417 }
1418 
getName(StringRef & Result) const1419 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1420   uintptr_t IntPtr = 0;
1421   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1422     return EC;
1423   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1424   return std::error_code();
1425 }
1426 
1427 std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1428 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1429   Result = Table;
1430   return std::error_code();
1431 }
1432 
1433 std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex,uint64_t & Result) const1434 getImportAddress(int AddrIndex, uint64_t &Result) const {
1435   uint32_t RVA = Table[Index].DelayImportAddressTable +
1436       AddrIndex * (OwningObject->is64() ? 8 : 4);
1437   uintptr_t IntPtr = 0;
1438   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1439     return EC;
1440   if (OwningObject->is64())
1441     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1442   else
1443     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1444   return std::error_code();
1445 }
1446 
1447 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1448 operator==(const ExportDirectoryEntryRef &Other) const {
1449   return ExportTable == Other.ExportTable && Index == Other.Index;
1450 }
1451 
moveNext()1452 void ExportDirectoryEntryRef::moveNext() {
1453   ++Index;
1454 }
1455 
1456 // Returns the name of the current export symbol. If the symbol is exported only
1457 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1458 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1459   uintptr_t IntPtr = 0;
1460   if (std::error_code EC =
1461           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1462     return EC;
1463   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1464   return std::error_code();
1465 }
1466 
1467 // Returns the starting ordinal number.
1468 std::error_code
getOrdinalBase(uint32_t & Result) const1469 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1470   Result = ExportTable->OrdinalBase;
1471   return std::error_code();
1472 }
1473 
1474 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1475 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1476   Result = ExportTable->OrdinalBase + Index;
1477   return std::error_code();
1478 }
1479 
1480 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1481 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1482   uintptr_t IntPtr = 0;
1483   if (std::error_code EC =
1484           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1485     return EC;
1486   const export_address_table_entry *entry =
1487       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1488   Result = entry[Index].ExportRVA;
1489   return std::error_code();
1490 }
1491 
1492 // Returns the name of the current export symbol. If the symbol is exported only
1493 // by ordinal, the empty string is set as a result.
1494 std::error_code
getSymbolName(StringRef & Result) const1495 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1496   uintptr_t IntPtr = 0;
1497   if (std::error_code EC =
1498           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1499     return EC;
1500   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1501 
1502   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1503   int Offset = 0;
1504   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1505        I < E; ++I, ++Offset) {
1506     if (*I != Index)
1507       continue;
1508     if (std::error_code EC =
1509             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1510       return EC;
1511     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1512     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1513       return EC;
1514     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1515     return std::error_code();
1516   }
1517   Result = "";
1518   return std::error_code();
1519 }
1520 
isForwarder(bool & Result) const1521 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1522   const data_directory *DataEntry;
1523   if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1524     return EC;
1525   uint32_t RVA;
1526   if (auto EC = getExportRVA(RVA))
1527     return EC;
1528   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1529   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1530   Result = (Begin <= RVA && RVA < End);
1531   return std::error_code();
1532 }
1533 
getForwardTo(StringRef & Result) const1534 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1535   uint32_t RVA;
1536   if (auto EC = getExportRVA(RVA))
1537     return EC;
1538   uintptr_t IntPtr = 0;
1539   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1540     return EC;
1541   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1542   return std::error_code();
1543 }
1544 
1545 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1546 operator==(const ImportedSymbolRef &Other) const {
1547   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1548       && Index == Other.Index;
1549 }
1550 
moveNext()1551 void ImportedSymbolRef::moveNext() {
1552   ++Index;
1553 }
1554 
1555 std::error_code
getSymbolName(StringRef & Result) const1556 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1557   uint32_t RVA;
1558   if (Entry32) {
1559     // If a symbol is imported only by ordinal, it has no name.
1560     if (Entry32[Index].isOrdinal())
1561       return std::error_code();
1562     RVA = Entry32[Index].getHintNameRVA();
1563   } else {
1564     if (Entry64[Index].isOrdinal())
1565       return std::error_code();
1566     RVA = Entry64[Index].getHintNameRVA();
1567   }
1568   uintptr_t IntPtr = 0;
1569   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1570     return EC;
1571   // +2 because the first two bytes is hint.
1572   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1573   return std::error_code();
1574 }
1575 
isOrdinal(bool & Result) const1576 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1577   if (Entry32)
1578     Result = Entry32[Index].isOrdinal();
1579   else
1580     Result = Entry64[Index].isOrdinal();
1581   return std::error_code();
1582 }
1583 
getHintNameRVA(uint32_t & Result) const1584 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1585   if (Entry32)
1586     Result = Entry32[Index].getHintNameRVA();
1587   else
1588     Result = Entry64[Index].getHintNameRVA();
1589   return std::error_code();
1590 }
1591 
getOrdinal(uint16_t & Result) const1592 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1593   uint32_t RVA;
1594   if (Entry32) {
1595     if (Entry32[Index].isOrdinal()) {
1596       Result = Entry32[Index].getOrdinal();
1597       return std::error_code();
1598     }
1599     RVA = Entry32[Index].getHintNameRVA();
1600   } else {
1601     if (Entry64[Index].isOrdinal()) {
1602       Result = Entry64[Index].getOrdinal();
1603       return std::error_code();
1604     }
1605     RVA = Entry64[Index].getHintNameRVA();
1606   }
1607   uintptr_t IntPtr = 0;
1608   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1609     return EC;
1610   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1611   return std::error_code();
1612 }
1613 
1614 Expected<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1615 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1616   std::error_code EC;
1617   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1618   if (EC)
1619     return errorCodeToError(EC);
1620   return std::move(Ret);
1621 }
1622 
operator ==(const BaseRelocRef & Other) const1623 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1624   return Header == Other.Header && Index == Other.Index;
1625 }
1626 
moveNext()1627 void BaseRelocRef::moveNext() {
1628   // Header->BlockSize is the size of the current block, including the
1629   // size of the header itself.
1630   uint32_t Size = sizeof(*Header) +
1631       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1632   if (Size == Header->BlockSize) {
1633     // .reloc contains a list of base relocation blocks. Each block
1634     // consists of the header followed by entries. The header contains
1635     // how many entories will follow. When we reach the end of the
1636     // current block, proceed to the next block.
1637     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1638         reinterpret_cast<const uint8_t *>(Header) + Size);
1639     Index = 0;
1640   } else {
1641     ++Index;
1642   }
1643 }
1644 
getType(uint8_t & Type) const1645 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1646   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1647   Type = Entry[Index].getType();
1648   return std::error_code();
1649 }
1650 
getRVA(uint32_t & Result) const1651 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1652   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1653   Result = Header->PageRVA + Entry[Index].getOffset();
1654   return std::error_code();
1655 }
1656 
1657 #define RETURN_IF_ERROR(E)                                                     \
1658   if (E)                                                                       \
1659     return E;
1660 
1661 Expected<ArrayRef<UTF16>>
getDirStringAtOffset(uint32_t Offset)1662 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1663   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1664   Reader.setOffset(Offset);
1665   uint16_t Length;
1666   RETURN_IF_ERROR(Reader.readInteger(Length));
1667   ArrayRef<UTF16> RawDirString;
1668   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1669   return RawDirString;
1670 }
1671 
1672 Expected<ArrayRef<UTF16>>
getEntryNameString(const coff_resource_dir_entry & Entry)1673 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1674   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1675 }
1676 
1677 Expected<const coff_resource_dir_table &>
getTableAtOffset(uint32_t Offset)1678 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1679   const coff_resource_dir_table *Table = nullptr;
1680 
1681   BinaryStreamReader Reader(BBS);
1682   Reader.setOffset(Offset);
1683   RETURN_IF_ERROR(Reader.readObject(Table));
1684   assert(Table != nullptr);
1685   return *Table;
1686 }
1687 
1688 Expected<const coff_resource_dir_table &>
getEntrySubDir(const coff_resource_dir_entry & Entry)1689 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1690   return getTableAtOffset(Entry.Offset.value());
1691 }
1692 
getBaseTable()1693 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1694   return getTableAtOffset(0);
1695 }
1696