1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10include "ARMSystemRegister.td" 11 12//===----------------------------------------------------------------------===// 13// Declarations that describe the ARM register file 14//===----------------------------------------------------------------------===// 15 16// Registers are identified with 4-bit ID numbers. 17class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> { 18 let HWEncoding = Enc; 19 let Namespace = "ARM"; 20 let SubRegs = subregs; 21 // All bits of ARM registers with sub-registers are covered by sub-registers. 22 let CoveredBySubRegs = 1; 23} 24 25class ARMFReg<bits<16> Enc, string n> : Register<n> { 26 let HWEncoding = Enc; 27 let Namespace = "ARM"; 28} 29 30// Subregister indices. 31let Namespace = "ARM" in { 32def qqsub_0 : SubRegIndex<256>; 33def qqsub_1 : SubRegIndex<256, 256>; 34 35// Note: Code depends on these having consecutive numbers. 36def qsub_0 : SubRegIndex<128>; 37def qsub_1 : SubRegIndex<128, 128>; 38def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; 39def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; 40 41def dsub_0 : SubRegIndex<64>; 42def dsub_1 : SubRegIndex<64, 64>; 43def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; 44def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; 45def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; 46def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; 47def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; 48def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; 49 50def ssub_0 : SubRegIndex<32>; 51def ssub_1 : SubRegIndex<32, 32>; 52def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; 53def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; 54def ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>; 55def ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>; 56def ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>; 57def ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>; 58def ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>; 59def ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>; 60def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>; 61def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>; 62def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>; 63def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>; 64 65def gsub_0 : SubRegIndex<32>; 66def gsub_1 : SubRegIndex<32, 32>; 67// Let TableGen synthesize the remaining 12 ssub_* indices. 68// We don't need to name them. 69} 70 71// Integer registers 72def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; 73def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; 74def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; 75def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; 76def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; 77def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; 78def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; 79def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; 80// These require 32-bit instructions. 81let CostPerUse = 1 in { 82def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; 83def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; 84def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; 85def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; 86def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; 87def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>; 88def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>; 89def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>; 90} 91 92// Float registers 93def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; 94def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; 95def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; 96def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; 97def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; 98def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; 99def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; 100def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; 101def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; 102def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; 103def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; 104def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; 105def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; 106def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; 107def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; 108def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; 109 110// Aliases of the F* registers used to hold 64-bit fp values (doubles) 111let SubRegIndices = [ssub_0, ssub_1] in { 112def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; 113def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; 114def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; 115def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; 116def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; 117def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; 118def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; 119def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; 120def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; 121def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; 122def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; 123def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; 124def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; 125def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; 126def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; 127def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; 128} 129 130// VFP3 defines 16 additional double registers 131def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 132def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; 133def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; 134def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; 135def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; 136def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; 137def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 138def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; 139def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; 140def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; 141def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; 142def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; 143def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; 144def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; 145def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; 146def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; 147 148// Advanced SIMD (NEON) defines 16 quad-word aliases 149let SubRegIndices = [dsub_0, dsub_1] in { 150def Q0 : ARMReg< 0, "q0", [D0, D1]>; 151def Q1 : ARMReg< 1, "q1", [D2, D3]>; 152def Q2 : ARMReg< 2, "q2", [D4, D5]>; 153def Q3 : ARMReg< 3, "q3", [D6, D7]>; 154def Q4 : ARMReg< 4, "q4", [D8, D9]>; 155def Q5 : ARMReg< 5, "q5", [D10, D11]>; 156def Q6 : ARMReg< 6, "q6", [D12, D13]>; 157def Q7 : ARMReg< 7, "q7", [D14, D15]>; 158} 159let SubRegIndices = [dsub_0, dsub_1] in { 160def Q8 : ARMReg< 8, "q8", [D16, D17]>; 161def Q9 : ARMReg< 9, "q9", [D18, D19]>; 162def Q10 : ARMReg<10, "q10", [D20, D21]>; 163def Q11 : ARMReg<11, "q11", [D22, D23]>; 164def Q12 : ARMReg<12, "q12", [D24, D25]>; 165def Q13 : ARMReg<13, "q13", [D26, D27]>; 166def Q14 : ARMReg<14, "q14", [D28, D29]>; 167def Q15 : ARMReg<15, "q15", [D30, D31]>; 168} 169 170// Current Program Status Register. 171// We model fpscr with two registers: FPSCR models the control bits and will be 172// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV 173// models the APSR when it's accessed by some special instructions. In such cases 174// it has the same encoding as PC. 175def CPSR : ARMReg<0, "cpsr">; 176def APSR : ARMReg<1, "apsr">; 177def APSR_NZCV : ARMReg<15, "apsr_nzcv">; 178def SPSR : ARMReg<2, "spsr">; 179def FPSCR : ARMReg<3, "fpscr">; 180def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { 181 let Aliases = [FPSCR]; 182} 183def ITSTATE : ARMReg<4, "itstate">; 184 185// Special Registers - only available in privileged mode. 186def FPSID : ARMReg<0, "fpsid">; 187def MVFR2 : ARMReg<5, "mvfr2">; 188def MVFR1 : ARMReg<6, "mvfr1">; 189def MVFR0 : ARMReg<7, "mvfr0">; 190def FPEXC : ARMReg<8, "fpexc">; 191def FPINST : ARMReg<9, "fpinst">; 192def FPINST2 : ARMReg<10, "fpinst2">; 193 194// Register classes. 195// 196// pc == Program Counter 197// lr == Link Register 198// sp == Stack Pointer 199// r12 == ip (scratch) 200// r7 == Frame Pointer (thumb-style backtraces) 201// r9 == May be reserved as Thread Register 202// r11 == Frame Pointer (arm-style backtraces) 203// r10 == Stack Limit 204// 205def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), 206 SP, LR, PC)> { 207 // Allocate LR as the first CSR since it is always saved anyway. 208 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 209 // know how to spill them. If we make our prologue/epilogue code smarter at 210 // some point, we can go back to using the above allocation orders for the 211 // Thumb1 instructions that know how to use hi regs. 212 let AltOrders = [(add LR, GPR), (trunc GPR, 8)]; 213 let AltOrderSelect = [{ 214 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 215 }]; 216 let DiagnosticString = "operand must be a register in range [r0, r15]"; 217} 218 219// GPRs without the PC. Some ARM instructions do not allow the PC in 220// certain operand slots, particularly as the destination. Primarily 221// useful for disassembly. 222def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { 223 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 224 let AltOrderSelect = [{ 225 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 226 }]; 227 let DiagnosticString = "operand must be a register in range [r0, r14]"; 228} 229 230// GPRs without the PC but with APSR. Some instructions allow accessing the 231// APSR, while actually encoding PC in the register field. This is useful 232// for assembly and disassembly only. 233def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { 234 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 235 let AltOrderSelect = [{ 236 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 237 }]; 238 let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv"; 239} 240 241// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the 242// implied SP argument list. 243// FIXME: It would be better to not use this at all and refactor the 244// instructions to not have SP an an explicit argument. That makes 245// frame index resolution a bit trickier, though. 246def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> { 247 let DiagnosticString = "operand must be a register sp"; 248} 249 250// restricted GPR register class. Many Thumb2 instructions allow the full 251// register range for operands, but have undefined behaviours when PC 252// or SP (R13 or R15) are used. The ARM ISA refers to these operands 253// via the BadReg() pseudo-code description. 254def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { 255 let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)]; 256 let AltOrderSelect = [{ 257 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 258 }]; 259 let DiagnosticType = "rGPR"; 260} 261 262// Thumb registers are R0-R7 normally. Some instructions can still use 263// the general GPR register class above (MOV, e.g.) 264def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> { 265 let DiagnosticString = "operand must be a register in range [r0, r7]"; 266} 267 268// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow 269// the PC to be used as a destination operand as well. 270def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>; 271 272// The high registers in thumb mode, R8-R15. 273def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> { 274 let DiagnosticString = "operand must be a register in range [r8, r15]"; 275} 276 277// For tail calls, we can't use callee-saved registers, as they are restored 278// to the saved value before the tail call, which would clobber a call address. 279// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of 280// this class and the preceding one(!) This is what we want. 281def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { 282 let AltOrders = [(and tcGPR, tGPR)]; 283 let AltOrderSelect = [{ 284 return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 285 }]; 286} 287 288// Condition code registers. 289def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { 290 let CopyCost = -1; // Don't allow copying of status registers. 291 let isAllocatable = 0; 292} 293 294// Scalar single precision floating point register class.. 295// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack 296// to avoid partial-write dependencies on D or Q (depending on platform) 297// registers (S registers are renamed as portions of D/Q registers). 298def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> { 299 let AltOrders = [(add (decimate SPR, 2), SPR), 300 (add (decimate SPR, 4), 301 (decimate SPR, 2), 302 (decimate (rotl SPR, 1), 4), 303 (decimate (rotl SPR, 1), 2))]; 304 let AltOrderSelect = [{ 305 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF); 306 }]; 307 let DiagnosticString = "operand must be a register in range [s0, s31]"; 308} 309 310def HPR : RegisterClass<"ARM", [f16], 32, (sequence "S%u", 0, 31)> { 311 let AltOrders = [(add (decimate HPR, 2), SPR), 312 (add (decimate HPR, 4), 313 (decimate HPR, 2), 314 (decimate (rotl HPR, 1), 4), 315 (decimate (rotl HPR, 1), 2))]; 316 let AltOrderSelect = [{ 317 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF); 318 }]; 319 let DiagnosticString = "operand must be a register in range [s0, s31]"; 320} 321 322// Subset of SPR which can be used as a source of NEON scalars for 16-bit 323// operations 324def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> { 325 let DiagnosticString = "operand must be a register in range [s0, s15]"; 326} 327 328// Scalar double precision floating point / generic 64-bit vector register 329// class. 330// ARM requires only word alignment for double. It's more performant if it 331// is double-word alignment though. 332def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 333 (sequence "D%u", 0, 31)> { 334 // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on 335 // Darwin platforms. 336 let AltOrders = [(rotl DPR, 16), 337 (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))]; 338 let AltOrderSelect = [{ 339 return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF); 340 }]; 341 let DiagnosticType = "DPR"; 342} 343 344// Subset of DPR that are accessible with VFP2 (and so that also have 345// 32-bit SPR subregs). 346def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 347 (trunc DPR, 16)> { 348 let DiagnosticString = "operand must be a register in range [d0, d15]"; 349} 350 351// Subset of DPR which can be used as a source of NEON scalars for 16-bit 352// operations 353def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64, 354 (trunc DPR, 8)> { 355 let DiagnosticString = "operand must be a register in range [d0, d7]"; 356} 357 358// Generic 128-bit vector register class. 359def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 128, 360 (sequence "Q%u", 0, 15)> { 361 // Allocate non-VFP2 aliases Q8-Q15 first. 362 let AltOrders = [(rotl QPR, 8)]; 363 let AltOrderSelect = [{ return 1; }]; 364 let DiagnosticString = "operand must be a register in range [q0, q15]"; 365} 366 367// Subset of QPR that have 32-bit SPR subregs. 368def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 369 128, (trunc QPR, 8)> { 370 let DiagnosticString = "operand must be a register in range [q0, q7]"; 371} 372 373// Subset of QPR that have DPR_8 and SPR_8 subregs. 374def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 375 128, (trunc QPR, 4)> { 376 let DiagnosticString = "operand must be a register in range [q0, q3]"; 377} 378 379// Pseudo-registers representing odd-even pairs of D registers. The even-odd 380// pairs are already represented by the Q registers. 381// These are needed by NEON instructions requiring two consecutive D registers. 382// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. 383def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], 384 [(decimate (shl DPR, 1), 2), 385 (decimate (shl DPR, 2), 2)]>; 386 387// Register class representing a pair of consecutive D registers. 388// Use the Q registers for the even-odd pairs. 389def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 390 128, (interleave QPR, TuplesOE2D)> { 391 // Allocate starting at non-VFP2 registers D16-D31 first. 392 // Prefer even-odd pairs as they are easier to copy. 393 let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))]; 394 let AltOrderSelect = [{ return 1; }]; 395} 396 397// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. 398// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. 399def Tuples2R : RegisterTuples<[gsub_0, gsub_1], 400 [(add R0, R2, R4, R6, R8, R10, R12), 401 (add R1, R3, R5, R7, R9, R11, SP)]>; 402 403// Register class representing a pair of even-odd GPRs. 404def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> { 405 let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 406} 407 408// Pseudo-registers representing 3 consecutive D registers. 409def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], 410 [(shl DPR, 0), 411 (shl DPR, 1), 412 (shl DPR, 2)]>; 413 414// 3 consecutive D registers. 415def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { 416 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 417} 418 419// Pseudo 256-bit registers to represent pairs of Q registers. These should 420// never be present in the emitted code. 421// These are used for NEON load / store instructions, e.g., vld4, vst3. 422def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; 423 424// Pseudo 256-bit vector register class to model pairs of Q registers 425// (4 consecutive D registers). 426def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { 427 // Allocate non-VFP2 aliases first. 428 let AltOrders = [(rotl QQPR, 8)]; 429 let AltOrderSelect = [{ return 1; }]; 430} 431 432// Tuples of 4 D regs that isn't also a pair of Q regs. 433def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], 434 [(decimate (shl DPR, 1), 2), 435 (decimate (shl DPR, 2), 2), 436 (decimate (shl DPR, 3), 2), 437 (decimate (shl DPR, 4), 2)]>; 438 439// 4 consecutive D registers. 440def DQuad : RegisterClass<"ARM", [v4i64], 256, 441 (interleave Tuples2Q, TuplesOE4D)>; 442 443// Pseudo 512-bit registers to represent four consecutive Q registers. 444def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], 445 [(shl QQPR, 0), (shl QQPR, 2)]>; 446 447// Pseudo 512-bit vector register class to model 4 consecutive Q registers 448// (8 consecutive D registers). 449def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { 450 // Allocate non-VFP2 aliases first. 451 let AltOrders = [(rotl QQQQPR, 8)]; 452 let AltOrderSelect = [{ return 1; }]; 453} 454 455 456// Pseudo-registers representing 2-spaced consecutive D registers. 457def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], 458 [(shl DPR, 0), 459 (shl DPR, 2)]>; 460 461// Spaced pairs of D registers. 462def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; 463 464def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], 465 [(shl DPR, 0), 466 (shl DPR, 2), 467 (shl DPR, 4)]>; 468 469// Spaced triples of D registers. 470def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { 471 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 472} 473 474def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], 475 [(shl DPR, 0), 476 (shl DPR, 2), 477 (shl DPR, 4), 478 (shl DPR, 6)]>; 479 480// Spaced quads of D registers. 481def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; 482