1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 /// \file
9 //===----------------------------------------------------------------------===//
10 //
11
12 #include "AMDGPU.h"
13 #include "AMDGPUSubtarget.h"
14 #include "SIInstrInfo.h"
15 #include "SIMachineFunctionInfo.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/CodeGen/LiveIntervals.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Target/TargetMachine.h"
25
26 #define DEBUG_TYPE "si-fold-operands"
27 using namespace llvm;
28
29 namespace {
30
31 struct FoldCandidate {
32 MachineInstr *UseMI;
33 union {
34 MachineOperand *OpToFold;
35 uint64_t ImmToFold;
36 int FrameIndexToFold;
37 };
38 unsigned char UseOpNo;
39 MachineOperand::MachineOperandType Kind;
40 bool Commuted;
41
FoldCandidate__anon20d2cf350111::FoldCandidate42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43 bool Commuted_ = false) :
44 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()),
45 Commuted(Commuted_) {
46 if (FoldOp->isImm()) {
47 ImmToFold = FoldOp->getImm();
48 } else if (FoldOp->isFI()) {
49 FrameIndexToFold = FoldOp->getIndex();
50 } else {
51 assert(FoldOp->isReg());
52 OpToFold = FoldOp;
53 }
54 }
55
isFI__anon20d2cf350111::FoldCandidate56 bool isFI() const {
57 return Kind == MachineOperand::MO_FrameIndex;
58 }
59
isImm__anon20d2cf350111::FoldCandidate60 bool isImm() const {
61 return Kind == MachineOperand::MO_Immediate;
62 }
63
isReg__anon20d2cf350111::FoldCandidate64 bool isReg() const {
65 return Kind == MachineOperand::MO_Register;
66 }
67
isCommuted__anon20d2cf350111::FoldCandidate68 bool isCommuted() const {
69 return Commuted;
70 }
71 };
72
73 class SIFoldOperands : public MachineFunctionPass {
74 public:
75 static char ID;
76 MachineRegisterInfo *MRI;
77 const SIInstrInfo *TII;
78 const SIRegisterInfo *TRI;
79 const GCNSubtarget *ST;
80
81 void foldOperand(MachineOperand &OpToFold,
82 MachineInstr *UseMI,
83 unsigned UseOpIdx,
84 SmallVectorImpl<FoldCandidate> &FoldList,
85 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
86
87 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
88
89 const MachineOperand *isClamp(const MachineInstr &MI) const;
90 bool tryFoldClamp(MachineInstr &MI);
91
92 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
93 bool tryFoldOMod(MachineInstr &MI);
94
95 public:
SIFoldOperands()96 SIFoldOperands() : MachineFunctionPass(ID) {
97 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
98 }
99
100 bool runOnMachineFunction(MachineFunction &MF) override;
101
getPassName() const102 StringRef getPassName() const override { return "SI Fold Operands"; }
103
getAnalysisUsage(AnalysisUsage & AU) const104 void getAnalysisUsage(AnalysisUsage &AU) const override {
105 AU.setPreservesCFG();
106 MachineFunctionPass::getAnalysisUsage(AU);
107 }
108 };
109
110 } // End anonymous namespace.
111
112 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
113 "SI Fold Operands", false, false)
114
115 char SIFoldOperands::ID = 0;
116
117 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
118
119 // Wrapper around isInlineConstant that understands special cases when
120 // instruction types are replaced during operand folding.
isInlineConstantIfFolded(const SIInstrInfo * TII,const MachineInstr & UseMI,unsigned OpNo,const MachineOperand & OpToFold)121 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
122 const MachineInstr &UseMI,
123 unsigned OpNo,
124 const MachineOperand &OpToFold) {
125 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
126 return true;
127
128 unsigned Opc = UseMI.getOpcode();
129 switch (Opc) {
130 case AMDGPU::V_MAC_F32_e64:
131 case AMDGPU::V_MAC_F16_e64:
132 case AMDGPU::V_FMAC_F32_e64: {
133 // Special case for mac. Since this is replaced with mad when folded into
134 // src2, we need to check the legality for the final instruction.
135 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
136 if (static_cast<int>(OpNo) == Src2Idx) {
137 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
138 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
139
140 unsigned Opc = IsFMA ?
141 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
142 const MCInstrDesc &MadDesc = TII->get(Opc);
143 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
144 }
145 return false;
146 }
147 default:
148 return false;
149 }
150 }
151
createSIFoldOperandsPass()152 FunctionPass *llvm::createSIFoldOperandsPass() {
153 return new SIFoldOperands();
154 }
155
updateOperand(FoldCandidate & Fold,const TargetRegisterInfo & TRI)156 static bool updateOperand(FoldCandidate &Fold,
157 const TargetRegisterInfo &TRI) {
158 MachineInstr *MI = Fold.UseMI;
159 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
160 assert(Old.isReg());
161
162 if (Fold.isImm()) {
163 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) {
164 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
165 // already set.
166 unsigned Opcode = MI->getOpcode();
167 int OpNo = MI->getOperandNo(&Old);
168 int ModIdx = -1;
169 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
170 ModIdx = AMDGPU::OpName::src0_modifiers;
171 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
172 ModIdx = AMDGPU::OpName::src1_modifiers;
173 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
174 ModIdx = AMDGPU::OpName::src2_modifiers;
175 assert(ModIdx != -1);
176 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
177 MachineOperand &Mod = MI->getOperand(ModIdx);
178 unsigned Val = Mod.getImm();
179 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
180 return false;
181 // If upper part is all zero we do not need op_sel_hi.
182 if (!isUInt<16>(Fold.ImmToFold)) {
183 if (!(Fold.ImmToFold & 0xffff)) {
184 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
185 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
186 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
187 return true;
188 }
189 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
190 }
191 }
192 Old.ChangeToImmediate(Fold.ImmToFold);
193 return true;
194 }
195
196 if (Fold.isFI()) {
197 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
198 return true;
199 }
200
201 MachineOperand *New = Fold.OpToFold;
202 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
203 TargetRegisterInfo::isVirtualRegister(New->getReg())) {
204 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
205
206 Old.setIsUndef(New->isUndef());
207 return true;
208 }
209
210 // FIXME: Handle physical registers.
211
212 return false;
213 }
214
isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,const MachineInstr * MI)215 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
216 const MachineInstr *MI) {
217 for (auto Candidate : FoldList) {
218 if (Candidate.UseMI == MI)
219 return true;
220 }
221 return false;
222 }
223
tryAddToFoldList(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)224 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
225 MachineInstr *MI, unsigned OpNo,
226 MachineOperand *OpToFold,
227 const SIInstrInfo *TII) {
228 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
229
230 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
231 unsigned Opc = MI->getOpcode();
232 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
233 Opc == AMDGPU::V_FMAC_F32_e64) &&
234 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
235 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
236 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
237 unsigned NewOpc = IsFMA ?
238 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
239
240 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
241 // to fold the operand.
242 MI->setDesc(TII->get(NewOpc));
243 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
244 if (FoldAsMAD) {
245 MI->untieRegOperand(OpNo);
246 return true;
247 }
248 MI->setDesc(TII->get(Opc));
249 }
250
251 // Special case for s_setreg_b32
252 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
253 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
254 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
255 return true;
256 }
257
258 // If we are already folding into another operand of MI, then
259 // we can't commute the instruction, otherwise we risk making the
260 // other fold illegal.
261 if (isUseMIInFoldList(FoldList, MI))
262 return false;
263
264 // Operand is not legal, so try to commute the instruction to
265 // see if this makes it possible to fold.
266 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
267 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
268 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
269
270 if (CanCommute) {
271 if (CommuteIdx0 == OpNo)
272 OpNo = CommuteIdx1;
273 else if (CommuteIdx1 == OpNo)
274 OpNo = CommuteIdx0;
275 }
276
277 // One of operands might be an Imm operand, and OpNo may refer to it after
278 // the call of commuteInstruction() below. Such situations are avoided
279 // here explicitly as OpNo must be a register operand to be a candidate
280 // for memory folding.
281 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
282 !MI->getOperand(CommuteIdx1).isReg()))
283 return false;
284
285 if (!CanCommute ||
286 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
287 return false;
288
289 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
290 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
291 return false;
292 }
293
294 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true));
295 return true;
296 }
297
298 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
299 return true;
300 }
301
302 // If the use operand doesn't care about the value, this may be an operand only
303 // used for register indexing, in which case it is unsafe to fold.
isUseSafeToFold(const SIInstrInfo * TII,const MachineInstr & MI,const MachineOperand & UseMO)304 static bool isUseSafeToFold(const SIInstrInfo *TII,
305 const MachineInstr &MI,
306 const MachineOperand &UseMO) {
307 return !UseMO.isUndef() && !TII->isSDWA(MI);
308 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
309 }
310
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace) const311 void SIFoldOperands::foldOperand(
312 MachineOperand &OpToFold,
313 MachineInstr *UseMI,
314 unsigned UseOpIdx,
315 SmallVectorImpl<FoldCandidate> &FoldList,
316 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
317 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
318
319 if (!isUseSafeToFold(TII, *UseMI, UseOp))
320 return;
321
322 // FIXME: Fold operands with subregs.
323 if (UseOp.isReg() && OpToFold.isReg()) {
324 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
325 return;
326
327 // Don't fold subregister extracts into tied operands, only if it is a full
328 // copy since a subregister use tied to a full register def doesn't really
329 // make sense. e.g. don't fold:
330 //
331 // %1 = COPY %0:sub1
332 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
333 //
334 // into
335 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
336 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
337 return;
338 }
339
340 // Special case for REG_SEQUENCE: We can't fold literals into
341 // REG_SEQUENCE instructions, so we have to fold them into the
342 // uses of REG_SEQUENCE.
343 if (UseMI->isRegSequence()) {
344 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
345 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
346
347 for (MachineRegisterInfo::use_iterator
348 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
349 RSUse != RSE; ++RSUse) {
350
351 MachineInstr *RSUseMI = RSUse->getParent();
352 if (RSUse->getSubReg() != RegSeqDstSubReg)
353 continue;
354
355 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
356 CopiesToReplace);
357 }
358
359 return;
360 }
361
362
363 bool FoldingImm = OpToFold.isImm();
364
365 // In order to fold immediates into copies, we need to change the
366 // copy to a MOV.
367 if (FoldingImm && UseMI->isCopy()) {
368 unsigned DestReg = UseMI->getOperand(0).getReg();
369 const TargetRegisterClass *DestRC
370 = TargetRegisterInfo::isVirtualRegister(DestReg) ?
371 MRI->getRegClass(DestReg) :
372 TRI->getPhysRegClass(DestReg);
373
374 unsigned MovOp = TII->getMovOpcode(DestRC);
375 if (MovOp == AMDGPU::COPY)
376 return;
377
378 UseMI->setDesc(TII->get(MovOp));
379 CopiesToReplace.push_back(UseMI);
380 } else {
381 const MCInstrDesc &UseDesc = UseMI->getDesc();
382
383 // Don't fold into target independent nodes. Target independent opcodes
384 // don't have defined register classes.
385 if (UseDesc.isVariadic() ||
386 UseOp.isImplicit() ||
387 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
388 return;
389 }
390
391 if (!FoldingImm) {
392 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
393
394 // FIXME: We could try to change the instruction from 64-bit to 32-bit
395 // to enable more folding opportunites. The shrink operands pass
396 // already does this.
397 return;
398 }
399
400
401 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
402 const TargetRegisterClass *FoldRC =
403 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
404
405
406 // Split 64-bit constants into 32-bits for folding.
407 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
408 unsigned UseReg = UseOp.getReg();
409 const TargetRegisterClass *UseRC
410 = TargetRegisterInfo::isVirtualRegister(UseReg) ?
411 MRI->getRegClass(UseReg) :
412 TRI->getPhysRegClass(UseReg);
413
414 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
415 return;
416
417 APInt Imm(64, OpToFold.getImm());
418 if (UseOp.getSubReg() == AMDGPU::sub0) {
419 Imm = Imm.getLoBits(32);
420 } else {
421 assert(UseOp.getSubReg() == AMDGPU::sub1);
422 Imm = Imm.getHiBits(32);
423 }
424
425 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
426 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
427 return;
428 }
429
430
431
432 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
433 }
434
evalBinaryInstruction(unsigned Opcode,int32_t & Result,uint32_t LHS,uint32_t RHS)435 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
436 uint32_t LHS, uint32_t RHS) {
437 switch (Opcode) {
438 case AMDGPU::V_AND_B32_e64:
439 case AMDGPU::V_AND_B32_e32:
440 case AMDGPU::S_AND_B32:
441 Result = LHS & RHS;
442 return true;
443 case AMDGPU::V_OR_B32_e64:
444 case AMDGPU::V_OR_B32_e32:
445 case AMDGPU::S_OR_B32:
446 Result = LHS | RHS;
447 return true;
448 case AMDGPU::V_XOR_B32_e64:
449 case AMDGPU::V_XOR_B32_e32:
450 case AMDGPU::S_XOR_B32:
451 Result = LHS ^ RHS;
452 return true;
453 case AMDGPU::V_LSHL_B32_e64:
454 case AMDGPU::V_LSHL_B32_e32:
455 case AMDGPU::S_LSHL_B32:
456 // The instruction ignores the high bits for out of bounds shifts.
457 Result = LHS << (RHS & 31);
458 return true;
459 case AMDGPU::V_LSHLREV_B32_e64:
460 case AMDGPU::V_LSHLREV_B32_e32:
461 Result = RHS << (LHS & 31);
462 return true;
463 case AMDGPU::V_LSHR_B32_e64:
464 case AMDGPU::V_LSHR_B32_e32:
465 case AMDGPU::S_LSHR_B32:
466 Result = LHS >> (RHS & 31);
467 return true;
468 case AMDGPU::V_LSHRREV_B32_e64:
469 case AMDGPU::V_LSHRREV_B32_e32:
470 Result = RHS >> (LHS & 31);
471 return true;
472 case AMDGPU::V_ASHR_I32_e64:
473 case AMDGPU::V_ASHR_I32_e32:
474 case AMDGPU::S_ASHR_I32:
475 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
476 return true;
477 case AMDGPU::V_ASHRREV_I32_e64:
478 case AMDGPU::V_ASHRREV_I32_e32:
479 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
480 return true;
481 default:
482 return false;
483 }
484 }
485
getMovOpc(bool IsScalar)486 static unsigned getMovOpc(bool IsScalar) {
487 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
488 }
489
490 /// Remove any leftover implicit operands from mutating the instruction. e.g.
491 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
492 /// anymore.
stripExtraCopyOperands(MachineInstr & MI)493 static void stripExtraCopyOperands(MachineInstr &MI) {
494 const MCInstrDesc &Desc = MI.getDesc();
495 unsigned NumOps = Desc.getNumOperands() +
496 Desc.getNumImplicitUses() +
497 Desc.getNumImplicitDefs();
498
499 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
500 MI.RemoveOperand(I);
501 }
502
mutateCopyOp(MachineInstr & MI,const MCInstrDesc & NewDesc)503 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
504 MI.setDesc(NewDesc);
505 stripExtraCopyOperands(MI);
506 }
507
getImmOrMaterializedImm(MachineRegisterInfo & MRI,MachineOperand & Op)508 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
509 MachineOperand &Op) {
510 if (Op.isReg()) {
511 // If this has a subregister, it obviously is a register source.
512 if (Op.getSubReg() != AMDGPU::NoSubRegister ||
513 !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
514 return &Op;
515
516 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
517 if (Def && Def->isMoveImmediate()) {
518 MachineOperand &ImmSrc = Def->getOperand(1);
519 if (ImmSrc.isImm())
520 return &ImmSrc;
521 }
522 }
523
524 return &Op;
525 }
526
527 // Try to simplify operations with a constant that may appear after instruction
528 // selection.
529 // TODO: See if a frame index with a fixed offset can fold.
tryConstantFoldOp(MachineRegisterInfo & MRI,const SIInstrInfo * TII,MachineInstr * MI,MachineOperand * ImmOp)530 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
531 const SIInstrInfo *TII,
532 MachineInstr *MI,
533 MachineOperand *ImmOp) {
534 unsigned Opc = MI->getOpcode();
535 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
536 Opc == AMDGPU::S_NOT_B32) {
537 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
538 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
539 return true;
540 }
541
542 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
543 if (Src1Idx == -1)
544 return false;
545
546 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
547 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
548 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
549
550 if (!Src0->isImm() && !Src1->isImm())
551 return false;
552
553 // and k0, k1 -> v_mov_b32 (k0 & k1)
554 // or k0, k1 -> v_mov_b32 (k0 | k1)
555 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
556 if (Src0->isImm() && Src1->isImm()) {
557 int32_t NewImm;
558 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
559 return false;
560
561 const SIRegisterInfo &TRI = TII->getRegisterInfo();
562 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
563
564 // Be careful to change the right operand, src0 may belong to a different
565 // instruction.
566 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
567 MI->RemoveOperand(Src1Idx);
568 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
569 return true;
570 }
571
572 if (!MI->isCommutable())
573 return false;
574
575 if (Src0->isImm() && !Src1->isImm()) {
576 std::swap(Src0, Src1);
577 std::swap(Src0Idx, Src1Idx);
578 }
579
580 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
581 if (Opc == AMDGPU::V_OR_B32_e64 ||
582 Opc == AMDGPU::V_OR_B32_e32 ||
583 Opc == AMDGPU::S_OR_B32) {
584 if (Src1Val == 0) {
585 // y = or x, 0 => y = copy x
586 MI->RemoveOperand(Src1Idx);
587 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
588 } else if (Src1Val == -1) {
589 // y = or x, -1 => y = v_mov_b32 -1
590 MI->RemoveOperand(Src1Idx);
591 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
592 } else
593 return false;
594
595 return true;
596 }
597
598 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
599 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
600 MI->getOpcode() == AMDGPU::S_AND_B32) {
601 if (Src1Val == 0) {
602 // y = and x, 0 => y = v_mov_b32 0
603 MI->RemoveOperand(Src0Idx);
604 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
605 } else if (Src1Val == -1) {
606 // y = and x, -1 => y = copy x
607 MI->RemoveOperand(Src1Idx);
608 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
609 stripExtraCopyOperands(*MI);
610 } else
611 return false;
612
613 return true;
614 }
615
616 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
617 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
618 MI->getOpcode() == AMDGPU::S_XOR_B32) {
619 if (Src1Val == 0) {
620 // y = xor x, 0 => y = copy x
621 MI->RemoveOperand(Src1Idx);
622 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
623 return true;
624 }
625 }
626
627 return false;
628 }
629
630 // Try to fold an instruction into a simpler one
tryFoldInst(const SIInstrInfo * TII,MachineInstr * MI)631 static bool tryFoldInst(const SIInstrInfo *TII,
632 MachineInstr *MI) {
633 unsigned Opc = MI->getOpcode();
634
635 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
636 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
637 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
638 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
639 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
640 if (Src1->isIdenticalTo(*Src0)) {
641 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
642 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
643 if (Src2Idx != -1)
644 MI->RemoveOperand(Src2Idx);
645 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
646 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
647 : getMovOpc(false)));
648 LLVM_DEBUG(dbgs() << *MI << '\n');
649 return true;
650 }
651 }
652
653 return false;
654 }
655
foldInstOperand(MachineInstr & MI,MachineOperand & OpToFold) const656 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
657 MachineOperand &OpToFold) const {
658 // We need mutate the operands of new mov instructions to add implicit
659 // uses of EXEC, but adding them invalidates the use_iterator, so defer
660 // this.
661 SmallVector<MachineInstr *, 4> CopiesToReplace;
662 SmallVector<FoldCandidate, 4> FoldList;
663 MachineOperand &Dst = MI.getOperand(0);
664
665 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
666 if (FoldingImm) {
667 unsigned NumLiteralUses = 0;
668 MachineOperand *NonInlineUse = nullptr;
669 int NonInlineUseOpNo = -1;
670
671 MachineRegisterInfo::use_iterator NextUse;
672 for (MachineRegisterInfo::use_iterator
673 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
674 Use != E; Use = NextUse) {
675 NextUse = std::next(Use);
676 MachineInstr *UseMI = Use->getParent();
677 unsigned OpNo = Use.getOperandNo();
678
679 // Folding the immediate may reveal operations that can be constant
680 // folded or replaced with a copy. This can happen for example after
681 // frame indices are lowered to constants or from splitting 64-bit
682 // constants.
683 //
684 // We may also encounter cases where one or both operands are
685 // immediates materialized into a register, which would ordinarily not
686 // be folded due to multiple uses or operand constraints.
687
688 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
689 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
690
691 // Some constant folding cases change the same immediate's use to a new
692 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
693 // again. The same constant folded instruction could also have a second
694 // use operand.
695 NextUse = MRI->use_begin(Dst.getReg());
696 FoldList.clear();
697 continue;
698 }
699
700 // Try to fold any inline immediate uses, and then only fold other
701 // constants if they have one use.
702 //
703 // The legality of the inline immediate must be checked based on the use
704 // operand, not the defining instruction, because 32-bit instructions
705 // with 32-bit inline immediate sources may be used to materialize
706 // constants used in 16-bit operands.
707 //
708 // e.g. it is unsafe to fold:
709 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
710 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
711
712 // Folding immediates with more than one use will increase program size.
713 // FIXME: This will also reduce register usage, which may be better
714 // in some cases. A better heuristic is needed.
715 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
716 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
717 } else {
718 if (++NumLiteralUses == 1) {
719 NonInlineUse = &*Use;
720 NonInlineUseOpNo = OpNo;
721 }
722 }
723 }
724
725 if (NumLiteralUses == 1) {
726 MachineInstr *UseMI = NonInlineUse->getParent();
727 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
728 }
729 } else {
730 // Folding register.
731 for (MachineRegisterInfo::use_iterator
732 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
733 Use != E; ++Use) {
734 MachineInstr *UseMI = Use->getParent();
735
736 foldOperand(OpToFold, UseMI, Use.getOperandNo(),
737 FoldList, CopiesToReplace);
738 }
739 }
740
741 MachineFunction *MF = MI.getParent()->getParent();
742 // Make sure we add EXEC uses to any new v_mov instructions created.
743 for (MachineInstr *Copy : CopiesToReplace)
744 Copy->addImplicitDefUseOperands(*MF);
745
746 for (FoldCandidate &Fold : FoldList) {
747 if (updateOperand(Fold, *TRI)) {
748 // Clear kill flags.
749 if (Fold.isReg()) {
750 assert(Fold.OpToFold && Fold.OpToFold->isReg());
751 // FIXME: Probably shouldn't bother trying to fold if not an
752 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
753 // copies.
754 MRI->clearKillFlags(Fold.OpToFold->getReg());
755 }
756 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
757 << static_cast<int>(Fold.UseOpNo) << " of "
758 << *Fold.UseMI << '\n');
759 tryFoldInst(TII, Fold.UseMI);
760 } else if (Fold.isCommuted()) {
761 // Restoring instruction's original operand order if fold has failed.
762 TII->commuteInstruction(*Fold.UseMI, false);
763 }
764 }
765 }
766
767 // Clamp patterns are canonically selected to v_max_* instructions, so only
768 // handle them.
isClamp(const MachineInstr & MI) const769 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
770 unsigned Op = MI.getOpcode();
771 switch (Op) {
772 case AMDGPU::V_MAX_F32_e64:
773 case AMDGPU::V_MAX_F16_e64:
774 case AMDGPU::V_MAX_F64:
775 case AMDGPU::V_PK_MAX_F16: {
776 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
777 return nullptr;
778
779 // Make sure sources are identical.
780 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
781 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
782 if (!Src0->isReg() || !Src1->isReg() ||
783 Src0->getReg() != Src1->getReg() ||
784 Src0->getSubReg() != Src1->getSubReg() ||
785 Src0->getSubReg() != AMDGPU::NoSubRegister)
786 return nullptr;
787
788 // Can't fold up if we have modifiers.
789 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
790 return nullptr;
791
792 unsigned Src0Mods
793 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
794 unsigned Src1Mods
795 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
796
797 // Having a 0 op_sel_hi would require swizzling the output in the source
798 // instruction, which we can't do.
799 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0;
800 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
801 return nullptr;
802 return Src0;
803 }
804 default:
805 return nullptr;
806 }
807 }
808
809 // We obviously have multiple uses in a clamp since the register is used twice
810 // in the same instruction.
hasOneNonDBGUseInst(const MachineRegisterInfo & MRI,unsigned Reg)811 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
812 int Count = 0;
813 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
814 I != E; ++I) {
815 if (++Count > 1)
816 return false;
817 }
818
819 return true;
820 }
821
822 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
tryFoldClamp(MachineInstr & MI)823 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
824 const MachineOperand *ClampSrc = isClamp(MI);
825 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
826 return false;
827
828 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
829
830 // The type of clamp must be compatible.
831 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
832 return false;
833
834 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
835 if (!DefClamp)
836 return false;
837
838 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
839 << '\n');
840
841 // Clamp is applied after omod, so it is OK if omod is set.
842 DefClamp->setImm(1);
843 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
844 MI.eraseFromParent();
845 return true;
846 }
847
getOModValue(unsigned Opc,int64_t Val)848 static int getOModValue(unsigned Opc, int64_t Val) {
849 switch (Opc) {
850 case AMDGPU::V_MUL_F32_e64: {
851 switch (static_cast<uint32_t>(Val)) {
852 case 0x3f000000: // 0.5
853 return SIOutMods::DIV2;
854 case 0x40000000: // 2.0
855 return SIOutMods::MUL2;
856 case 0x40800000: // 4.0
857 return SIOutMods::MUL4;
858 default:
859 return SIOutMods::NONE;
860 }
861 }
862 case AMDGPU::V_MUL_F16_e64: {
863 switch (static_cast<uint16_t>(Val)) {
864 case 0x3800: // 0.5
865 return SIOutMods::DIV2;
866 case 0x4000: // 2.0
867 return SIOutMods::MUL2;
868 case 0x4400: // 4.0
869 return SIOutMods::MUL4;
870 default:
871 return SIOutMods::NONE;
872 }
873 }
874 default:
875 llvm_unreachable("invalid mul opcode");
876 }
877 }
878
879 // FIXME: Does this really not support denormals with f16?
880 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
881 // handled, so will anything other than that break?
882 std::pair<const MachineOperand *, int>
isOMod(const MachineInstr & MI) const883 SIFoldOperands::isOMod(const MachineInstr &MI) const {
884 unsigned Op = MI.getOpcode();
885 switch (Op) {
886 case AMDGPU::V_MUL_F32_e64:
887 case AMDGPU::V_MUL_F16_e64: {
888 // If output denormals are enabled, omod is ignored.
889 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
890 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
891 return std::make_pair(nullptr, SIOutMods::NONE);
892
893 const MachineOperand *RegOp = nullptr;
894 const MachineOperand *ImmOp = nullptr;
895 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
896 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
897 if (Src0->isImm()) {
898 ImmOp = Src0;
899 RegOp = Src1;
900 } else if (Src1->isImm()) {
901 ImmOp = Src1;
902 RegOp = Src0;
903 } else
904 return std::make_pair(nullptr, SIOutMods::NONE);
905
906 int OMod = getOModValue(Op, ImmOp->getImm());
907 if (OMod == SIOutMods::NONE ||
908 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
909 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
910 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
911 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
912 return std::make_pair(nullptr, SIOutMods::NONE);
913
914 return std::make_pair(RegOp, OMod);
915 }
916 case AMDGPU::V_ADD_F32_e64:
917 case AMDGPU::V_ADD_F16_e64: {
918 // If output denormals are enabled, omod is ignored.
919 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
920 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
921 return std::make_pair(nullptr, SIOutMods::NONE);
922
923 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
924 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
925 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
926
927 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
928 Src0->getSubReg() == Src1->getSubReg() &&
929 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
930 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
931 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
932 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
933 return std::make_pair(Src0, SIOutMods::MUL2);
934
935 return std::make_pair(nullptr, SIOutMods::NONE);
936 }
937 default:
938 return std::make_pair(nullptr, SIOutMods::NONE);
939 }
940 }
941
942 // FIXME: Does this need to check IEEE bit on function?
tryFoldOMod(MachineInstr & MI)943 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
944 const MachineOperand *RegOp;
945 int OMod;
946 std::tie(RegOp, OMod) = isOMod(MI);
947 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
948 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
949 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
950 return false;
951
952 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
953 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
954 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
955 return false;
956
957 // Clamp is applied after omod. If the source already has clamp set, don't
958 // fold it.
959 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
960 return false;
961
962 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
963
964 DefOMod->setImm(OMod);
965 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
966 MI.eraseFromParent();
967 return true;
968 }
969
runOnMachineFunction(MachineFunction & MF)970 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
971 if (skipFunction(MF.getFunction()))
972 return false;
973
974 MRI = &MF.getRegInfo();
975 ST = &MF.getSubtarget<GCNSubtarget>();
976 TII = ST->getInstrInfo();
977 TRI = &TII->getRegisterInfo();
978
979 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
980
981 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
982 // correctly handle signed zeros.
983 //
984 // TODO: Check nsz on instructions when fast math flags are preserved to MI
985 // level.
986 bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();
987
988 for (MachineBasicBlock *MBB : depth_first(&MF)) {
989 MachineBasicBlock::iterator I, Next;
990 for (I = MBB->begin(); I != MBB->end(); I = Next) {
991 Next = std::next(I);
992 MachineInstr &MI = *I;
993
994 tryFoldInst(TII, &MI);
995
996 if (!TII->isFoldableCopy(MI)) {
997 if (IsIEEEMode || !tryFoldOMod(MI))
998 tryFoldClamp(MI);
999 continue;
1000 }
1001
1002 MachineOperand &OpToFold = MI.getOperand(1);
1003 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
1004
1005 // FIXME: We could also be folding things like TargetIndexes.
1006 if (!FoldingImm && !OpToFold.isReg())
1007 continue;
1008
1009 if (OpToFold.isReg() &&
1010 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
1011 continue;
1012
1013 // Prevent folding operands backwards in the function. For example,
1014 // the COPY opcode must not be replaced by 1 in this example:
1015 //
1016 // %3 = COPY %vgpr0; VGPR_32:%3
1017 // ...
1018 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1019 MachineOperand &Dst = MI.getOperand(0);
1020 if (Dst.isReg() &&
1021 !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
1022 continue;
1023
1024 foldInstOperand(MI, OpToFold);
1025 }
1026 }
1027 return false;
1028 }
1029