• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 /// AArch64_AM - AArch64 Addressing Mode Stuff
26 namespace AArch64_AM {
27 
28 //===----------------------------------------------------------------------===//
29 // Shifts
30 //
31 
32 enum ShiftExtendType {
33   InvalidShiftExtend = -1,
34   LSL = 0,
35   LSR,
36   ASR,
37   ROR,
38   MSL,
39 
40   UXTB,
41   UXTH,
42   UXTW,
43   UXTX,
44 
45   SXTB,
46   SXTH,
47   SXTW,
48   SXTX,
49 };
50 
51 /// getShiftName - Get the string encoding for the shift type.
getShiftExtendName(AArch64_AM::ShiftExtendType ST)52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53   switch (ST) {
54   default: llvm_unreachable("unhandled shift type!");
55   case AArch64_AM::LSL: return "lsl";
56   case AArch64_AM::LSR: return "lsr";
57   case AArch64_AM::ASR: return "asr";
58   case AArch64_AM::ROR: return "ror";
59   case AArch64_AM::MSL: return "msl";
60   case AArch64_AM::UXTB: return "uxtb";
61   case AArch64_AM::UXTH: return "uxth";
62   case AArch64_AM::UXTW: return "uxtw";
63   case AArch64_AM::UXTX: return "uxtx";
64   case AArch64_AM::SXTB: return "sxtb";
65   case AArch64_AM::SXTH: return "sxth";
66   case AArch64_AM::SXTW: return "sxtw";
67   case AArch64_AM::SXTX: return "sxtx";
68   }
69   return nullptr;
70 }
71 
72 /// getShiftType - Extract the shift type.
getShiftType(unsigned Imm)73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74   switch ((Imm >> 6) & 0x7) {
75   default: return AArch64_AM::InvalidShiftExtend;
76   case 0: return AArch64_AM::LSL;
77   case 1: return AArch64_AM::LSR;
78   case 2: return AArch64_AM::ASR;
79   case 3: return AArch64_AM::ROR;
80   case 4: return AArch64_AM::MSL;
81   }
82 }
83 
84 /// getShiftValue - Extract the shift value.
getShiftValue(unsigned Imm)85 static inline unsigned getShiftValue(unsigned Imm) {
86   return Imm & 0x3f;
87 }
88 
89 /// getShifterImm - Encode the shift type and amount:
90 ///   imm:     6-bit shift amount
91 ///   shifter: 000 ==> lsl
92 ///            001 ==> lsr
93 ///            010 ==> asr
94 ///            011 ==> ror
95 ///            100 ==> msl
96 ///   {8-6}  = shifter
97 ///   {5-0}  = imm
getShifterImm(AArch64_AM::ShiftExtendType ST,unsigned Imm)98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99                                      unsigned Imm) {
100   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101   unsigned STEnc = 0;
102   switch (ST) {
103   default:  llvm_unreachable("Invalid shift requested");
104   case AArch64_AM::LSL: STEnc = 0; break;
105   case AArch64_AM::LSR: STEnc = 1; break;
106   case AArch64_AM::ASR: STEnc = 2; break;
107   case AArch64_AM::ROR: STEnc = 3; break;
108   case AArch64_AM::MSL: STEnc = 4; break;
109   }
110   return (STEnc << 6) | (Imm & 0x3f);
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Extends
115 //
116 
117 /// getArithShiftValue - get the arithmetic shift value.
getArithShiftValue(unsigned Imm)118 static inline unsigned getArithShiftValue(unsigned Imm) {
119   return Imm & 0x7;
120 }
121 
122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
getExtendType(unsigned Imm)123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124   assert((Imm & 0x7) == Imm && "invalid immediate!");
125   switch (Imm) {
126   default: llvm_unreachable("Compiler bug!");
127   case 0: return AArch64_AM::UXTB;
128   case 1: return AArch64_AM::UXTH;
129   case 2: return AArch64_AM::UXTW;
130   case 3: return AArch64_AM::UXTX;
131   case 4: return AArch64_AM::SXTB;
132   case 5: return AArch64_AM::SXTH;
133   case 6: return AArch64_AM::SXTW;
134   case 7: return AArch64_AM::SXTX;
135   }
136 }
137 
getArithExtendType(unsigned Imm)138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139   return getExtendType((Imm >> 3) & 0x7);
140 }
141 
142 /// Mapping from extend bits to required operation:
143 ///   shifter: 000 ==> uxtb
144 ///            001 ==> uxth
145 ///            010 ==> uxtw
146 ///            011 ==> uxtx
147 ///            100 ==> sxtb
148 ///            101 ==> sxth
149 ///            110 ==> sxtw
150 ///            111 ==> sxtx
getExtendEncoding(AArch64_AM::ShiftExtendType ET)151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152   switch (ET) {
153   default: llvm_unreachable("Invalid extend type requested");
154   case AArch64_AM::UXTB: return 0; break;
155   case AArch64_AM::UXTH: return 1; break;
156   case AArch64_AM::UXTW: return 2; break;
157   case AArch64_AM::UXTX: return 3; break;
158   case AArch64_AM::SXTB: return 4; break;
159   case AArch64_AM::SXTH: return 5; break;
160   case AArch64_AM::SXTW: return 6; break;
161   case AArch64_AM::SXTX: return 7; break;
162   }
163 }
164 
165 /// getArithExtendImm - Encode the extend type and shift amount for an
166 ///                     arithmetic instruction:
167 ///   imm:     3-bit extend amount
168 ///   {5-3}  = shifter
169 ///   {2-0}  = imm3
getArithExtendImm(AArch64_AM::ShiftExtendType ET,unsigned Imm)170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171                                          unsigned Imm) {
172   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174 }
175 
176 /// getMemDoShift - Extract the "do shift" flag value for load/store
177 /// instructions.
getMemDoShift(unsigned Imm)178 static inline bool getMemDoShift(unsigned Imm) {
179   return (Imm & 0x1) != 0;
180 }
181 
182 /// getExtendType - Extract the extend type for the offset operand of
183 /// loads/stores.
getMemExtendType(unsigned Imm)184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185   return getExtendType((Imm >> 1) & 0x7);
186 }
187 
188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
189 ///   doshift:     should the offset be scaled by the access size
190 ///   shifter: 000 ==> uxtb
191 ///            001 ==> uxth
192 ///            010 ==> uxtw
193 ///            011 ==> uxtx
194 ///            100 ==> sxtb
195 ///            101 ==> sxth
196 ///            110 ==> sxtw
197 ///            111 ==> sxtx
198 ///   {3-1}  = shifter
199 ///   {0}  = doshift
getMemExtendImm(AArch64_AM::ShiftExtendType ET,bool DoShift)200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201                                        bool DoShift) {
202   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203 }
204 
ror(uint64_t elt,unsigned size)205 static inline uint64_t ror(uint64_t elt, unsigned size) {
206   return ((elt & 1) << (size-1)) | (elt >> 1);
207 }
208 
209 /// processLogicalImmediate - Determine if an immediate value can be encoded
210 /// as the immediate operand of a logical instruction for the given register
211 /// size.  If so, return true with "encoding" set to the encoded value in
212 /// the form N:immr:imms.
processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t & Encoding)213 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214                                            uint64_t &Encoding) {
215   if (Imm == 0ULL || Imm == ~0ULL ||
216       (RegSize != 64 &&
217         (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
218     return false;
219 
220   // First, determine the element size.
221   unsigned Size = RegSize;
222 
223   do {
224     Size /= 2;
225     uint64_t Mask = (1ULL << Size) - 1;
226 
227     if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
228       Size *= 2;
229       break;
230     }
231   } while (Size > 2);
232 
233   // Second, determine the rotation to make the element be: 0^m 1^n.
234   uint32_t CTO, I;
235   uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
236   Imm &= Mask;
237 
238   if (isShiftedMask_64(Imm)) {
239     I = countTrailingZeros(Imm);
240     assert(I < 64 && "undefined behavior");
241     CTO = countTrailingOnes(Imm >> I);
242   } else {
243     Imm |= ~Mask;
244     if (!isShiftedMask_64(~Imm))
245       return false;
246 
247     unsigned CLO = countLeadingOnes(Imm);
248     I = 64 - CLO;
249     CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
250   }
251 
252   // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
253   // to our target value, where I is the number of RORs to go the opposite
254   // direction.
255   assert(Size > I && "I should be smaller than element size");
256   unsigned Immr = (Size - I) & (Size - 1);
257 
258   // If size has a 1 in the n'th bit, create a value that has zeroes in
259   // bits [0, n] and ones above that.
260   uint64_t NImms = ~(Size-1) << 1;
261 
262   // Or the CTO value into the low bits, which must be below the Nth bit
263   // bit mentioned above.
264   NImms |= (CTO-1);
265 
266   // Extract the seventh bit and toggle it to create the N field.
267   unsigned N = ((NImms >> 6) & 1) ^ 1;
268 
269   Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
270   return true;
271 }
272 
273 /// isLogicalImmediate - Return true if the immediate is valid for a logical
274 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)275 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
276   uint64_t encoding;
277   return processLogicalImmediate(imm, regSize, encoding);
278 }
279 
280 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
281 /// immediate instruction of the given register size.
encodeLogicalImmediate(uint64_t imm,unsigned regSize)282 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
283   uint64_t encoding = 0;
284   bool res = processLogicalImmediate(imm, regSize, encoding);
285   assert(res && "invalid logical immediate");
286   (void)res;
287   return encoding;
288 }
289 
290 /// decodeLogicalImmediate - Decode a logical immediate value in the form
291 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
292 /// integer value it represents with regSize bits.
decodeLogicalImmediate(uint64_t val,unsigned regSize)293 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
294   // Extract the N, imms, and immr fields.
295   unsigned N = (val >> 12) & 1;
296   unsigned immr = (val >> 6) & 0x3f;
297   unsigned imms = val & 0x3f;
298 
299   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
300   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
301   assert(len >= 0 && "undefined logical immediate encoding");
302   unsigned size = (1 << len);
303   unsigned R = immr & (size - 1);
304   unsigned S = imms & (size - 1);
305   assert(S != size - 1 && "undefined logical immediate encoding");
306   uint64_t pattern = (1ULL << (S + 1)) - 1;
307   for (unsigned i = 0; i < R; ++i)
308     pattern = ror(pattern, size);
309 
310   // Replicate the pattern to fill the regSize.
311   while (size != regSize) {
312     pattern |= (pattern << size);
313     size *= 2;
314   }
315   return pattern;
316 }
317 
318 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
319 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
320 /// is a valid encoding for an integer value with regSize bits.
isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)321 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
322                                                  unsigned regSize) {
323   // Extract the N and imms fields needed for checking.
324   unsigned N = (val >> 12) & 1;
325   unsigned imms = val & 0x3f;
326 
327   if (regSize == 32 && N != 0) // undefined logical immediate encoding
328     return false;
329   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
330   if (len < 0) // undefined logical immediate encoding
331     return false;
332   unsigned size = (1 << len);
333   unsigned S = imms & (size - 1);
334   if (S == size - 1) // undefined logical immediate encoding
335     return false;
336 
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 // Floating-point Immediates
342 //
getFPImmFloat(unsigned Imm)343 static inline float getFPImmFloat(unsigned Imm) {
344   // We expect an 8-bit binary encoding of a floating-point number here.
345   union {
346     uint32_t I;
347     float F;
348   } FPUnion;
349 
350   uint8_t Sign = (Imm >> 7) & 0x1;
351   uint8_t Exp = (Imm >> 4) & 0x7;
352   uint8_t Mantissa = Imm & 0xf;
353 
354   //   8-bit FP    iEEEE Float Encoding
355   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
356   //
357   // where B = NOT(b);
358 
359   FPUnion.I = 0;
360   FPUnion.I |= Sign << 31;
361   FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
362   FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
363   FPUnion.I |= (Exp & 0x3) << 23;
364   FPUnion.I |= Mantissa << 19;
365   return FPUnion.F;
366 }
367 
368 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
369 /// floating-point value. If the value cannot be represented as an 8-bit
370 /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)371 static inline int getFP16Imm(const APInt &Imm) {
372   uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
373   int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
374   int32_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
375 
376   // We can handle 4 bits of mantissa.
377   // mantissa = (16+UInt(e:f:g:h))/16.
378   if (Mantissa & 0x3f)
379     return -1;
380   Mantissa >>= 6;
381 
382   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
383   if (Exp < -3 || Exp > 4)
384     return -1;
385   Exp = ((Exp+3) & 0x7) ^ 4;
386 
387   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
388 }
389 
getFP16Imm(const APFloat & FPImm)390 static inline int getFP16Imm(const APFloat &FPImm) {
391   return getFP16Imm(FPImm.bitcastToAPInt());
392 }
393 
394 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
395 /// floating-point value. If the value cannot be represented as an 8-bit
396 /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)397 static inline int getFP32Imm(const APInt &Imm) {
398   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
399   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
400   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
401 
402   // We can handle 4 bits of mantissa.
403   // mantissa = (16+UInt(e:f:g:h))/16.
404   if (Mantissa & 0x7ffff)
405     return -1;
406   Mantissa >>= 19;
407   if ((Mantissa & 0xf) != Mantissa)
408     return -1;
409 
410   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
411   if (Exp < -3 || Exp > 4)
412     return -1;
413   Exp = ((Exp+3) & 0x7) ^ 4;
414 
415   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
416 }
417 
getFP32Imm(const APFloat & FPImm)418 static inline int getFP32Imm(const APFloat &FPImm) {
419   return getFP32Imm(FPImm.bitcastToAPInt());
420 }
421 
422 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
423 /// floating-point value. If the value cannot be represented as an 8-bit
424 /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)425 static inline int getFP64Imm(const APInt &Imm) {
426   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
427   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
428   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
429 
430   // We can handle 4 bits of mantissa.
431   // mantissa = (16+UInt(e:f:g:h))/16.
432   if (Mantissa & 0xffffffffffffULL)
433     return -1;
434   Mantissa >>= 48;
435   if ((Mantissa & 0xf) != Mantissa)
436     return -1;
437 
438   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
439   if (Exp < -3 || Exp > 4)
440     return -1;
441   Exp = ((Exp+3) & 0x7) ^ 4;
442 
443   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
444 }
445 
getFP64Imm(const APFloat & FPImm)446 static inline int getFP64Imm(const APFloat &FPImm) {
447   return getFP64Imm(FPImm.bitcastToAPInt());
448 }
449 
450 //===--------------------------------------------------------------------===//
451 // AdvSIMD Modified Immediates
452 //===--------------------------------------------------------------------===//
453 
454 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
isAdvSIMDModImmType1(uint64_t Imm)455 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
456   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
457          ((Imm & 0xffffff00ffffff00ULL) == 0);
458 }
459 
encodeAdvSIMDModImmType1(uint64_t Imm)460 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
461   return (Imm & 0xffULL);
462 }
463 
decodeAdvSIMDModImmType1(uint8_t Imm)464 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
465   uint64_t EncVal = Imm;
466   return (EncVal << 32) | EncVal;
467 }
468 
469 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
isAdvSIMDModImmType2(uint64_t Imm)470 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
471   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
472          ((Imm & 0xffff00ffffff00ffULL) == 0);
473 }
474 
encodeAdvSIMDModImmType2(uint64_t Imm)475 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
476   return (Imm & 0xff00ULL) >> 8;
477 }
478 
decodeAdvSIMDModImmType2(uint8_t Imm)479 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
480   uint64_t EncVal = Imm;
481   return (EncVal << 40) | (EncVal << 8);
482 }
483 
484 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
isAdvSIMDModImmType3(uint64_t Imm)485 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
486   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
487          ((Imm & 0xff00ffffff00ffffULL) == 0);
488 }
489 
encodeAdvSIMDModImmType3(uint64_t Imm)490 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
491   return (Imm & 0xff0000ULL) >> 16;
492 }
493 
decodeAdvSIMDModImmType3(uint8_t Imm)494 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
495   uint64_t EncVal = Imm;
496   return (EncVal << 48) | (EncVal << 16);
497 }
498 
499 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
isAdvSIMDModImmType4(uint64_t Imm)500 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
501   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
502          ((Imm & 0x00ffffff00ffffffULL) == 0);
503 }
504 
encodeAdvSIMDModImmType4(uint64_t Imm)505 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
506   return (Imm & 0xff000000ULL) >> 24;
507 }
508 
decodeAdvSIMDModImmType4(uint8_t Imm)509 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
510   uint64_t EncVal = Imm;
511   return (EncVal << 56) | (EncVal << 24);
512 }
513 
514 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
isAdvSIMDModImmType5(uint64_t Imm)515 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
516   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
517          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
518          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
519 }
520 
encodeAdvSIMDModImmType5(uint64_t Imm)521 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
522   return (Imm & 0xffULL);
523 }
524 
decodeAdvSIMDModImmType5(uint8_t Imm)525 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
526   uint64_t EncVal = Imm;
527   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
528 }
529 
530 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
isAdvSIMDModImmType6(uint64_t Imm)531 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
532   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
533          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
534          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
535 }
536 
encodeAdvSIMDModImmType6(uint64_t Imm)537 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
538   return (Imm & 0xff00ULL) >> 8;
539 }
540 
decodeAdvSIMDModImmType6(uint8_t Imm)541 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
542   uint64_t EncVal = Imm;
543   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
544 }
545 
546 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
isAdvSIMDModImmType7(uint64_t Imm)547 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
548   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
549          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
550 }
551 
encodeAdvSIMDModImmType7(uint64_t Imm)552 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
553   return (Imm & 0xff00ULL) >> 8;
554 }
555 
decodeAdvSIMDModImmType7(uint8_t Imm)556 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
557   uint64_t EncVal = Imm;
558   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
559 }
560 
561 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
isAdvSIMDModImmType8(uint64_t Imm)562 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
563   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
564          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
565 }
566 
decodeAdvSIMDModImmType8(uint8_t Imm)567 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
568   uint64_t EncVal = Imm;
569   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
570 }
571 
encodeAdvSIMDModImmType8(uint64_t Imm)572 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
573   return (Imm & 0x00ff0000ULL) >> 16;
574 }
575 
576 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
isAdvSIMDModImmType9(uint64_t Imm)577 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
578   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
579          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
580          ((Imm >> 56) == (Imm & 0x000000ffULL));
581 }
582 
encodeAdvSIMDModImmType9(uint64_t Imm)583 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
584   return (Imm & 0xffULL);
585 }
586 
decodeAdvSIMDModImmType9(uint8_t Imm)587 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
588   uint64_t EncVal = Imm;
589   EncVal |= (EncVal << 8);
590   EncVal |= (EncVal << 16);
591   EncVal |= (EncVal << 32);
592   return EncVal;
593 }
594 
595 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
596 // cmode: 1110, op: 1
isAdvSIMDModImmType10(uint64_t Imm)597 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
598   uint64_t ByteA = Imm & 0xff00000000000000ULL;
599   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
600   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
601   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
602   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
603   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
604   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
605   uint64_t ByteH = Imm & 0x00000000000000ffULL;
606 
607   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
608          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
609          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
610          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
611          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
612          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
613          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
614          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
615 }
616 
encodeAdvSIMDModImmType10(uint64_t Imm)617 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
618   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
619   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
620   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
621   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
622   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
623   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
624   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
625   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
626 
627   uint8_t EncVal = BitA;
628   EncVal <<= 1;
629   EncVal |= BitB;
630   EncVal <<= 1;
631   EncVal |= BitC;
632   EncVal <<= 1;
633   EncVal |= BitD;
634   EncVal <<= 1;
635   EncVal |= BitE;
636   EncVal <<= 1;
637   EncVal |= BitF;
638   EncVal <<= 1;
639   EncVal |= BitG;
640   EncVal <<= 1;
641   EncVal |= BitH;
642   return EncVal;
643 }
644 
decodeAdvSIMDModImmType10(uint8_t Imm)645 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
646   uint64_t EncVal = 0;
647   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
648   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
649   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
650   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
651   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
652   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
653   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
654   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
655   return EncVal;
656 }
657 
658 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
isAdvSIMDModImmType11(uint64_t Imm)659 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
660   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
661   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
662          (BString == 0x1f || BString == 0x20) &&
663          ((Imm & 0x0007ffff0007ffffULL) == 0);
664 }
665 
encodeAdvSIMDModImmType11(uint64_t Imm)666 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
667   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
668   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
669   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
670   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
671   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
672   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
673   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
674   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
675 
676   uint8_t EncVal = BitA;
677   EncVal <<= 1;
678   EncVal |= BitB;
679   EncVal <<= 1;
680   EncVal |= BitC;
681   EncVal <<= 1;
682   EncVal |= BitD;
683   EncVal <<= 1;
684   EncVal |= BitE;
685   EncVal <<= 1;
686   EncVal |= BitF;
687   EncVal <<= 1;
688   EncVal |= BitG;
689   EncVal <<= 1;
690   EncVal |= BitH;
691   return EncVal;
692 }
693 
decodeAdvSIMDModImmType11(uint8_t Imm)694 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
695   uint64_t EncVal = 0;
696   if (Imm & 0x80) EncVal |= 0x80000000ULL;
697   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
698   else            EncVal |= 0x40000000ULL;
699   if (Imm & 0x20) EncVal |= 0x01000000ULL;
700   if (Imm & 0x10) EncVal |= 0x00800000ULL;
701   if (Imm & 0x08) EncVal |= 0x00400000ULL;
702   if (Imm & 0x04) EncVal |= 0x00200000ULL;
703   if (Imm & 0x02) EncVal |= 0x00100000ULL;
704   if (Imm & 0x01) EncVal |= 0x00080000ULL;
705   return (EncVal << 32) | EncVal;
706 }
707 
708 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
isAdvSIMDModImmType12(uint64_t Imm)709 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
710   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
711   return ((BString == 0xff || BString == 0x100) &&
712          ((Imm & 0x0000ffffffffffffULL) == 0));
713 }
714 
encodeAdvSIMDModImmType12(uint64_t Imm)715 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
716   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
717   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
718   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
719   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
720   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
721   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
722   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
723   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
724 
725   uint8_t EncVal = BitA;
726   EncVal <<= 1;
727   EncVal |= BitB;
728   EncVal <<= 1;
729   EncVal |= BitC;
730   EncVal <<= 1;
731   EncVal |= BitD;
732   EncVal <<= 1;
733   EncVal |= BitE;
734   EncVal <<= 1;
735   EncVal |= BitF;
736   EncVal <<= 1;
737   EncVal |= BitG;
738   EncVal <<= 1;
739   EncVal |= BitH;
740   return EncVal;
741 }
742 
decodeAdvSIMDModImmType12(uint8_t Imm)743 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
744   uint64_t EncVal = 0;
745   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
746   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
747   else            EncVal |= 0x4000000000000000ULL;
748   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
749   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
750   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
751   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
752   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
753   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
754   return (EncVal << 32) | EncVal;
755 }
756 
757 /// Returns true if Imm is the concatenation of a repeating pattern of type T.
758 template <typename T>
isSVEMaskOfIdenticalElements(int64_t Imm)759 static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
760   union {
761     int64_t Whole;
762     T Parts[sizeof(int64_t)/sizeof(T)];
763   } Vec { Imm };
764 
765   return all_of(Vec.Parts, [Vec](T Elem) { return Elem == Vec.Parts[0]; });
766 }
767 
768 /// Returns true if Imm is valid for CPY/DUP.
769 template <typename T>
isSVECpyImm(int64_t Imm)770 static inline bool isSVECpyImm(int64_t Imm) {
771   bool IsImm8 = int8_t(Imm) == Imm;
772   bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
773 
774   if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
775     return IsImm8 || uint8_t(Imm) == Imm;
776 
777   if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
778     return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
779 
780   return IsImm8 || IsImm16;
781 }
782 
783 /// Returns true if Imm is valid for ADD/SUB.
784 template <typename T>
isSVEAddSubImm(int64_t Imm)785 static inline bool isSVEAddSubImm(int64_t Imm) {
786   bool IsInt8t =
787       std::is_same<int8_t, typename std::make_signed<T>::type>::value;
788   return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
789 }
790 
791 /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)792 static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
793   union {
794     int64_t D;
795     int32_t S[2];
796     int16_t H[4];
797     int8_t  B[8];
798   } Vec = { Imm };
799 
800   if (isSVECpyImm<int64_t>(Vec.D))
801     return false;
802 
803   if (isSVEMaskOfIdenticalElements<int32_t>(Imm) &&
804       isSVECpyImm<int32_t>(Vec.S[0]))
805     return false;
806 
807   if (isSVEMaskOfIdenticalElements<int16_t>(Imm) &&
808       isSVECpyImm<int16_t>(Vec.H[0]))
809     return false;
810 
811   if (isSVEMaskOfIdenticalElements<int8_t>(Imm) &&
812       isSVECpyImm<int8_t>(Vec.B[0]))
813     return false;
814 
815   return isLogicalImmediate(Vec.D, 64);
816 }
817 
isAnyMOVZMovAlias(uint64_t Value,int RegWidth)818 inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
819   for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
820     if ((Value & ~(0xffffULL << Shift)) == 0)
821       return true;
822 
823   return false;
824 }
825 
isMOVZMovAlias(uint64_t Value,int Shift,int RegWidth)826 inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
827   if (RegWidth == 32)
828     Value &= 0xffffffffULL;
829 
830   // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
831   if (Value == 0 && Shift != 0)
832     return false;
833 
834   return (Value & ~(0xffffULL << Shift)) == 0;
835 }
836 
isMOVNMovAlias(uint64_t Value,int Shift,int RegWidth)837 inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
838   // MOVZ takes precedence over MOVN.
839   if (isAnyMOVZMovAlias(Value, RegWidth))
840     return false;
841 
842   Value = ~Value;
843   if (RegWidth == 32)
844     Value &= 0xffffffffULL;
845 
846   return isMOVZMovAlias(Value, Shift, RegWidth);
847 }
848 
isAnyMOVWMovAlias(uint64_t Value,int RegWidth)849 inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
850   if (isAnyMOVZMovAlias(Value, RegWidth))
851     return true;
852 
853   // It's not a MOVZ, but it might be a MOVN.
854   Value = ~Value;
855   if (RegWidth == 32)
856     Value &= 0xffffffffULL;
857 
858   return isAnyMOVZMovAlias(Value, RegWidth);
859 }
860 
861 } // end namespace AArch64_AM
862 
863 } // end namespace llvm
864 
865 #endif
866