1 //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64PromoteConstant pass which promotes constants
11 // to global variables when this is likely to be more efficient. Currently only
12 // types related to constant vector (i.e., constant vector, array of constant
13 // vectors, constant structure with a constant vector field, etc.) are promoted
14 // to global variables. Constant vectors are likely to be lowered in target
15 // constant pool during instruction selection already; therefore, the access
16 // will remain the same (memory load), but the structure types are not split
17 // into different constant pool accesses for each field. A bonus side effect is
18 // that created globals may be merged by the global merge pass.
19 //
20 // FIXME: This pass may be useful for other targets too.
21 //===----------------------------------------------------------------------===//
22
23 #include "AArch64.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <utility>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "aarch64-promote-const"
54
55 // Stress testing mode - disable heuristics.
56 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
57 cl::desc("Promote all vector constants"));
58
59 STATISTIC(NumPromoted, "Number of promoted constants");
60 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
61
62 //===----------------------------------------------------------------------===//
63 // AArch64PromoteConstant
64 //===----------------------------------------------------------------------===//
65
66 namespace {
67
68 /// Promotes interesting constant into global variables.
69 /// The motivating example is:
70 /// static const uint16_t TableA[32] = {
71 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
72 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
73 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
74 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
75 /// };
76 ///
77 /// uint8x16x4_t LoadStatic(void) {
78 /// uint8x16x4_t ret;
79 /// ret.val[0] = vld1q_u16(TableA + 0);
80 /// ret.val[1] = vld1q_u16(TableA + 8);
81 /// ret.val[2] = vld1q_u16(TableA + 16);
82 /// ret.val[3] = vld1q_u16(TableA + 24);
83 /// return ret;
84 /// }
85 ///
86 /// The constants in this example are folded into the uses. Thus, 4 different
87 /// constants are created.
88 ///
89 /// As their type is vector the cheapest way to create them is to load them
90 /// for the memory.
91 ///
92 /// Therefore the final assembly final has 4 different loads. With this pass
93 /// enabled, only one load is issued for the constants.
94 class AArch64PromoteConstant : public ModulePass {
95 public:
96 struct PromotedConstant {
97 bool ShouldConvert = false;
98 GlobalVariable *GV = nullptr;
99 };
100 using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;
101
102 struct UpdateRecord {
103 Constant *C;
104 Instruction *User;
105 unsigned Op;
106
UpdateRecord__anonea356bfc0111::AArch64PromoteConstant::UpdateRecord107 UpdateRecord(Constant *C, Instruction *User, unsigned Op)
108 : C(C), User(User), Op(Op) {}
109 };
110
111 static char ID;
112
AArch64PromoteConstant()113 AArch64PromoteConstant() : ModulePass(ID) {
114 initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
115 }
116
getPassName() const117 StringRef getPassName() const override { return "AArch64 Promote Constant"; }
118
119 /// Iterate over the functions and promote the interesting constants into
120 /// global variables with module scope.
runOnModule(Module & M)121 bool runOnModule(Module &M) override {
122 LLVM_DEBUG(dbgs() << getPassName() << '\n');
123 if (skipModule(M))
124 return false;
125 bool Changed = false;
126 PromotionCacheTy PromotionCache;
127 for (auto &MF : M) {
128 Changed |= runOnFunction(MF, PromotionCache);
129 }
130 return Changed;
131 }
132
133 private:
134 /// Look for interesting constants used within the given function.
135 /// Promote them into global variables, load these global variables within
136 /// the related function, so that the number of inserted load is minimal.
137 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
138
139 // This transformation requires dominator info
getAnalysisUsage(AnalysisUsage & AU) const140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.setPreservesCFG();
142 AU.addRequired<DominatorTreeWrapperPass>();
143 AU.addPreserved<DominatorTreeWrapperPass>();
144 }
145
146 /// Type to store a list of Uses.
147 using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
148 /// Map an insertion point to all the uses it dominates.
149 using InsertionPoints = DenseMap<Instruction *, Uses>;
150
151 /// Find the closest point that dominates the given Use.
152 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
153
154 /// Check if the given insertion point is dominated by an existing
155 /// insertion point.
156 /// If true, the given use is added to the list of dominated uses for
157 /// the related existing point.
158 /// \param NewPt the insertion point to be checked
159 /// \param User the user of the constant
160 /// \param OpNo the operand number of the use
161 /// \param InsertPts existing insertion points
162 /// \pre NewPt and all instruction in InsertPts belong to the same function
163 /// \return true if one of the insertion point in InsertPts dominates NewPt,
164 /// false otherwise
165 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
166 InsertionPoints &InsertPts);
167
168 /// Check if the given insertion point can be merged with an existing
169 /// insertion point in a common dominator.
170 /// If true, the given use is added to the list of the created insertion
171 /// point.
172 /// \param NewPt the insertion point to be checked
173 /// \param User the user of the constant
174 /// \param OpNo the operand number of the use
175 /// \param InsertPts existing insertion points
176 /// \pre NewPt and all instruction in InsertPts belong to the same function
177 /// \pre isDominated returns false for the exact same parameters.
178 /// \return true if it exists an insertion point in InsertPts that could
179 /// have been merged with NewPt in a common dominator,
180 /// false otherwise
181 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
182 InsertionPoints &InsertPts);
183
184 /// Compute the minimal insertion points to dominates all the interesting
185 /// uses of value.
186 /// Insertion points are group per function and each insertion point
187 /// contains a list of all the uses it dominates within the related function
188 /// \param User the user of the constant
189 /// \param OpNo the operand number of the constant
190 /// \param[out] InsertPts output storage of the analysis
191 void computeInsertionPoint(Instruction *User, unsigned OpNo,
192 InsertionPoints &InsertPts);
193
194 /// Insert a definition of a new global variable at each point contained in
195 /// InsPtsPerFunc and update the related uses (also contained in
196 /// InsPtsPerFunc).
197 void insertDefinitions(Function &F, GlobalVariable &GV,
198 InsertionPoints &InsertPts);
199
200 /// Do the constant promotion indicated by the Updates records, keeping track
201 /// of globals in PromotionCache.
202 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
203 PromotionCacheTy &PromotionCache);
204
205 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
206 /// Append Use to this list and delete the entry of IPI in InsertPts.
appendAndTransferDominatedUses(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints::iterator & IPI,InsertionPoints & InsertPts)207 static void appendAndTransferDominatedUses(Instruction *NewPt,
208 Instruction *User, unsigned OpNo,
209 InsertionPoints::iterator &IPI,
210 InsertionPoints &InsertPts) {
211 // Record the dominated use.
212 IPI->second.emplace_back(User, OpNo);
213 // Transfer the dominated uses of IPI to NewPt
214 // Inserting into the DenseMap may invalidate existing iterator.
215 // Keep a copy of the key to find the iterator to erase. Keep a copy of the
216 // value so that we don't have to dereference IPI->second.
217 Instruction *OldInstr = IPI->first;
218 Uses OldUses = std::move(IPI->second);
219 InsertPts[NewPt] = std::move(OldUses);
220 // Erase IPI.
221 InsertPts.erase(OldInstr);
222 }
223 };
224
225 } // end anonymous namespace
226
227 char AArch64PromoteConstant::ID = 0;
228
229 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
230 "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)231 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
232 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
233 "AArch64 Promote Constant Pass", false, false)
234
235 ModulePass *llvm::createAArch64PromoteConstantPass() {
236 return new AArch64PromoteConstant();
237 }
238
239 /// Check if the given type uses a vector type.
isConstantUsingVectorTy(const Type * CstTy)240 static bool isConstantUsingVectorTy(const Type *CstTy) {
241 if (CstTy->isVectorTy())
242 return true;
243 if (CstTy->isStructTy()) {
244 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
245 EltIdx < EndEltIdx; ++EltIdx)
246 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
247 return true;
248 } else if (CstTy->isArrayTy())
249 return isConstantUsingVectorTy(CstTy->getArrayElementType());
250 return false;
251 }
252
253 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
254 /// a load of a global variable initialized with Cst.
255 /// A use should be converted if it is legal to do so.
256 /// For instance, it is not legal to turn the mask operand of a shuffle vector
257 /// into a load of a global variable.
shouldConvertUse(const Constant * Cst,const Instruction * Instr,unsigned OpIdx)258 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
259 unsigned OpIdx) {
260 // shufflevector instruction expects a const for the mask argument, i.e., the
261 // third argument. Do not promote this use in that case.
262 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
263 return false;
264
265 // extractvalue instruction expects a const idx.
266 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
267 return false;
268
269 // extractvalue instruction expects a const idx.
270 if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
271 return false;
272
273 if (isa<const AllocaInst>(Instr) && OpIdx > 0)
274 return false;
275
276 // Alignment argument must be constant.
277 if (isa<const LoadInst>(Instr) && OpIdx > 0)
278 return false;
279
280 // Alignment argument must be constant.
281 if (isa<const StoreInst>(Instr) && OpIdx > 1)
282 return false;
283
284 // Index must be constant.
285 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
286 return false;
287
288 // Personality function and filters must be constant.
289 // Give up on that instruction.
290 if (isa<const LandingPadInst>(Instr))
291 return false;
292
293 // Switch instruction expects constants to compare to.
294 if (isa<const SwitchInst>(Instr))
295 return false;
296
297 // Expected address must be a constant.
298 if (isa<const IndirectBrInst>(Instr))
299 return false;
300
301 // Do not mess with intrinsics.
302 if (isa<const IntrinsicInst>(Instr))
303 return false;
304
305 // Do not mess with inline asm.
306 const CallInst *CI = dyn_cast<const CallInst>(Instr);
307 return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
308 }
309
310 /// Check if the given Cst should be converted into
311 /// a load of a global variable initialized with Cst.
312 /// A constant should be converted if it is likely that the materialization of
313 /// the constant will be tricky. Thus, we give up on zero or undef values.
314 ///
315 /// \todo Currently, accept only vector related types.
316 /// Also we give up on all simple vector type to keep the existing
317 /// behavior. Otherwise, we should push here all the check of the lowering of
318 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
319 /// constant via global merge and the fact that the same constant is stored
320 /// only once with this method (versus, as many function that uses the constant
321 /// for the regular approach, even for float).
322 /// Again, the simplest solution would be to promote every
323 /// constant and rematerialize them when they are actually cheap to create.
shouldConvertImpl(const Constant * Cst)324 static bool shouldConvertImpl(const Constant *Cst) {
325 if (isa<const UndefValue>(Cst))
326 return false;
327
328 // FIXME: In some cases, it may be interesting to promote in memory
329 // a zero initialized constant.
330 // E.g., when the type of Cst require more instructions than the
331 // adrp/add/load sequence or when this sequence can be shared by several
332 // instances of Cst.
333 // Ideally, we could promote this into a global and rematerialize the constant
334 // when it was a bad idea.
335 if (Cst->isZeroValue())
336 return false;
337
338 if (Stress)
339 return true;
340
341 // FIXME: see function \todo
342 if (Cst->getType()->isVectorTy())
343 return false;
344 return isConstantUsingVectorTy(Cst->getType());
345 }
346
347 static bool
shouldConvert(Constant & C,AArch64PromoteConstant::PromotionCacheTy & PromotionCache)348 shouldConvert(Constant &C,
349 AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
350 auto Converted = PromotionCache.insert(
351 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
352 if (Converted.second)
353 Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
354 return Converted.first->second.ShouldConvert;
355 }
356
findInsertionPoint(Instruction & User,unsigned OpNo)357 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
358 unsigned OpNo) {
359 // If this user is a phi, the insertion point is in the related
360 // incoming basic block.
361 if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
362 return PhiInst->getIncomingBlock(OpNo)->getTerminator();
363
364 return &User;
365 }
366
isDominated(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)367 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
368 unsigned OpNo,
369 InsertionPoints &InsertPts) {
370 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
371 *NewPt->getParent()->getParent()).getDomTree();
372
373 // Traverse all the existing insertion points and check if one is dominating
374 // NewPt. If it is, remember that.
375 for (auto &IPI : InsertPts) {
376 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
377 // When IPI.first is a terminator instruction, DT may think that
378 // the result is defined on the edge.
379 // Here we are testing the insertion point, not the definition.
380 (IPI.first->getParent() != NewPt->getParent() &&
381 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
382 // No need to insert this point. Just record the dominated use.
383 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
384 LLVM_DEBUG(IPI.first->print(dbgs()));
385 LLVM_DEBUG(dbgs() << '\n');
386 IPI.second.emplace_back(User, OpNo);
387 return true;
388 }
389 }
390 return false;
391 }
392
tryAndMerge(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)393 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
394 unsigned OpNo,
395 InsertionPoints &InsertPts) {
396 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
397 *NewPt->getParent()->getParent()).getDomTree();
398 BasicBlock *NewBB = NewPt->getParent();
399
400 // Traverse all the existing insertion point and check if one is dominated by
401 // NewPt and thus useless or can be combined with NewPt into a common
402 // dominator.
403 for (InsertionPoints::iterator IPI = InsertPts.begin(),
404 EndIPI = InsertPts.end();
405 IPI != EndIPI; ++IPI) {
406 BasicBlock *CurBB = IPI->first->getParent();
407 if (NewBB == CurBB) {
408 // Instructions are in the same block.
409 // By construction, NewPt is dominating the other.
410 // Indeed, isDominated returned false with the exact same arguments.
411 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
412 LLVM_DEBUG(IPI->first->print(dbgs()));
413 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
414 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
415 return true;
416 }
417
418 // Look for a common dominator
419 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
420 // If none exists, we cannot merge these two points.
421 if (!CommonDominator)
422 continue;
423
424 if (CommonDominator != NewBB) {
425 // By construction, the CommonDominator cannot be CurBB.
426 assert(CommonDominator != CurBB &&
427 "Instruction has not been rejected during isDominated check!");
428 // Take the last instruction of the CommonDominator as insertion point
429 NewPt = CommonDominator->getTerminator();
430 }
431 // else, CommonDominator is the block of NewBB, hence NewBB is the last
432 // possible insertion point in that block.
433 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
434 LLVM_DEBUG(IPI->first->print(dbgs()));
435 LLVM_DEBUG(dbgs() << '\n');
436 LLVM_DEBUG(NewPt->print(dbgs()));
437 LLVM_DEBUG(dbgs() << '\n');
438 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
439 return true;
440 }
441 return false;
442 }
443
computeInsertionPoint(Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)444 void AArch64PromoteConstant::computeInsertionPoint(
445 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
446 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
447 LLVM_DEBUG(User->print(dbgs()));
448 LLVM_DEBUG(dbgs() << '\n');
449
450 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
451
452 LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
453 LLVM_DEBUG(InsertionPoint->print(dbgs()));
454 LLVM_DEBUG(dbgs() << '\n');
455
456 if (isDominated(InsertionPoint, User, OpNo, InsertPts))
457 return;
458 // This insertion point is useful, check if we can merge some insertion
459 // point in a common dominator or if NewPt dominates an existing one.
460 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
461 return;
462
463 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
464
465 // It is definitely useful by its own
466 InsertPts[InsertionPoint].emplace_back(User, OpNo);
467 }
468
ensurePromotedGV(Function & F,Constant & C,AArch64PromoteConstant::PromotedConstant & PC)469 static void ensurePromotedGV(Function &F, Constant &C,
470 AArch64PromoteConstant::PromotedConstant &PC) {
471 assert(PC.ShouldConvert &&
472 "Expected that we should convert this to a global");
473 if (PC.GV)
474 return;
475 PC.GV = new GlobalVariable(
476 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
477 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
478 PC.GV->setInitializer(&C);
479 LLVM_DEBUG(dbgs() << "Global replacement: ");
480 LLVM_DEBUG(PC.GV->print(dbgs()));
481 LLVM_DEBUG(dbgs() << '\n');
482 ++NumPromoted;
483 }
484
insertDefinitions(Function & F,GlobalVariable & PromotedGV,InsertionPoints & InsertPts)485 void AArch64PromoteConstant::insertDefinitions(Function &F,
486 GlobalVariable &PromotedGV,
487 InsertionPoints &InsertPts) {
488 #ifndef NDEBUG
489 // Do more checking for debug purposes.
490 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
491 #endif
492 assert(!InsertPts.empty() && "Empty uses does not need a definition");
493
494 for (const auto &IPI : InsertPts) {
495 // Create the load of the global variable.
496 IRBuilder<> Builder(IPI.first);
497 LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV);
498 LLVM_DEBUG(dbgs() << "**********\n");
499 LLVM_DEBUG(dbgs() << "New def: ");
500 LLVM_DEBUG(LoadedCst->print(dbgs()));
501 LLVM_DEBUG(dbgs() << '\n');
502
503 // Update the dominated uses.
504 for (auto Use : IPI.second) {
505 #ifndef NDEBUG
506 assert(DT.dominates(LoadedCst,
507 findInsertionPoint(*Use.first, Use.second)) &&
508 "Inserted definition does not dominate all its uses!");
509 #endif
510 LLVM_DEBUG({
511 dbgs() << "Use to update " << Use.second << ":";
512 Use.first->print(dbgs());
513 dbgs() << '\n';
514 });
515 Use.first->setOperand(Use.second, LoadedCst);
516 ++NumPromotedUses;
517 }
518 }
519 }
520
promoteConstants(Function & F,SmallVectorImpl<UpdateRecord> & Updates,PromotionCacheTy & PromotionCache)521 void AArch64PromoteConstant::promoteConstants(
522 Function &F, SmallVectorImpl<UpdateRecord> &Updates,
523 PromotionCacheTy &PromotionCache) {
524 // Promote the constants.
525 for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
526 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
527 auto First = U;
528 Constant *C = First->C;
529 InsertionPoints InsertPts;
530 do {
531 computeInsertionPoint(U->User, U->Op, InsertPts);
532 } while (++U != E && U->C == C);
533
534 auto &Promotion = PromotionCache[C];
535 ensurePromotedGV(F, *C, Promotion);
536 insertDefinitions(F, *Promotion.GV, InsertPts);
537 }
538 }
539
runOnFunction(Function & F,PromotionCacheTy & PromotionCache)540 bool AArch64PromoteConstant::runOnFunction(Function &F,
541 PromotionCacheTy &PromotionCache) {
542 // Look for instructions using constant vector. Promote that constant to a
543 // global variable. Create as few loads of this variable as possible and
544 // update the uses accordingly.
545 SmallVector<UpdateRecord, 64> Updates;
546 for (Instruction &I : instructions(&F)) {
547 // Traverse the operand, looking for constant vectors. Replace them by a
548 // load of a global variable of constant vector type.
549 for (Use &U : I.operands()) {
550 Constant *Cst = dyn_cast<Constant>(U);
551 // There is no point in promoting global values as they are already
552 // global. Do not promote constant expressions either, as they may
553 // require some code expansion.
554 if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
555 continue;
556
557 // Check if this constant is worth promoting.
558 if (!shouldConvert(*Cst, PromotionCache))
559 continue;
560
561 // Check if this use should be promoted.
562 unsigned OpNo = &U - I.op_begin();
563 if (!shouldConvertUse(Cst, &I, OpNo))
564 continue;
565
566 Updates.emplace_back(Cst, &I, OpNo);
567 }
568 }
569
570 if (Updates.empty())
571 return false;
572
573 promoteConstants(F, Updates, PromotionCache);
574 return true;
575 }
576