• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64PromoteConstant pass which promotes constants
11 // to global variables when this is likely to be more efficient. Currently only
12 // types related to constant vector (i.e., constant vector, array of constant
13 // vectors, constant structure with a constant vector field, etc.) are promoted
14 // to global variables. Constant vectors are likely to be lowered in target
15 // constant pool during instruction selection already; therefore, the access
16 // will remain the same (memory load), but the structure types are not split
17 // into different constant pool accesses for each field. A bonus side effect is
18 // that created globals may be merged by the global merge pass.
19 //
20 // FIXME: This pass may be useful for other targets too.
21 //===----------------------------------------------------------------------===//
22 
23 #include "AArch64.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "aarch64-promote-const"
54 
55 // Stress testing mode - disable heuristics.
56 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
57                             cl::desc("Promote all vector constants"));
58 
59 STATISTIC(NumPromoted, "Number of promoted constants");
60 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
61 
62 //===----------------------------------------------------------------------===//
63 //                       AArch64PromoteConstant
64 //===----------------------------------------------------------------------===//
65 
66 namespace {
67 
68 /// Promotes interesting constant into global variables.
69 /// The motivating example is:
70 /// static const uint16_t TableA[32] = {
71 ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
72 ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
73 ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
74 ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
75 /// };
76 ///
77 /// uint8x16x4_t LoadStatic(void) {
78 ///   uint8x16x4_t ret;
79 ///   ret.val[0] = vld1q_u16(TableA +  0);
80 ///   ret.val[1] = vld1q_u16(TableA +  8);
81 ///   ret.val[2] = vld1q_u16(TableA + 16);
82 ///   ret.val[3] = vld1q_u16(TableA + 24);
83 ///   return ret;
84 /// }
85 ///
86 /// The constants in this example are folded into the uses. Thus, 4 different
87 /// constants are created.
88 ///
89 /// As their type is vector the cheapest way to create them is to load them
90 /// for the memory.
91 ///
92 /// Therefore the final assembly final has 4 different loads. With this pass
93 /// enabled, only one load is issued for the constants.
94 class AArch64PromoteConstant : public ModulePass {
95 public:
96   struct PromotedConstant {
97     bool ShouldConvert = false;
98     GlobalVariable *GV = nullptr;
99   };
100   using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;
101 
102   struct UpdateRecord {
103     Constant *C;
104     Instruction *User;
105     unsigned Op;
106 
UpdateRecord__anonea356bfc0111::AArch64PromoteConstant::UpdateRecord107     UpdateRecord(Constant *C, Instruction *User, unsigned Op)
108         : C(C), User(User), Op(Op) {}
109   };
110 
111   static char ID;
112 
AArch64PromoteConstant()113   AArch64PromoteConstant() : ModulePass(ID) {
114     initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
115   }
116 
getPassName() const117   StringRef getPassName() const override { return "AArch64 Promote Constant"; }
118 
119   /// Iterate over the functions and promote the interesting constants into
120   /// global variables with module scope.
runOnModule(Module & M)121   bool runOnModule(Module &M) override {
122     LLVM_DEBUG(dbgs() << getPassName() << '\n');
123     if (skipModule(M))
124       return false;
125     bool Changed = false;
126     PromotionCacheTy PromotionCache;
127     for (auto &MF : M) {
128       Changed |= runOnFunction(MF, PromotionCache);
129     }
130     return Changed;
131   }
132 
133 private:
134   /// Look for interesting constants used within the given function.
135   /// Promote them into global variables, load these global variables within
136   /// the related function, so that the number of inserted load is minimal.
137   bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
138 
139   // This transformation requires dominator info
getAnalysisUsage(AnalysisUsage & AU) const140   void getAnalysisUsage(AnalysisUsage &AU) const override {
141     AU.setPreservesCFG();
142     AU.addRequired<DominatorTreeWrapperPass>();
143     AU.addPreserved<DominatorTreeWrapperPass>();
144   }
145 
146   /// Type to store a list of Uses.
147   using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
148   /// Map an insertion point to all the uses it dominates.
149   using InsertionPoints = DenseMap<Instruction *, Uses>;
150 
151   /// Find the closest point that dominates the given Use.
152   Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
153 
154   /// Check if the given insertion point is dominated by an existing
155   /// insertion point.
156   /// If true, the given use is added to the list of dominated uses for
157   /// the related existing point.
158   /// \param NewPt the insertion point to be checked
159   /// \param User the user of the constant
160   /// \param OpNo the operand number of the use
161   /// \param InsertPts existing insertion points
162   /// \pre NewPt and all instruction in InsertPts belong to the same function
163   /// \return true if one of the insertion point in InsertPts dominates NewPt,
164   ///         false otherwise
165   bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
166                    InsertionPoints &InsertPts);
167 
168   /// Check if the given insertion point can be merged with an existing
169   /// insertion point in a common dominator.
170   /// If true, the given use is added to the list of the created insertion
171   /// point.
172   /// \param NewPt the insertion point to be checked
173   /// \param User the user of the constant
174   /// \param OpNo the operand number of the use
175   /// \param InsertPts existing insertion points
176   /// \pre NewPt and all instruction in InsertPts belong to the same function
177   /// \pre isDominated returns false for the exact same parameters.
178   /// \return true if it exists an insertion point in InsertPts that could
179   ///         have been merged with NewPt in a common dominator,
180   ///         false otherwise
181   bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
182                    InsertionPoints &InsertPts);
183 
184   /// Compute the minimal insertion points to dominates all the interesting
185   /// uses of value.
186   /// Insertion points are group per function and each insertion point
187   /// contains a list of all the uses it dominates within the related function
188   /// \param User the user of the constant
189   /// \param OpNo the operand number of the constant
190   /// \param[out] InsertPts output storage of the analysis
191   void computeInsertionPoint(Instruction *User, unsigned OpNo,
192                              InsertionPoints &InsertPts);
193 
194   /// Insert a definition of a new global variable at each point contained in
195   /// InsPtsPerFunc and update the related uses (also contained in
196   /// InsPtsPerFunc).
197   void insertDefinitions(Function &F, GlobalVariable &GV,
198                          InsertionPoints &InsertPts);
199 
200   /// Do the constant promotion indicated by the Updates records, keeping track
201   /// of globals in PromotionCache.
202   void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
203                         PromotionCacheTy &PromotionCache);
204 
205   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
206   /// Append Use to this list and delete the entry of IPI in InsertPts.
appendAndTransferDominatedUses(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints::iterator & IPI,InsertionPoints & InsertPts)207   static void appendAndTransferDominatedUses(Instruction *NewPt,
208                                              Instruction *User, unsigned OpNo,
209                                              InsertionPoints::iterator &IPI,
210                                              InsertionPoints &InsertPts) {
211     // Record the dominated use.
212     IPI->second.emplace_back(User, OpNo);
213     // Transfer the dominated uses of IPI to NewPt
214     // Inserting into the DenseMap may invalidate existing iterator.
215     // Keep a copy of the key to find the iterator to erase.  Keep a copy of the
216     // value so that we don't have to dereference IPI->second.
217     Instruction *OldInstr = IPI->first;
218     Uses OldUses = std::move(IPI->second);
219     InsertPts[NewPt] = std::move(OldUses);
220     // Erase IPI.
221     InsertPts.erase(OldInstr);
222   }
223 };
224 
225 } // end anonymous namespace
226 
227 char AArch64PromoteConstant::ID = 0;
228 
229 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
230                       "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)231 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
232 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
233                     "AArch64 Promote Constant Pass", false, false)
234 
235 ModulePass *llvm::createAArch64PromoteConstantPass() {
236   return new AArch64PromoteConstant();
237 }
238 
239 /// Check if the given type uses a vector type.
isConstantUsingVectorTy(const Type * CstTy)240 static bool isConstantUsingVectorTy(const Type *CstTy) {
241   if (CstTy->isVectorTy())
242     return true;
243   if (CstTy->isStructTy()) {
244     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
245          EltIdx < EndEltIdx; ++EltIdx)
246       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
247         return true;
248   } else if (CstTy->isArrayTy())
249     return isConstantUsingVectorTy(CstTy->getArrayElementType());
250   return false;
251 }
252 
253 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
254 /// a load of a global variable initialized with Cst.
255 /// A use should be converted if it is legal to do so.
256 /// For instance, it is not legal to turn the mask operand of a shuffle vector
257 /// into a load of a global variable.
shouldConvertUse(const Constant * Cst,const Instruction * Instr,unsigned OpIdx)258 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
259                              unsigned OpIdx) {
260   // shufflevector instruction expects a const for the mask argument, i.e., the
261   // third argument. Do not promote this use in that case.
262   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
263     return false;
264 
265   // extractvalue instruction expects a const idx.
266   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
267     return false;
268 
269   // extractvalue instruction expects a const idx.
270   if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
271     return false;
272 
273   if (isa<const AllocaInst>(Instr) && OpIdx > 0)
274     return false;
275 
276   // Alignment argument must be constant.
277   if (isa<const LoadInst>(Instr) && OpIdx > 0)
278     return false;
279 
280   // Alignment argument must be constant.
281   if (isa<const StoreInst>(Instr) && OpIdx > 1)
282     return false;
283 
284   // Index must be constant.
285   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
286     return false;
287 
288   // Personality function and filters must be constant.
289   // Give up on that instruction.
290   if (isa<const LandingPadInst>(Instr))
291     return false;
292 
293   // Switch instruction expects constants to compare to.
294   if (isa<const SwitchInst>(Instr))
295     return false;
296 
297   // Expected address must be a constant.
298   if (isa<const IndirectBrInst>(Instr))
299     return false;
300 
301   // Do not mess with intrinsics.
302   if (isa<const IntrinsicInst>(Instr))
303     return false;
304 
305   // Do not mess with inline asm.
306   const CallInst *CI = dyn_cast<const CallInst>(Instr);
307   return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
308 }
309 
310 /// Check if the given Cst should be converted into
311 /// a load of a global variable initialized with Cst.
312 /// A constant should be converted if it is likely that the materialization of
313 /// the constant will be tricky. Thus, we give up on zero or undef values.
314 ///
315 /// \todo Currently, accept only vector related types.
316 /// Also we give up on all simple vector type to keep the existing
317 /// behavior. Otherwise, we should push here all the check of the lowering of
318 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
319 /// constant via global merge and the fact that the same constant is stored
320 /// only once with this method (versus, as many function that uses the constant
321 /// for the regular approach, even for float).
322 /// Again, the simplest solution would be to promote every
323 /// constant and rematerialize them when they are actually cheap to create.
shouldConvertImpl(const Constant * Cst)324 static bool shouldConvertImpl(const Constant *Cst) {
325   if (isa<const UndefValue>(Cst))
326     return false;
327 
328   // FIXME: In some cases, it may be interesting to promote in memory
329   // a zero initialized constant.
330   // E.g., when the type of Cst require more instructions than the
331   // adrp/add/load sequence or when this sequence can be shared by several
332   // instances of Cst.
333   // Ideally, we could promote this into a global and rematerialize the constant
334   // when it was a bad idea.
335   if (Cst->isZeroValue())
336     return false;
337 
338   if (Stress)
339     return true;
340 
341   // FIXME: see function \todo
342   if (Cst->getType()->isVectorTy())
343     return false;
344   return isConstantUsingVectorTy(Cst->getType());
345 }
346 
347 static bool
shouldConvert(Constant & C,AArch64PromoteConstant::PromotionCacheTy & PromotionCache)348 shouldConvert(Constant &C,
349               AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
350   auto Converted = PromotionCache.insert(
351       std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
352   if (Converted.second)
353     Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
354   return Converted.first->second.ShouldConvert;
355 }
356 
findInsertionPoint(Instruction & User,unsigned OpNo)357 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
358                                                         unsigned OpNo) {
359   // If this user is a phi, the insertion point is in the related
360   // incoming basic block.
361   if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
362     return PhiInst->getIncomingBlock(OpNo)->getTerminator();
363 
364   return &User;
365 }
366 
isDominated(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)367 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
368                                          unsigned OpNo,
369                                          InsertionPoints &InsertPts) {
370   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
371       *NewPt->getParent()->getParent()).getDomTree();
372 
373   // Traverse all the existing insertion points and check if one is dominating
374   // NewPt. If it is, remember that.
375   for (auto &IPI : InsertPts) {
376     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
377         // When IPI.first is a terminator instruction, DT may think that
378         // the result is defined on the edge.
379         // Here we are testing the insertion point, not the definition.
380         (IPI.first->getParent() != NewPt->getParent() &&
381          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
382       // No need to insert this point. Just record the dominated use.
383       LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
384       LLVM_DEBUG(IPI.first->print(dbgs()));
385       LLVM_DEBUG(dbgs() << '\n');
386       IPI.second.emplace_back(User, OpNo);
387       return true;
388     }
389   }
390   return false;
391 }
392 
tryAndMerge(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)393 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
394                                          unsigned OpNo,
395                                          InsertionPoints &InsertPts) {
396   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
397       *NewPt->getParent()->getParent()).getDomTree();
398   BasicBlock *NewBB = NewPt->getParent();
399 
400   // Traverse all the existing insertion point and check if one is dominated by
401   // NewPt and thus useless or can be combined with NewPt into a common
402   // dominator.
403   for (InsertionPoints::iterator IPI = InsertPts.begin(),
404                                  EndIPI = InsertPts.end();
405        IPI != EndIPI; ++IPI) {
406     BasicBlock *CurBB = IPI->first->getParent();
407     if (NewBB == CurBB) {
408       // Instructions are in the same block.
409       // By construction, NewPt is dominating the other.
410       // Indeed, isDominated returned false with the exact same arguments.
411       LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
412       LLVM_DEBUG(IPI->first->print(dbgs()));
413       LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
414       appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
415       return true;
416     }
417 
418     // Look for a common dominator
419     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
420     // If none exists, we cannot merge these two points.
421     if (!CommonDominator)
422       continue;
423 
424     if (CommonDominator != NewBB) {
425       // By construction, the CommonDominator cannot be CurBB.
426       assert(CommonDominator != CurBB &&
427              "Instruction has not been rejected during isDominated check!");
428       // Take the last instruction of the CommonDominator as insertion point
429       NewPt = CommonDominator->getTerminator();
430     }
431     // else, CommonDominator is the block of NewBB, hence NewBB is the last
432     // possible insertion point in that block.
433     LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
434     LLVM_DEBUG(IPI->first->print(dbgs()));
435     LLVM_DEBUG(dbgs() << '\n');
436     LLVM_DEBUG(NewPt->print(dbgs()));
437     LLVM_DEBUG(dbgs() << '\n');
438     appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
439     return true;
440   }
441   return false;
442 }
443 
computeInsertionPoint(Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)444 void AArch64PromoteConstant::computeInsertionPoint(
445     Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
446   LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
447   LLVM_DEBUG(User->print(dbgs()));
448   LLVM_DEBUG(dbgs() << '\n');
449 
450   Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
451 
452   LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
453   LLVM_DEBUG(InsertionPoint->print(dbgs()));
454   LLVM_DEBUG(dbgs() << '\n');
455 
456   if (isDominated(InsertionPoint, User, OpNo, InsertPts))
457     return;
458   // This insertion point is useful, check if we can merge some insertion
459   // point in a common dominator or if NewPt dominates an existing one.
460   if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
461     return;
462 
463   LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
464 
465   // It is definitely useful by its own
466   InsertPts[InsertionPoint].emplace_back(User, OpNo);
467 }
468 
ensurePromotedGV(Function & F,Constant & C,AArch64PromoteConstant::PromotedConstant & PC)469 static void ensurePromotedGV(Function &F, Constant &C,
470                              AArch64PromoteConstant::PromotedConstant &PC) {
471   assert(PC.ShouldConvert &&
472          "Expected that we should convert this to a global");
473   if (PC.GV)
474     return;
475   PC.GV = new GlobalVariable(
476       *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
477       "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
478   PC.GV->setInitializer(&C);
479   LLVM_DEBUG(dbgs() << "Global replacement: ");
480   LLVM_DEBUG(PC.GV->print(dbgs()));
481   LLVM_DEBUG(dbgs() << '\n');
482   ++NumPromoted;
483 }
484 
insertDefinitions(Function & F,GlobalVariable & PromotedGV,InsertionPoints & InsertPts)485 void AArch64PromoteConstant::insertDefinitions(Function &F,
486                                                GlobalVariable &PromotedGV,
487                                                InsertionPoints &InsertPts) {
488 #ifndef NDEBUG
489   // Do more checking for debug purposes.
490   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
491 #endif
492   assert(!InsertPts.empty() && "Empty uses does not need a definition");
493 
494   for (const auto &IPI : InsertPts) {
495     // Create the load of the global variable.
496     IRBuilder<> Builder(IPI.first);
497     LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV);
498     LLVM_DEBUG(dbgs() << "**********\n");
499     LLVM_DEBUG(dbgs() << "New def: ");
500     LLVM_DEBUG(LoadedCst->print(dbgs()));
501     LLVM_DEBUG(dbgs() << '\n');
502 
503     // Update the dominated uses.
504     for (auto Use : IPI.second) {
505 #ifndef NDEBUG
506       assert(DT.dominates(LoadedCst,
507                           findInsertionPoint(*Use.first, Use.second)) &&
508              "Inserted definition does not dominate all its uses!");
509 #endif
510       LLVM_DEBUG({
511         dbgs() << "Use to update " << Use.second << ":";
512         Use.first->print(dbgs());
513         dbgs() << '\n';
514       });
515       Use.first->setOperand(Use.second, LoadedCst);
516       ++NumPromotedUses;
517     }
518   }
519 }
520 
promoteConstants(Function & F,SmallVectorImpl<UpdateRecord> & Updates,PromotionCacheTy & PromotionCache)521 void AArch64PromoteConstant::promoteConstants(
522     Function &F, SmallVectorImpl<UpdateRecord> &Updates,
523     PromotionCacheTy &PromotionCache) {
524   // Promote the constants.
525   for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
526     LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
527     auto First = U;
528     Constant *C = First->C;
529     InsertionPoints InsertPts;
530     do {
531       computeInsertionPoint(U->User, U->Op, InsertPts);
532     } while (++U != E && U->C == C);
533 
534     auto &Promotion = PromotionCache[C];
535     ensurePromotedGV(F, *C, Promotion);
536     insertDefinitions(F, *Promotion.GV, InsertPts);
537   }
538 }
539 
runOnFunction(Function & F,PromotionCacheTy & PromotionCache)540 bool AArch64PromoteConstant::runOnFunction(Function &F,
541                                            PromotionCacheTy &PromotionCache) {
542   // Look for instructions using constant vector. Promote that constant to a
543   // global variable. Create as few loads of this variable as possible and
544   // update the uses accordingly.
545   SmallVector<UpdateRecord, 64> Updates;
546   for (Instruction &I : instructions(&F)) {
547     // Traverse the operand, looking for constant vectors. Replace them by a
548     // load of a global variable of constant vector type.
549     for (Use &U : I.operands()) {
550       Constant *Cst = dyn_cast<Constant>(U);
551       // There is no point in promoting global values as they are already
552       // global. Do not promote constant expressions either, as they may
553       // require some code expansion.
554       if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
555         continue;
556 
557       // Check if this constant is worth promoting.
558       if (!shouldConvert(*Cst, PromotionCache))
559         continue;
560 
561       // Check if this use should be promoted.
562       unsigned OpNo = &U - I.op_begin();
563       if (!shouldConvertUse(Cst, &I, OpNo))
564         continue;
565 
566       Updates.emplace_back(Cst, &I, OpNo);
567     }
568   }
569 
570   if (Updates.empty())
571     return false;
572 
573   promoteConstants(F, Updates, PromotionCache);
574   return true;
575 }
576