• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the PowerPC 32- and 64-bit
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17    : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
18                       "(State.getMachineFunction().getSubtarget()).",
19                     F),
20          A>;
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).",
24                     F),
25          A>;
26class CCIfOrigArgWasNotPPCF128<CCAction A>
27    : CCIf<"!static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
28           A>;
29class CCIfOrigArgWasPPCF128<CCAction A>
30    : CCIf<"static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)",
31           A>;
32
33//===----------------------------------------------------------------------===//
34// Return Value Calling Convention
35//===----------------------------------------------------------------------===//
36
37// PPC64 AnyReg return-value convention. No explicit register is specified for
38// the return-value. The register allocator is allowed and expected to choose
39// any free register.
40//
41// This calling convention is currently only supported by the stackmap and
42// patchpoint intrinsics. All other uses will result in an assert on Debug
43// builds. On Release builds we fallback to the PPC C calling convention.
44def RetCC_PPC64_AnyReg : CallingConv<[
45  CCCustom<"CC_PPC_AnyReg_Error">
46]>;
47
48// Return-value convention for PowerPC coldcc.
49def RetCC_PPC_Cold : CallingConv<[
50  // Use the same return registers as RetCC_PPC, but limited to only
51  // one return value. The remaining return values will be saved to
52  // the stack.
53  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
54  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
55
56  CCIfType<[i32], CCAssignToReg<[R3]>>,
57  CCIfType<[i64], CCAssignToReg<[X3]>>,
58  CCIfType<[i128], CCAssignToReg<[X3]>>,
59
60  CCIfType<[f32], CCAssignToReg<[F1]>>,
61  CCIfType<[f64], CCAssignToReg<[F1]>>,
62  CCIfType<[f128], CCIfSubtarget<"hasP9Vector()", CCAssignToReg<[V2]>>>,
63
64  CCIfType<[v4f64, v4f32, v4i1],
65           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1]>>>,
66
67  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
68           CCIfSubtarget<"hasAltivec()",
69           CCAssignToReg<[V2]>>>
70]>;
71
72// Return-value convention for PowerPC
73def RetCC_PPC : CallingConv<[
74  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
75
76  // On PPC64, integer return values are always promoted to i64
77  CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
78  CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
79
80  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
81  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
82  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
83
84  // Floating point types returned as "direct" go into F1 .. F8; note that
85  // only the ELFv2 ABI fully utilizes all these registers.
86  CCIfNotSubtarget<"hasSPE()",
87       CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
88  CCIfNotSubtarget<"hasSPE()",
89       CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
90  CCIfSubtarget<"hasSPE()",
91       CCIfType<[f32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
92  CCIfSubtarget<"hasSPE()",
93       CCIfType<[f64], CCAssignToReg<[S3, S4, S5, S6, S7, S8, S9, S10]>>>,
94
95  // For P9, f128 are passed in vector registers.
96  CCIfType<[f128],
97           CCIfSubtarget<"hasP9Vector()",
98           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
99
100  // QPX vectors are returned in QF1 and QF2.
101  CCIfType<[v4f64, v4f32, v4i1],
102           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
103
104  // Vector types returned as "direct" go into V2 .. V9; note that only the
105  // ELFv2 ABI fully utilizes all these registers.
106  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
107           CCIfSubtarget<"hasAltivec()",
108           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
109]>;
110
111// No explicit register is specified for the AnyReg calling convention. The
112// register allocator may assign the arguments to any free register.
113//
114// This calling convention is currently only supported by the stackmap and
115// patchpoint intrinsics. All other uses will result in an assert on Debug
116// builds. On Release builds we fallback to the PPC C calling convention.
117def CC_PPC64_AnyReg : CallingConv<[
118  CCCustom<"CC_PPC_AnyReg_Error">
119]>;
120
121// Note that we don't currently have calling conventions for 64-bit
122// PowerPC, but handle all the complexities of the ABI in the lowering
123// logic.  FIXME: See if the logic can be simplified with use of CCs.
124// This may require some extensions to current table generation.
125
126// Simple calling convention for 64-bit ELF PowerPC fast isel.
127// Only handle ints and floats.  All ints are promoted to i64.
128// Vector types and quadword ints are not handled.
129def CC_PPC64_ELF_FIS : CallingConv<[
130  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
131
132  CCIfType<[i1],  CCPromoteToType<i64>>,
133  CCIfType<[i8],  CCPromoteToType<i64>>,
134  CCIfType<[i16], CCPromoteToType<i64>>,
135  CCIfType<[i32], CCPromoteToType<i64>>,
136  CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
137  CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
138]>;
139
140// Simple return-value convention for 64-bit ELF PowerPC fast isel.
141// All small ints are promoted to i64.  Vector types, quadword ints,
142// and multiple register returns are "supported" to avoid compile
143// errors, but none are handled by the fast selector.
144def RetCC_PPC64_ELF_FIS : CallingConv<[
145  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
146
147  CCIfType<[i1],   CCPromoteToType<i64>>,
148  CCIfType<[i8],   CCPromoteToType<i64>>,
149  CCIfType<[i16],  CCPromoteToType<i64>>,
150  CCIfType<[i32],  CCPromoteToType<i64>>,
151  CCIfType<[i64],  CCAssignToReg<[X3, X4, X5, X6]>>,
152  CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
153  CCIfType<[f32],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
154  CCIfType<[f64],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
155  CCIfType<[f128],
156           CCIfSubtarget<"hasP9Vector()",
157           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
158  CCIfType<[v4f64, v4f32, v4i1],
159           CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
160  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
161           CCIfSubtarget<"hasAltivec()",
162           CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>
163]>;
164
165//===----------------------------------------------------------------------===//
166// PowerPC System V Release 4 32-bit ABI
167//===----------------------------------------------------------------------===//
168
169def CC_PPC32_SVR4_Common : CallingConv<[
170  CCIfType<[i1], CCPromoteToType<i32>>,
171
172  // The ABI requires i64 to be passed in two adjacent registers with the first
173  // register having an odd register number.
174  CCIfType<[i32],
175  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
176            CCIfOrigArgWasNotPPCF128<
177            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>>,
178
179  CCIfType<[i32],
180  CCIfSplit<CCIfNotSubtarget<"useSoftFloat()",
181                            CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>,
182  CCIfSplit<CCIfSubtarget<"useSoftFloat()",
183                          CCIfOrigArgWasPPCF128<CCCustom<
184                          "CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128">>>>,
185
186  // The 'nest' parameter, if any, is passed in R11.
187  CCIfNest<CCAssignToReg<[R11]>>,
188
189  // The first 8 integer arguments are passed in integer registers.
190  CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
191
192  // Make sure the i64 words from a long double are either both passed in
193  // registers or both passed on the stack.
194  CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
195
196  // FP values are passed in F1 - F8.
197  CCIfType<[f32, f64],
198           CCIfNotSubtarget<"hasSPE()",
199                            CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>,
200  CCIfType<[f64],
201           CCIfSubtarget<"hasSPE()",
202                         CCAssignToReg<[S3, S4, S5, S6, S7, S8, S9, S10]>>>,
203  CCIfType<[f32],
204           CCIfSubtarget<"hasSPE()",
205                         CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>,
206
207  // Split arguments have an alignment of 8 bytes on the stack.
208  CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
209
210  CCIfType<[i32], CCAssignToStack<4, 4>>,
211
212  // Floats are stored in double precision format, thus they have the same
213  // alignment and size as doubles.
214  // With SPE floats are stored as single precision, so have alignment and
215  // size of int.
216  CCIfType<[f32,f64], CCIfNotSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
217  CCIfType<[f32], CCIfSubtarget<"hasSPE()", CCAssignToStack<4, 4>>>,
218  CCIfType<[f64], CCIfSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>,
219
220  // QPX vectors that are stored in double precision need 32-byte alignment.
221  CCIfType<[v4f64, v4i1], CCAssignToStack<32, 32>>,
222
223  // Vectors and float128 get 16-byte stack slots that are 16-byte aligned.
224  CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>,
225  CCIfType<[f128], CCIfSubtarget<"hasP9Vector()", CCAssignToStack<16, 16>>>
226]>;
227
228// This calling convention puts vector arguments always on the stack. It is used
229// to assign vector arguments which belong to the variable portion of the
230// parameter list of a variable argument function.
231def CC_PPC32_SVR4_VarArg : CallingConv<[
232  CCDelegateTo<CC_PPC32_SVR4_Common>
233]>;
234
235// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
236// put vector arguments in vector registers before putting them on the stack.
237def CC_PPC32_SVR4 : CallingConv<[
238  // QPX vectors mirror the scalar FP convention.
239  CCIfType<[v4f64, v4f32, v4i1], CCIfSubtarget<"hasQPX()",
240    CCAssignToReg<[QF1, QF2, QF3, QF4, QF5, QF6, QF7, QF8]>>>,
241
242  // The first 12 Vector arguments are passed in AltiVec registers.
243  CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64],
244           CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
245                          V8, V9, V10, V11, V12, V13]>>>,
246
247  // Float128 types treated as vector arguments.
248  CCIfType<[f128],
249           CCIfSubtarget<"hasP9Vector()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
250                          V8, V9, V10, V11, V12, V13]>>>,
251
252  CCDelegateTo<CC_PPC32_SVR4_Common>
253]>;
254
255// Helper "calling convention" to handle aggregate by value arguments.
256// Aggregate by value arguments are always placed in the local variable space
257// of the caller. This calling convention is only used to assign those stack
258// offsets in the callers stack frame.
259//
260// Still, the address of the aggregate copy in the callers stack frame is passed
261// in a GPR (or in the parameter list area if all GPRs are allocated) from the
262// caller to the callee. The location for the address argument is assigned by
263// the CC_PPC32_SVR4 calling convention.
264//
265// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
266// not passed by value.
267
268def CC_PPC32_SVR4_ByVal : CallingConv<[
269  CCIfByVal<CCPassByVal<4, 4>>,
270
271  CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
272]>;
273
274def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
275                                       V28, V29, V30, V31)>;
276
277def CSR_Darwin32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
278                                        R21, R22, R23, R24, R25, R26, R27, R28,
279                                        R29, R30, R31, F14, F15, F16, F17, F18,
280                                        F19, F20, F21, F22, F23, F24, F25, F26,
281                                        F27, F28, F29, F30, F31, CR2, CR3, CR4
282                                   )>;
283
284def CSR_Darwin32_Altivec : CalleeSavedRegs<(add CSR_Darwin32, CSR_Altivec)>;
285
286// SPE does not use FPRs, so break out the common register set as base.
287def CSR_SVR432_COMM : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
288                                          R21, R22, R23, R24, R25, R26, R27,
289                                          R28, R29, R30, R31, CR2, CR3, CR4
290                                      )>;
291def CSR_SVR432 :  CalleeSavedRegs<(add CSR_SVR432_COMM, F14, F15, F16, F17, F18,
292                                        F19, F20, F21, F22, F23, F24, F25, F26,
293                                        F27, F28, F29, F30, F31
294                                   )>;
295def CSR_SPE : CalleeSavedRegs<(add S14, S15, S16, S17, S18, S19, S20, S21, S22,
296                                   S23, S24, S25, S26, S27, S28, S29, S30, S31
297                              )>;
298
299def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
300
301def CSR_SVR432_SPE : CalleeSavedRegs<(add CSR_SVR432_COMM, CSR_SPE)>;
302
303def CSR_Darwin64 : CalleeSavedRegs<(add X13, X14, X15, X16, X17, X18, X19, X20,
304                                        X21, X22, X23, X24, X25, X26, X27, X28,
305                                        X29, X30, X31, F14, F15, F16, F17, F18,
306                                        F19, F20, F21, F22, F23, F24, F25, F26,
307                                        F27, F28, F29, F30, F31, CR2, CR3, CR4
308                                   )>;
309
310def CSR_Darwin64_Altivec : CalleeSavedRegs<(add CSR_Darwin64, CSR_Altivec)>;
311
312def CSR_SVR464   : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
313                                        X21, X22, X23, X24, X25, X26, X27, X28,
314                                        X29, X30, X31, F14, F15, F16, F17, F18,
315                                        F19, F20, F21, F22, F23, F24, F25, F26,
316                                        F27, F28, F29, F30, F31, CR2, CR3, CR4
317                                   )>;
318
319// CSRs that are handled by prologue, epilogue.
320def CSR_SRV464_TLS_PE : CalleeSavedRegs<(add)>;
321
322def CSR_SVR464_ViaCopy : CalleeSavedRegs<(add CSR_SVR464)>;
323
324def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>;
325
326def CSR_SVR464_Altivec_ViaCopy : CalleeSavedRegs<(add CSR_SVR464_Altivec)>;
327
328def CSR_SVR464_R2 : CalleeSavedRegs<(add CSR_SVR464, X2)>;
329
330def CSR_SVR464_R2_ViaCopy : CalleeSavedRegs<(add CSR_SVR464_R2)>;
331
332def CSR_SVR464_R2_Altivec : CalleeSavedRegs<(add CSR_SVR464_Altivec, X2)>;
333
334def CSR_SVR464_R2_Altivec_ViaCopy : CalleeSavedRegs<(add CSR_SVR464_R2_Altivec)>;
335
336def CSR_NoRegs : CalleeSavedRegs<(add)>;
337
338// coldcc calling convection marks most registers as non-volatile.
339// Do not include r1 since the stack pointer is never considered a CSR.
340// Do not include r2, since it is the TOC register and is added depending
341// on wether or not the function uses the TOC and is a non-leaf.
342// Do not include r0,r11,r13 as they are optional in functional linkage
343// and value may be altered by inter-library calls.
344// Do not include r12 as it is used as a scratch register.
345// Do not include return registers r3, f1, v2.
346def CSR_SVR32_ColdCC : CalleeSavedRegs<(add (sequence "R%u", 4, 10),
347                                          (sequence "R%u", 14, 31),
348                                          F0, (sequence "F%u", 2, 31),
349                                          (sequence "CR%u", 0, 7))>;
350
351def CSR_SVR32_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR32_ColdCC,
352                                            (sequence "V%u", 0, 1),
353                                            (sequence "V%u", 3, 31))>;
354
355def CSR_SVR64_ColdCC : CalleeSavedRegs<(add  (sequence "X%u", 4, 10),
356                                             (sequence "X%u", 14, 31),
357                                             F0, (sequence "F%u", 2, 31),
358                                             (sequence "CR%u", 0, 7))>;
359
360def CSR_SVR64_ColdCC_R2: CalleeSavedRegs<(add CSR_SVR64_ColdCC, X2)>;
361
362def CSR_SVR64_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC,
363                                             (sequence "V%u", 0, 1),
364                                             (sequence "V%u", 3, 31))>;
365
366def CSR_SVR64_ColdCC_R2_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC_Altivec, X2)>;
367
368def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
369                                             (sequence "X%u", 14, 31),
370                                             (sequence "F%u", 0, 31),
371                                             (sequence "CR%u", 0, 7))>;
372
373def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
374                                             (sequence "V%u", 0, 31))>;
375
376def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
377                                         (sequence "VSL%u", 0, 31))>;
378
379