• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
36    SchedRW = [WriteJump] in
37  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
38                      "", []>;
39
40// 64-bit large code model PIC base construction.
41let hasSideEffects = 0, mayLoad = 1, isNotDuplicable = 1, SchedRW = [WriteJump] in
42  def MOVGOT64r : PseudoI<(outs GR64:$reg),
43                          (ins GR64:$scratch, i64i32imm_pcrel:$got), []>;
44
45// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
46// a stack adjustment and the codegen must know that they may modify the stack
47// pointer before prolog-epilog rewriting occurs.
48// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
49// sub / add which can clobber EFLAGS.
50let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
51def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
52                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
53                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
54def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
55                           "#ADJCALLSTACKUP",
56                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
57                           Requires<[NotLP64]>;
58}
59def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
60       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
61
62
63// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
64// a stack adjustment and the codegen must know that they may modify the stack
65// pointer before prolog-epilog rewriting occurs.
66// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
67// sub / add which can clobber EFLAGS.
68let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
69def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
70                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
71                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
72def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
73                           "#ADJCALLSTACKUP",
74                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
75                           Requires<[IsLP64]>;
76}
77def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
78        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
79
80let SchedRW = [WriteSystem] in {
81
82// x86-64 va_start lowering magic.
83let usesCustomInserter = 1, Defs = [EFLAGS] in {
84def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
85                              (outs),
86                              (ins GR8:$al,
87                                   i64imm:$regsavefi, i64imm:$offset,
88                                   variable_ops),
89                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
90                              [(X86vastart_save_xmm_regs GR8:$al,
91                                                         imm:$regsavefi,
92                                                         imm:$offset),
93                               (implicit EFLAGS)]>;
94
95// The VAARG_64 pseudo-instruction takes the address of the va_list,
96// and places the address of the next argument into a register.
97let Defs = [EFLAGS] in
98def VAARG_64 : I<0, Pseudo,
99                 (outs GR64:$dst),
100                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
101                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
102                 [(set GR64:$dst,
103                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
104                  (implicit EFLAGS)]>;
105
106
107// When using segmented stacks these are lowered into instructions which first
108// check if the current stacklet has enough free memory. If it does, memory is
109// allocated by bumping the stack pointer. Otherwise memory is allocated from
110// the heap.
111
112let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
113def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
114                      "# variable sized alloca for segmented stacks",
115                      [(set GR32:$dst,
116                         (X86SegAlloca GR32:$size))]>,
117                    Requires<[NotLP64]>;
118
119let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
120def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
121                      "# variable sized alloca for segmented stacks",
122                      [(set GR64:$dst,
123                         (X86SegAlloca GR64:$size))]>,
124                    Requires<[In64BitMode]>;
125}
126
127// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
128// targets.  These calls are needed to probe the stack when allocating more than
129// 4k bytes in one go. Touching the stack at 4K increments is necessary to
130// ensure that the guard pages used by the OS virtual memory manager are
131// allocated in correct sequence.
132// The main point of having separate instruction are extra unmodelled effects
133// (compared to ordinary calls) like stack pointer change.
134
135let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
136def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
137                     "# dynamic stack allocation",
138                     [(X86WinAlloca GR32:$size)]>,
139                     Requires<[NotLP64]>;
140
141let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
142def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
143                     "# dynamic stack allocation",
144                     [(X86WinAlloca GR64:$size)]>,
145                     Requires<[In64BitMode]>;
146} // SchedRW
147
148// These instructions XOR the frame pointer into a GPR. They are used in some
149// stack protection schemes. These are post-RA pseudos because we only know the
150// frame register after register allocation.
151let Constraints = "$src = $dst", isPseudo = 1, Defs = [EFLAGS] in {
152  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
153                  "xorl\t$$FP, $src", []>,
154                  Requires<[NotLP64]>, Sched<[WriteALU]>;
155  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
156                  "xorq\t$$FP $src", []>,
157                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
158}
159
160//===----------------------------------------------------------------------===//
161// EH Pseudo Instructions
162//
163let SchedRW = [WriteSystem] in {
164let isTerminator = 1, isReturn = 1, isBarrier = 1,
165    hasCtrlDep = 1, isCodeGenOnly = 1 in {
166def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
167                    "ret\t#eh_return, addr: $addr",
168                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
169
170}
171
172let isTerminator = 1, isReturn = 1, isBarrier = 1,
173    hasCtrlDep = 1, isCodeGenOnly = 1 in {
174def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
175                     "ret\t#eh_return, addr: $addr",
176                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
177
178}
179
180let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
181    isCodeGenOnly = 1, isReturn = 1 in {
182  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
183
184  // CATCHRET needs a custom inserter for SEH.
185  let usesCustomInserter = 1 in
186    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
187                     "# CATCHRET",
188                     [(catchret bb:$dst, bb:$from)]>;
189}
190
191let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
192    usesCustomInserter = 1 in
193def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
194
195// This instruction is responsible for re-establishing stack pointers after an
196// exception has been caught and we are rejoining normal control flow in the
197// parent function or funclet. It generally sets ESP and EBP, and optionally
198// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
199// elsewhere.
200let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
201def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
202
203let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
204    usesCustomInserter = 1 in {
205  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
206                            "#EH_SJLJ_SETJMP32",
207                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
208                          Requires<[Not64BitMode]>;
209  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
210                            "#EH_SJLJ_SETJMP64",
211                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
212                          Requires<[In64BitMode]>;
213  let isTerminator = 1 in {
214  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
215                            "#EH_SJLJ_LONGJMP32",
216                            [(X86eh_sjlj_longjmp addr:$buf)]>,
217                          Requires<[Not64BitMode]>;
218  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
219                            "#EH_SJLJ_LONGJMP64",
220                            [(X86eh_sjlj_longjmp addr:$buf)]>,
221                          Requires<[In64BitMode]>;
222  }
223}
224
225let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
226  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
227                        "#EH_SjLj_Setup\t$dst", []>;
228}
229} // SchedRW
230
231//===----------------------------------------------------------------------===//
232// Pseudo instructions used by unwind info.
233//
234let isPseudo = 1, SchedRW = [WriteSystem] in {
235  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
236                            "#SEH_PushReg $reg", []>;
237  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
238                            "#SEH_SaveReg $reg, $dst", []>;
239  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
240                            "#SEH_SaveXMM $reg, $dst", []>;
241  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
242                            "#SEH_StackAlloc $size", []>;
243  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
244                            "#SEH_SetFrame $reg, $offset", []>;
245  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
246                            "#SEH_PushFrame $mode", []>;
247  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
248                            "#SEH_EndPrologue", []>;
249  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
250                            "#SEH_Epilogue", []>;
251}
252
253//===----------------------------------------------------------------------===//
254// Pseudo instructions used by segmented stacks.
255//
256
257// This is lowered into a RET instruction by MCInstLower.  We need
258// this so that we don't have to have a MachineBasicBlock which ends
259// with a RET and also has successors.
260let isPseudo = 1, SchedRW = [WriteJumpLd] in {
261def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
262
263// This instruction is lowered to a RET followed by a MOV.  The two
264// instructions are not generated on a higher level since then the
265// verifier sees a MachineBasicBlock ending with a non-terminator.
266def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
267}
268
269//===----------------------------------------------------------------------===//
270// Alias Instructions
271//===----------------------------------------------------------------------===//
272
273// Alias instruction mapping movr0 to xor.
274// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
275let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
276    isPseudo = 1, AddedComplexity = 10 in
277def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
278                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
279
280// Other widths can also make use of the 32-bit xor, which may have a smaller
281// encoding and avoid partial register updates.
282let AddedComplexity = 10 in {
283def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
284def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
285def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
286}
287
288let Predicates = [OptForSize, Not64BitMode],
289    AddedComplexity = 10 in {
290  let SchedRW = [WriteALU] in {
291  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
292  // which only require 3 bytes compared to MOV32ri which requires 5.
293  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
294    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
295                        [(set GR32:$dst, 1)]>;
296    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
297                        [(set GR32:$dst, -1)]>;
298  }
299  } // SchedRW
300
301  // MOV16ri is 4 bytes, so the instructions above are smaller.
302  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
303  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
304}
305
306let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
307    SchedRW = [WriteALU] in {
308// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
309def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
310                       [(set GR32:$dst, i32immSExt8:$src)]>,
311                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
312def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
313                       [(set GR64:$dst, i64immSExt8:$src)]>,
314                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
315}
316
317// Materialize i64 constant where top 32-bits are zero. This could theoretically
318// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
319// that would make it more difficult to rematerialize.
320let isReMaterializable = 1, isAsCheapAsAMove = 1,
321    isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in
322def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
323
324// This 64-bit pseudo-move can be used for both a 64-bit constant that is
325// actually the zero-extension of a 32-bit constant and for labels in the
326// x86-64 small code model.
327def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
328
329let AddedComplexity = 1 in
330def : Pat<(i64 mov64imm32:$src),
331          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
332
333// Use sbb to materialize carry bit.
334let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
335// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
336// However, Pat<> can't replicate the destination reg into the inputs of the
337// result.
338def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
339                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
340def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
341                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
342def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
343                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
344def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
345                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
346} // isCodeGenOnly
347
348
349def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
350          (SETB_C16r)>;
351def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
352          (SETB_C32r)>;
353def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
354          (SETB_C64r)>;
355
356def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
357          (SETB_C16r)>;
358def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
359          (SETB_C32r)>;
360def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
361          (SETB_C64r)>;
362
363// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
364// will be eliminated and that the sbb can be extended up to a wider type.  When
365// this happens, it is great.  However, if we are left with an 8-bit sbb and an
366// and, we might as well just match it as a setb.
367def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
368          (SETBr)>;
369
370// (add OP, SETB) -> (adc OP, 0)
371def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
372          (ADC8ri GR8:$op, 0)>;
373def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
374          (ADC32ri8 GR32:$op, 0)>;
375def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
376          (ADC64ri8 GR64:$op, 0)>;
377
378// (sub OP, SETB) -> (sbb OP, 0)
379def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
380          (SBB8ri GR8:$op, 0)>;
381def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
382          (SBB32ri8 GR32:$op, 0)>;
383def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
384          (SBB64ri8 GR64:$op, 0)>;
385
386// (sub OP, SETCC_CARRY) -> (adc OP, 0)
387def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
388          (ADC8ri GR8:$op, 0)>;
389def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
390          (ADC32ri8 GR32:$op, 0)>;
391def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
392          (ADC64ri8 GR64:$op, 0)>;
393
394//===----------------------------------------------------------------------===//
395// String Pseudo Instructions
396//
397let SchedRW = [WriteMicrocoded] in {
398let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
399def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
400                    [(X86rep_movs i8)]>, REP,
401                   Requires<[Not64BitMode]>;
402def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
403                    [(X86rep_movs i16)]>, REP, OpSize16,
404                   Requires<[Not64BitMode]>;
405def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
406                    [(X86rep_movs i32)]>, REP, OpSize32,
407                   Requires<[Not64BitMode]>;
408}
409
410let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
411def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
412                    [(X86rep_movs i8)]>, REP,
413                   Requires<[In64BitMode]>;
414def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
415                    [(X86rep_movs i16)]>, REP, OpSize16,
416                   Requires<[In64BitMode]>;
417def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
418                    [(X86rep_movs i32)]>, REP, OpSize32,
419                   Requires<[In64BitMode]>;
420def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
421                    [(X86rep_movs i64)]>, REP,
422                   Requires<[In64BitMode]>;
423}
424
425// FIXME: Should use "(X86rep_stos AL)" as the pattern.
426let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
427  let Uses = [AL,ECX,EDI] in
428  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
429                      [(X86rep_stos i8)]>, REP,
430                     Requires<[Not64BitMode]>;
431  let Uses = [AX,ECX,EDI] in
432  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
433                      [(X86rep_stos i16)]>, REP, OpSize16,
434                     Requires<[Not64BitMode]>;
435  let Uses = [EAX,ECX,EDI] in
436  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
437                      [(X86rep_stos i32)]>, REP, OpSize32,
438                     Requires<[Not64BitMode]>;
439}
440
441let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
442  let Uses = [AL,RCX,RDI] in
443  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
444                       [(X86rep_stos i8)]>, REP,
445                       Requires<[In64BitMode]>;
446  let Uses = [AX,RCX,RDI] in
447  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
448                       [(X86rep_stos i16)]>, REP, OpSize16,
449                       Requires<[In64BitMode]>;
450  let Uses = [RAX,RCX,RDI] in
451  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
452                       [(X86rep_stos i32)]>, REP, OpSize32,
453                       Requires<[In64BitMode]>;
454
455  let Uses = [RAX,RCX,RDI] in
456  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
457                        [(X86rep_stos i64)]>, REP,
458                        Requires<[In64BitMode]>;
459}
460} // SchedRW
461
462//===----------------------------------------------------------------------===//
463// Thread Local Storage Instructions
464//
465let SchedRW = [WriteSystem] in {
466
467// ELF TLS Support
468// All calls clobber the non-callee saved registers. ESP is marked as
469// a use to prevent stack-pointer assignments that appear immediately
470// before calls from potentially appearing dead.
471let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
472            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
473            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
474            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
475            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
476    usesCustomInserter = 1, Uses = [ESP, SSP] in {
477def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
478                  "# TLS_addr32",
479                  [(X86tlsaddr tls32addr:$sym)]>,
480                  Requires<[Not64BitMode]>;
481def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
482                  "# TLS_base_addr32",
483                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
484                  Requires<[Not64BitMode]>;
485}
486
487// All calls clobber the non-callee saved registers. RSP is marked as
488// a use to prevent stack-pointer assignments that appear immediately
489// before calls from potentially appearing dead.
490let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
491            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
492            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
493            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
494            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
495            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
496    usesCustomInserter = 1, Uses = [RSP, SSP] in {
497def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
498                   "# TLS_addr64",
499                  [(X86tlsaddr tls64addr:$sym)]>,
500                  Requires<[In64BitMode]>;
501def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
502                   "# TLS_base_addr64",
503                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
504                  Requires<[In64BitMode]>;
505}
506
507// Darwin TLS Support
508// For i386, the address of the thunk is passed on the stack, on return the
509// address of the variable is in %eax.  %ecx is trashed during the function
510// call.  All other registers are preserved.
511let Defs = [EAX, ECX, EFLAGS, DF],
512    Uses = [ESP, SSP],
513    usesCustomInserter = 1 in
514def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
515                "# TLSCall_32",
516                [(X86TLSCall addr:$sym)]>,
517                Requires<[Not64BitMode]>;
518
519// For x86_64, the address of the thunk is passed in %rdi, but the
520// pseudo directly use the symbol, so do not add an implicit use of
521// %rdi. The lowering will do the right thing with RDI.
522// On return the address of the variable is in %rax.  All other
523// registers are preserved.
524let Defs = [RAX, EFLAGS, DF],
525    Uses = [RSP, SSP],
526    usesCustomInserter = 1 in
527def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
528                  "# TLSCall_64",
529                  [(X86TLSCall addr:$sym)]>,
530                  Requires<[In64BitMode]>;
531} // SchedRW
532
533//===----------------------------------------------------------------------===//
534// Conditional Move Pseudo Instructions
535
536// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
537// instruction selection into a branch sequence.
538multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
539  def CMOV#NAME  : I<0, Pseudo,
540                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
541                    "#CMOV_"#NAME#" PSEUDO!",
542                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
543                                                EFLAGS)))]>;
544}
545
546let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
547  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
548  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
549  // however that requires promoting the operands, and can induce additional
550  // i8 register pressure.
551  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
552
553  let Predicates = [NoCMov] in {
554    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
555    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
556  } // Predicates = [NoCMov]
557
558  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
559  // SSE1/SSE2.
560  let Predicates = [FPStackf32] in
561    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
562
563  let Predicates = [FPStackf64] in
564    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
565
566  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
567
568  defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
569  defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
570  defm _F128   : CMOVrr_PSEUDO<VR128, f128>;
571  defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
572  defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
573  defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
574  defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
575  defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
576  defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
577  defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
578  defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
579  defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
580  defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
581  defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
582  defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
583  defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
584} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
585
586//===----------------------------------------------------------------------===//
587// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
588//===----------------------------------------------------------------------===//
589
590// FIXME: Use normal instructions and add lock prefix dynamically.
591
592// Memory barriers
593
594// TODO: Get this to fold the constant into the instruction.
595let isCodeGenOnly = 1, Defs = [EFLAGS] in
596def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
597                      "or{l}\t{$zero, $dst|$dst, $zero}", []>,
598                      Requires<[Not64BitMode]>, OpSize32, LOCK,
599                      Sched<[WriteALULd, WriteRMW]>;
600
601let hasSideEffects = 1 in
602def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
603                     "#MEMBARRIER",
604                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
605
606// RegOpc corresponds to the mr version of the instruction
607// ImmOpc corresponds to the mi version of the instruction
608// ImmOpc8 corresponds to the mi8 version of the instruction
609// ImmMod corresponds to the instruction format of the mi and mi8 versions
610multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
611                           Format ImmMod, SDNode Op, string mnemonic> {
612let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
613    SchedRW = [WriteALULd, WriteRMW] in {
614
615def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
616                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
617                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
618                  !strconcat(mnemonic, "{b}\t",
619                             "{$src2, $dst|$dst, $src2}"),
620                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
621
622def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
623                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
624                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
625                   !strconcat(mnemonic, "{w}\t",
626                              "{$src2, $dst|$dst, $src2}"),
627                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
628                   OpSize16, LOCK;
629
630def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
631                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
632                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
633                   !strconcat(mnemonic, "{l}\t",
634                              "{$src2, $dst|$dst, $src2}"),
635                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
636                   OpSize32, LOCK;
637
638def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
639                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
640                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
641                    !strconcat(mnemonic, "{q}\t",
642                               "{$src2, $dst|$dst, $src2}"),
643                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
644
645def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
646                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
647                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
648                    !strconcat(mnemonic, "{b}\t",
649                               "{$src2, $dst|$dst, $src2}"),
650                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
651
652def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
653                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
654                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
655                      !strconcat(mnemonic, "{w}\t",
656                                 "{$src2, $dst|$dst, $src2}"),
657                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
658                      OpSize16, LOCK;
659
660def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
661                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
662                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
663                      !strconcat(mnemonic, "{l}\t",
664                                 "{$src2, $dst|$dst, $src2}"),
665                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
666                      OpSize32, LOCK;
667
668def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
669                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
670                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
671                          !strconcat(mnemonic, "{q}\t",
672                                     "{$src2, $dst|$dst, $src2}"),
673                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
674                          LOCK;
675
676def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
677                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
678                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
679                      !strconcat(mnemonic, "{w}\t",
680                                 "{$src2, $dst|$dst, $src2}"),
681                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
682                      OpSize16, LOCK;
683
684def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
685                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
686                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
687                      !strconcat(mnemonic, "{l}\t",
688                                 "{$src2, $dst|$dst, $src2}"),
689                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
690                      OpSize32, LOCK;
691
692def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
693                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
694                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
695                       !strconcat(mnemonic, "{q}\t",
696                                  "{$src2, $dst|$dst, $src2}"),
697                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
698                       LOCK;
699}
700
701}
702
703defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
704defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
705defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
706defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
707defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
708
709multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
710                          string frag, string mnemonic> {
711let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
712    SchedRW = [WriteALULd, WriteRMW] in {
713def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
714                 !strconcat(mnemonic, "{b}\t$dst"),
715                 [(set EFLAGS, (!cast<PatFrag>(frag # "_8") addr:$dst))]>,
716                 LOCK;
717def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
718                 !strconcat(mnemonic, "{w}\t$dst"),
719                 [(set EFLAGS, (!cast<PatFrag>(frag # "_16") addr:$dst))]>,
720                 OpSize16, LOCK;
721def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
722                 !strconcat(mnemonic, "{l}\t$dst"),
723                 [(set EFLAGS, (!cast<PatFrag>(frag # "_32") addr:$dst))]>,
724                 OpSize32, LOCK;
725def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
726                  !strconcat(mnemonic, "{q}\t$dst"),
727                  [(set EFLAGS, (!cast<PatFrag>(frag # "_64") addr:$dst))]>,
728                  LOCK;
729}
730}
731
732multiclass unary_atomic_intrin<SDNode atomic_op> {
733  def _8 : PatFrag<(ops node:$ptr),
734                   (atomic_op  node:$ptr), [{
735    return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
736  }]>;
737  def _16 : PatFrag<(ops node:$ptr),
738                    (atomic_op node:$ptr), [{
739    return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
740  }]>;
741  def _32 : PatFrag<(ops node:$ptr),
742                    (atomic_op node:$ptr), [{
743    return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
744  }]>;
745  def _64 : PatFrag<(ops node:$ptr),
746                    (atomic_op node:$ptr), [{
747    return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
748  }]>;
749}
750
751defm X86lock_inc : unary_atomic_intrin<X86lock_inc>;
752defm X86lock_dec : unary_atomic_intrin<X86lock_dec>;
753
754defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "X86lock_inc", "inc">;
755defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "X86lock_dec", "dec">;
756
757// Atomic compare and swap.
758multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
759                         SDPatternOperator frag, X86MemOperand x86memop> {
760let isCodeGenOnly = 1, usesCustomInserter = 1 in {
761  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
762               !strconcat(mnemonic, "\t$ptr"),
763               [(frag addr:$ptr)]>, TB, LOCK;
764}
765}
766
767multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
768                          string mnemonic, SDPatternOperator frag> {
769let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
770  let Defs = [AL, EFLAGS], Uses = [AL] in
771  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
772                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
773                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
774  let Defs = [AX, EFLAGS], Uses = [AX] in
775  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
776                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
777                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
778  let Defs = [EAX, EFLAGS], Uses = [EAX] in
779  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
780                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
781                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
782  let Defs = [RAX, EFLAGS], Uses = [RAX] in
783  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
784                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
785                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
786}
787}
788
789let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
790    SchedRW = [WriteALULd, WriteRMW] in {
791defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>;
792}
793
794// This pseudo must be used when the frame uses RBX as
795// the base pointer. Indeed, in such situation RBX is a reserved
796// register and the register allocator will ignore any use/def of
797// it. In other words, the register will not fix the clobbering of
798// RBX that will happen when setting the arguments for the instrucion.
799//
800// Unlike the actual related instuction, we mark that this one
801// defines EBX (instead of using EBX).
802// The rationale is that we will define RBX during the expansion of
803// the pseudo. The argument feeding EBX is ebx_input.
804//
805// The additional argument, $ebx_save, is a temporary register used to
806// save the value of RBX across the actual instruction.
807//
808// To make sure the register assigned to $ebx_save does not interfere with
809// the definition of the actual instruction, we use a definition $dst which
810// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
811// the instruction and we are sure we will have a valid register to restore
812// the value of RBX.
813let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
814    SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
815    Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
816def LCMPXCHG8B_SAVE_EBX :
817    I<0, Pseudo, (outs GR32:$dst),
818      (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
819      !strconcat("cmpxchg8b", "\t$ptr"),
820      [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
821                                        GR32:$ebx_save))]>;
822}
823
824
825let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
826    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
827defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
828                                 X86cas16, i128mem>, REX_W;
829}
830
831// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
832let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
833    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
834    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
835    usesCustomInserter = 1 in {
836def LCMPXCHG16B_SAVE_RBX :
837    I<0, Pseudo, (outs GR64:$dst),
838      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
839      !strconcat("cmpxchg16b", "\t$ptr"),
840      [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
841                                                    GR64:$rbx_save))]>;
842}
843
844defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
845
846// Atomic exchange and add
847multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
848                             string frag> {
849  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
850      SchedRW = [WriteALULd, WriteRMW] in {
851    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
852                    (ins GR8:$val, i8mem:$ptr),
853                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
854                    [(set GR8:$dst,
855                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
856    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
857                    (ins GR16:$val, i16mem:$ptr),
858                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
859                    [(set
860                       GR16:$dst,
861                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
862                    OpSize16;
863    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
864                    (ins GR32:$val, i32mem:$ptr),
865                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
866                    [(set
867                       GR32:$dst,
868                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
869                    OpSize32;
870    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
871                     (ins GR64:$val, i64mem:$ptr),
872                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
873                     [(set
874                        GR64:$dst,
875                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
876  }
877}
878
879defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
880
881/* The following multiclass tries to make sure that in code like
882 *    x.store (immediate op x.load(acquire), release)
883 * and
884 *    x.store (register op x.load(acquire), release)
885 * an operation directly on memory is generated instead of wasting a register.
886 * It is not automatic as atomic_store/load are only lowered to MOV instructions
887 * extremely late to prevent them from being accidentally reordered in the backend
888 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
889 */
890multiclass RELEASE_BINOP_MI<SDNode op> {
891    def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
892        "#BINOP "#NAME#"8mi PSEUDO!",
893        [(atomic_store_8 addr:$dst, (op
894            (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
895    def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
896        "#BINOP "#NAME#"8mr PSEUDO!",
897        [(atomic_store_8 addr:$dst, (op
898            (atomic_load_8 addr:$dst), GR8:$src))]>;
899    // NAME#16 is not generated as 16-bit arithmetic instructions are considered
900    // costly and avoided as far as possible by this backend anyway
901    def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
902        "#BINOP "#NAME#"32mi PSEUDO!",
903        [(atomic_store_32 addr:$dst, (op
904            (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
905    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
906        "#BINOP "#NAME#"32mr PSEUDO!",
907        [(atomic_store_32 addr:$dst, (op
908            (atomic_load_32 addr:$dst), GR32:$src))]>;
909    def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
910        "#BINOP "#NAME#"64mi32 PSEUDO!",
911        [(atomic_store_64 addr:$dst, (op
912            (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
913    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
914        "#BINOP "#NAME#"64mr PSEUDO!",
915        [(atomic_store_64 addr:$dst, (op
916            (atomic_load_64 addr:$dst), GR64:$src))]>;
917}
918let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in {
919  defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
920  defm RELEASE_AND : RELEASE_BINOP_MI<and>;
921  defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
922  defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
923  // Note: we don't deal with sub, because substractions of constants are
924  //       optimized into additions before this code can run.
925}
926
927// Same as above, but for floating-point.
928// FIXME: imm version.
929// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
930// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
931let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in {
932multiclass RELEASE_FP_BINOP_MI<SDNode op> {
933    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
934        "#BINOP "#NAME#"32mr PSEUDO!",
935        [(atomic_store_32 addr:$dst,
936           (i32 (bitconvert (op
937             (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
938          FR32:$src))))]>, Requires<[HasSSE1]>;
939    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
940        "#BINOP "#NAME#"64mr PSEUDO!",
941        [(atomic_store_64 addr:$dst,
942           (i64 (bitconvert (op
943             (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
944          FR64:$src))))]>, Requires<[HasSSE2]>;
945}
946defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
947// FIXME: Add fsub, fmul, fdiv, ...
948}
949
950multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
951    def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
952        "#UNOP "#NAME#"8m PSEUDO!",
953        [(atomic_store_8 addr:$dst, dag8)]>;
954    def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
955        "#UNOP "#NAME#"16m PSEUDO!",
956        [(atomic_store_16 addr:$dst, dag16)]>;
957    def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
958        "#UNOP "#NAME#"32m PSEUDO!",
959        [(atomic_store_32 addr:$dst, dag32)]>;
960    def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
961        "#UNOP "#NAME#"64m PSEUDO!",
962        [(atomic_store_64 addr:$dst, dag64)]>;
963}
964
965let Defs = [EFLAGS], Predicates = [UseIncDec], SchedRW = [WriteMicrocoded] in {
966  defm RELEASE_INC : RELEASE_UNOP<
967      (add (atomic_load_8  addr:$dst), (i8 1)),
968      (add (atomic_load_16 addr:$dst), (i16 1)),
969      (add (atomic_load_32 addr:$dst), (i32 1)),
970      (add (atomic_load_64 addr:$dst), (i64 1))>;
971  defm RELEASE_DEC : RELEASE_UNOP<
972      (add (atomic_load_8  addr:$dst), (i8 -1)),
973      (add (atomic_load_16 addr:$dst), (i16 -1)),
974      (add (atomic_load_32 addr:$dst), (i32 -1)),
975      (add (atomic_load_64 addr:$dst), (i64 -1))>;
976}
977/*
978TODO: These don't work because the type inference of TableGen fails.
979TODO: find a way to fix it.
980let Defs = [EFLAGS] in {
981  defm RELEASE_NEG : RELEASE_UNOP<
982      (ineg (atomic_load_8  addr:$dst)),
983      (ineg (atomic_load_16 addr:$dst)),
984      (ineg (atomic_load_32 addr:$dst)),
985      (ineg (atomic_load_64 addr:$dst))>;
986}
987// NOT doesn't set flags.
988defm RELEASE_NOT : RELEASE_UNOP<
989    (not (atomic_load_8  addr:$dst)),
990    (not (atomic_load_16 addr:$dst)),
991    (not (atomic_load_32 addr:$dst)),
992    (not (atomic_load_64 addr:$dst))>;
993*/
994
995let SchedRW = [WriteMicrocoded] in {
996def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
997            "#RELEASE_MOV8mi PSEUDO!",
998            [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
999def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
1000            "#RELEASE_MOV16mi PSEUDO!",
1001            [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
1002def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
1003            "#RELEASE_MOV32mi PSEUDO!",
1004            [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
1005def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
1006            "#RELEASE_MOV64mi32 PSEUDO!",
1007            [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
1008
1009def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
1010                        "#RELEASE_MOV8mr PSEUDO!",
1011                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
1012def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
1013                        "#RELEASE_MOV16mr PSEUDO!",
1014                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
1015def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
1016                        "#RELEASE_MOV32mr PSEUDO!",
1017                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
1018def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
1019                        "#RELEASE_MOV64mr PSEUDO!",
1020                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
1021
1022def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
1023                      "#ACQUIRE_MOV8rm PSEUDO!",
1024                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
1025def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
1026                      "#ACQUIRE_MOV16rm PSEUDO!",
1027                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
1028def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
1029                      "#ACQUIRE_MOV32rm PSEUDO!",
1030                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
1031def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
1032                      "#ACQUIRE_MOV64rm PSEUDO!",
1033                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
1034} // SchedRW
1035
1036//===----------------------------------------------------------------------===//
1037// DAG Pattern Matching Rules
1038//===----------------------------------------------------------------------===//
1039
1040// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1041// binary size compared to a regular MOV, but it introduces an unnecessary
1042// load, so is not suitable for regular or optsize functions.
1043let Predicates = [OptForMinSize] in {
1044def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1045def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1046def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1047def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1048def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1049def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1050}
1051
1052// In kernel code model, we can get the address of a label
1053// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1054// the MOV64ri32 should accept these.
1055def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1056          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1057def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1058          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1059def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1060          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1061def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1062          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1063def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1064          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1065def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1066          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1067
1068// If we have small model and -static mode, it is safe to store global addresses
1069// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1070// for MOV64mi32 should handle this sort of thing.
1071def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1072          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1073          Requires<[NearData, IsNotPIC]>;
1074def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1075          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1076          Requires<[NearData, IsNotPIC]>;
1077def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1078          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1079          Requires<[NearData, IsNotPIC]>;
1080def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1081          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1082          Requires<[NearData, IsNotPIC]>;
1083def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1084          (MOV64mi32 addr:$dst, mcsym:$src)>,
1085          Requires<[NearData, IsNotPIC]>;
1086def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1087          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1088          Requires<[NearData, IsNotPIC]>;
1089
1090def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1091def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1092
1093// Calls
1094
1095// tls has some funny stuff here...
1096// This corresponds to movabs $foo@tpoff, %rax
1097def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1098          (MOV64ri32 tglobaltlsaddr :$dst)>;
1099// This corresponds to add $foo@tpoff, %rax
1100def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1101          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1102
1103
1104// Direct PC relative function call for small code model. 32-bit displacement
1105// sign extended to 64-bit.
1106def : Pat<(X86call (i64 tglobaladdr:$dst)),
1107          (CALL64pcrel32 tglobaladdr:$dst)>;
1108def : Pat<(X86call (i64 texternalsym:$dst)),
1109          (CALL64pcrel32 texternalsym:$dst)>;
1110
1111// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1112// can never use callee-saved registers. That is the purpose of the GR64_TC
1113// register classes.
1114//
1115// The only volatile register that is never used by the calling convention is
1116// %r11. This happens when calling a vararg function with 6 arguments.
1117//
1118// Match an X86tcret that uses less than 7 volatile registers.
1119def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1120                             (X86tcret node:$ptr, node:$off), [{
1121  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1122  unsigned NumRegs = 0;
1123  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1124    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1125      return false;
1126  return true;
1127}]>;
1128
1129def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1130          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1131          Requires<[Not64BitMode, NotUseRetpoline]>;
1132
1133// FIXME: This is disabled for 32-bit PIC mode because the global base
1134// register which is part of the address mode may be assigned a
1135// callee-saved register.
1136def : Pat<(X86tcret (load addr:$dst), imm:$off),
1137          (TCRETURNmi addr:$dst, imm:$off)>,
1138          Requires<[Not64BitMode, IsNotPIC, NotUseRetpoline]>;
1139
1140def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1141          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1142          Requires<[NotLP64]>;
1143
1144def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1145          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1146          Requires<[NotLP64]>;
1147
1148def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1149          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1150          Requires<[In64BitMode, NotUseRetpoline]>;
1151
1152// Don't fold loads into X86tcret requiring more than 6 regs.
1153// There wouldn't be enough scratch registers for base+index.
1154def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1155          (TCRETURNmi64 addr:$dst, imm:$off)>,
1156          Requires<[In64BitMode, NotUseRetpoline]>;
1157
1158def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1159          (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
1160          Requires<[In64BitMode, UseRetpoline]>;
1161
1162def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1163          (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
1164          Requires<[Not64BitMode, UseRetpoline]>;
1165
1166def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1167          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1168          Requires<[IsLP64]>;
1169
1170def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1171          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1172          Requires<[IsLP64]>;
1173
1174// Normal calls, with various flavors of addresses.
1175def : Pat<(X86call (i32 tglobaladdr:$dst)),
1176          (CALLpcrel32 tglobaladdr:$dst)>;
1177def : Pat<(X86call (i32 texternalsym:$dst)),
1178          (CALLpcrel32 texternalsym:$dst)>;
1179def : Pat<(X86call (i32 imm:$dst)),
1180          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1181
1182// Comparisons.
1183
1184// TEST R,R is smaller than CMP R,0
1185def : Pat<(X86cmp GR8:$src1, 0),
1186          (TEST8rr GR8:$src1, GR8:$src1)>;
1187def : Pat<(X86cmp GR16:$src1, 0),
1188          (TEST16rr GR16:$src1, GR16:$src1)>;
1189def : Pat<(X86cmp GR32:$src1, 0),
1190          (TEST32rr GR32:$src1, GR32:$src1)>;
1191def : Pat<(X86cmp GR64:$src1, 0),
1192          (TEST64rr GR64:$src1, GR64:$src1)>;
1193
1194// Conditional moves with folded loads with operands swapped and conditions
1195// inverted.
1196multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1197                  Instruction Inst64> {
1198  let Predicates = [HasCMov] in {
1199    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1200              (Inst16 GR16:$src2, addr:$src1)>;
1201    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1202              (Inst32 GR32:$src2, addr:$src1)>;
1203    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1204              (Inst64 GR64:$src2, addr:$src1)>;
1205  }
1206}
1207
1208defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1209defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1210defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1211defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1212defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1213defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1214defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1215defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1216defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1217defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1218defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1219defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1220defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1221defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1222defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1223defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1224
1225// zextload bool -> zextload byte
1226// i1 stored in one byte in zero-extended form.
1227// Upper bits cleanup should be executed before Store.
1228def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1229def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1230def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1231def : Pat<(zextloadi64i1 addr:$src),
1232          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1233
1234// extload bool -> extload byte
1235// When extloading from 16-bit and smaller memory locations into 64-bit
1236// registers, use zero-extending loads so that the entire 64-bit register is
1237// defined, avoiding partial-register updates.
1238
1239def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1240def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1241def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1242def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1243def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1244def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1245
1246// For other extloads, use subregs, since the high contents of the register are
1247// defined after an extload.
1248def : Pat<(extloadi64i1 addr:$src),
1249          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1250def : Pat<(extloadi64i8 addr:$src),
1251          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1252def : Pat<(extloadi64i16 addr:$src),
1253          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1254def : Pat<(extloadi64i32 addr:$src),
1255          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1256
1257// anyext. Define these to do an explicit zero-extend to
1258// avoid partial-register updates.
1259def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1260                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1261def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1262
1263// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1264def : Pat<(i32 (anyext GR16:$src)),
1265          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1266
1267def : Pat<(i64 (anyext GR8 :$src)),
1268          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1269def : Pat<(i64 (anyext GR16:$src)),
1270          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1271def : Pat<(i64 (anyext GR32:$src)),
1272          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
1273
1274
1275// Any instruction that defines a 32-bit result leaves the high half of the
1276// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1277// be copying from a truncate. Any other 32-bit operation will zero-extend
1278// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
1279// 32 bits, they're probably just qualifying a CopyFromReg.
1280def def32 : PatLeaf<(i32 GR32:$src), [{
1281  return N->getOpcode() != ISD::TRUNCATE &&
1282         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1283         N->getOpcode() != ISD::CopyFromReg &&
1284         N->getOpcode() != ISD::AssertSext &&
1285         N->getOpcode() != ISD::AssertZext;
1286}]>;
1287
1288// In the case of a 32-bit def that is known to implicitly zero-extend,
1289// we can use a SUBREG_TO_REG.
1290def : Pat<(i64 (zext def32:$src)),
1291          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1292
1293//===----------------------------------------------------------------------===//
1294// Pattern match OR as ADD
1295//===----------------------------------------------------------------------===//
1296
1297// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1298// 3-addressified into an LEA instruction to avoid copies.  However, we also
1299// want to finally emit these instructions as an or at the end of the code
1300// generator to make the generated code easier to read.  To do this, we select
1301// into "disjoint bits" pseudo ops.
1302
1303// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1304def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1305  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1306    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1307
1308  KnownBits Known0;
1309  CurDAG->computeKnownBits(N->getOperand(0), Known0, 0);
1310  KnownBits Known1;
1311  CurDAG->computeKnownBits(N->getOperand(1), Known1, 0);
1312  return (~Known0.Zero & ~Known1.Zero) == 0;
1313}]>;
1314
1315
1316// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1317// Try this before the selecting to OR.
1318let AddedComplexity = 5, SchedRW = [WriteALU] in {
1319
1320let isConvertibleToThreeAddress = 1,
1321    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1322let isCommutable = 1 in {
1323def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1324                    "", // orw/addw REG, REG
1325                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1326def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1327                    "", // orl/addl REG, REG
1328                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1329def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1330                    "", // orq/addq REG, REG
1331                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1332} // isCommutable
1333
1334// NOTE: These are order specific, we want the ri8 forms to be listed
1335// first so that they are slightly preferred to the ri forms.
1336
1337def ADD16ri8_DB : I<0, Pseudo,
1338                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1339                    "", // orw/addw REG, imm8
1340                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1341def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1342                    "", // orw/addw REG, imm
1343                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1344
1345def ADD32ri8_DB : I<0, Pseudo,
1346                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1347                    "", // orl/addl REG, imm8
1348                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1349def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1350                    "", // orl/addl REG, imm
1351                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1352
1353
1354def ADD64ri8_DB : I<0, Pseudo,
1355                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1356                    "", // orq/addq REG, imm8
1357                    [(set GR64:$dst, (or_is_add GR64:$src1,
1358                                                i64immSExt8:$src2))]>;
1359def ADD64ri32_DB : I<0, Pseudo,
1360                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1361                     "", // orq/addq REG, imm
1362                     [(set GR64:$dst, (or_is_add GR64:$src1,
1363                                                 i64immSExt32:$src2))]>;
1364}
1365} // AddedComplexity, SchedRW
1366
1367//===----------------------------------------------------------------------===//
1368// Pattern match SUB as XOR
1369//===----------------------------------------------------------------------===//
1370
1371// An immediate in the LHS of a subtract can't be encoded in the instruction.
1372// If there is no possibility of a borrow we can use an XOR instead of a SUB
1373// to enable the immediate to be folded.
1374// TODO: Move this to a DAG combine?
1375
1376def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
1377  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
1378    KnownBits Known;
1379    CurDAG->computeKnownBits(N->getOperand(1), Known);
1380
1381    // If all possible ones in the RHS are set in the LHS then there can't be
1382    // a borrow and we can use xor.
1383    return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
1384  }
1385
1386  return false;
1387}]>;
1388
1389let AddedComplexity = 5 in {
1390def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
1391          (XOR8ri GR8:$src1, imm:$src2)>;
1392def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
1393          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1394def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
1395          (XOR16ri GR16:$src1, imm:$src2)>;
1396def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
1397          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1398def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
1399          (XOR32ri GR32:$src1, imm:$src2)>;
1400def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
1401          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1402def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
1403          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1404}
1405
1406//===----------------------------------------------------------------------===//
1407// Some peepholes
1408//===----------------------------------------------------------------------===//
1409
1410// Odd encoding trick: -128 fits into an 8-bit immediate field while
1411// +128 doesn't, so in this special case use a sub instead of an add.
1412def : Pat<(add GR16:$src1, 128),
1413          (SUB16ri8 GR16:$src1, -128)>;
1414def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1415          (SUB16mi8 addr:$dst, -128)>;
1416
1417def : Pat<(add GR32:$src1, 128),
1418          (SUB32ri8 GR32:$src1, -128)>;
1419def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1420          (SUB32mi8 addr:$dst, -128)>;
1421
1422def : Pat<(add GR64:$src1, 128),
1423          (SUB64ri8 GR64:$src1, -128)>;
1424def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1425          (SUB64mi8 addr:$dst, -128)>;
1426
1427// The same trick applies for 32-bit immediate fields in 64-bit
1428// instructions.
1429def : Pat<(add GR64:$src1, 0x0000000080000000),
1430          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1431def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1432          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1433
1434// To avoid needing to materialize an immediate in a register, use a 32-bit and
1435// with implicit zero-extension instead of a 64-bit and if the immediate has at
1436// least 32 bits of leading zeros. If in addition the last 32 bits can be
1437// represented with a sign extension of a 8 bit constant, use that.
1438// This can also reduce instruction size by eliminating the need for the REX
1439// prefix.
1440
1441// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1442let AddedComplexity = 1 in {
1443def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1444          (SUBREG_TO_REG
1445            (i64 0),
1446            (AND32ri8
1447              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1448              (i32 (GetLo8XForm imm:$imm))),
1449            sub_32bit)>;
1450
1451def : Pat<(and GR64:$src, i64immZExt32:$imm),
1452          (SUBREG_TO_REG
1453            (i64 0),
1454            (AND32ri
1455              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1456              (i32 (GetLo32XForm imm:$imm))),
1457            sub_32bit)>;
1458} // AddedComplexity = 1
1459
1460
1461// AddedComplexity is needed due to the increased complexity on the
1462// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1463// the MOVZX patterns keeps thems together in DAGIsel tables.
1464let AddedComplexity = 1 in {
1465// r & (2^16-1) ==> movz
1466def : Pat<(and GR32:$src1, 0xffff),
1467          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1468// r & (2^8-1) ==> movz
1469def : Pat<(and GR32:$src1, 0xff),
1470          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
1471// r & (2^8-1) ==> movz
1472def : Pat<(and GR16:$src1, 0xff),
1473           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
1474             sub_16bit)>;
1475
1476// r & (2^32-1) ==> movz
1477def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1478          (SUBREG_TO_REG (i64 0),
1479                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1480                         sub_32bit)>;
1481// r & (2^16-1) ==> movz
1482def : Pat<(and GR64:$src, 0xffff),
1483          (SUBREG_TO_REG (i64 0),
1484                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1485                      sub_32bit)>;
1486// r & (2^8-1) ==> movz
1487def : Pat<(and GR64:$src, 0xff),
1488          (SUBREG_TO_REG (i64 0),
1489                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1490                         sub_32bit)>;
1491} // AddedComplexity = 1
1492
1493
1494// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
1495
1496def BTRXForm : SDNodeXForm<imm, [{
1497  // Transformation function: Find the lowest 0.
1498  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
1499}]>;
1500
1501def BTCBTSXForm : SDNodeXForm<imm, [{
1502  // Transformation function: Find the lowest 1.
1503  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
1504}]>;
1505
1506def BTRMask64 : ImmLeaf<i64, [{
1507  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
1508}]>;
1509
1510def BTCBTSMask64 : ImmLeaf<i64, [{
1511  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
1512}]>;
1513
1514// For now only do this for optsize.
1515let AddedComplexity = 1, Predicates=[OptForSize] in {
1516  def : Pat<(and GR64:$src1, BTRMask64:$mask),
1517            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
1518  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
1519            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1520  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
1521            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1522}
1523
1524
1525// sext_inreg patterns
1526def : Pat<(sext_inreg GR32:$src, i16),
1527          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1528def : Pat<(sext_inreg GR32:$src, i8),
1529          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
1530
1531def : Pat<(sext_inreg GR16:$src, i8),
1532           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
1533             sub_16bit)>;
1534
1535def : Pat<(sext_inreg GR64:$src, i32),
1536          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1537def : Pat<(sext_inreg GR64:$src, i16),
1538          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1539def : Pat<(sext_inreg GR64:$src, i8),
1540          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1541
1542// sext, sext_load, zext, zext_load
1543def: Pat<(i16 (sext GR8:$src)),
1544          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1545def: Pat<(sextloadi16i8 addr:$src),
1546          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1547def: Pat<(i16 (zext GR8:$src)),
1548          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1549def: Pat<(zextloadi16i8 addr:$src),
1550          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1551
1552// trunc patterns
1553def : Pat<(i16 (trunc GR32:$src)),
1554          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1555def : Pat<(i8 (trunc GR32:$src)),
1556          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1557                          sub_8bit)>,
1558      Requires<[Not64BitMode]>;
1559def : Pat<(i8 (trunc GR16:$src)),
1560          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1561                          sub_8bit)>,
1562      Requires<[Not64BitMode]>;
1563def : Pat<(i32 (trunc GR64:$src)),
1564          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1565def : Pat<(i16 (trunc GR64:$src)),
1566          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1567def : Pat<(i8 (trunc GR64:$src)),
1568          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1569def : Pat<(i8 (trunc GR32:$src)),
1570          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1571      Requires<[In64BitMode]>;
1572def : Pat<(i8 (trunc GR16:$src)),
1573          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1574      Requires<[In64BitMode]>;
1575
1576def immff00_ffff  : ImmLeaf<i32, [{
1577  return Imm >= 0xff00 && Imm <= 0xffff;
1578}]>;
1579
1580// h-register tricks
1581def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1582          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1583      Requires<[Not64BitMode]>;
1584def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1585          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1586      Requires<[Not64BitMode]>;
1587def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1588          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
1589      Requires<[Not64BitMode]>;
1590def : Pat<(srl GR16:$src, (i8 8)),
1591          (EXTRACT_SUBREG
1592            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1593            sub_16bit)>;
1594def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1595          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1596def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1597          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1598def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1599          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1600def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
1601          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1602
1603// h-register tricks.
1604// For now, be conservative on x86-64 and use an h-register extract only if the
1605// value is immediately zero-extended or stored, which are somewhat common
1606// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1607// from being allocated in the same instruction as the h register, as there's
1608// currently no way to describe this requirement to the register allocator.
1609
1610// h-register extract and zero-extend.
1611def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1612          (SUBREG_TO_REG
1613            (i64 0),
1614            (MOVZX32rr8_NOREX
1615              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
1616            sub_32bit)>;
1617def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1618          (SUBREG_TO_REG
1619            (i64 0),
1620            (MOVZX32rr8_NOREX
1621              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1622            sub_32bit)>;
1623def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1624          (SUBREG_TO_REG
1625            (i64 0),
1626            (MOVZX32rr8_NOREX
1627              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1628            sub_32bit)>;
1629
1630// h-register extract and store.
1631def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1632          (MOV8mr_NOREX
1633            addr:$dst,
1634            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
1635def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1636          (MOV8mr_NOREX
1637            addr:$dst,
1638            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
1639      Requires<[In64BitMode]>;
1640def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1641          (MOV8mr_NOREX
1642            addr:$dst,
1643            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
1644      Requires<[In64BitMode]>;
1645
1646
1647// (shl x, 1) ==> (add x, x)
1648// Note that if x is undef (immediate or otherwise), we could theoretically
1649// end up with the two uses of x getting different values, producing a result
1650// where the least significant bit is not 0. However, the probability of this
1651// happening is considered low enough that this is officially not a
1652// "real problem".
1653def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1654def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1655def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1656def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1657
1658// Helper imms to check if a mask doesn't change significant shift/rotate bits.
1659def immShift8 : ImmLeaf<i8, [{
1660  return countTrailingOnes<uint64_t>(Imm) >= 3;
1661}]>;
1662def immShift16 : ImmLeaf<i8, [{
1663  return countTrailingOnes<uint64_t>(Imm) >= 4;
1664}]>;
1665def immShift32 : ImmLeaf<i8, [{
1666  return countTrailingOnes<uint64_t>(Imm) >= 5;
1667}]>;
1668def immShift64 : ImmLeaf<i8, [{
1669  return countTrailingOnes<uint64_t>(Imm) >= 6;
1670}]>;
1671
1672// Shift amount is implicitly masked.
1673multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1674  // (shift x (and y, 31)) ==> (shift x, y)
1675  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1676            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1677  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1678            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1679  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1680            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1681  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1682            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1683  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1684            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1685  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1686            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1687
1688  // (shift x (and y, 63)) ==> (shift x, y)
1689  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1690            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1691  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
1692            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1693}
1694
1695defm : MaskedShiftAmountPats<shl, "SHL">;
1696defm : MaskedShiftAmountPats<srl, "SHR">;
1697defm : MaskedShiftAmountPats<sra, "SAR">;
1698
1699// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
1700// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
1701// because over-rotating produces the same result. This is noted in the Intel
1702// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
1703// amount could affect EFLAGS results, but that does not matter because we are
1704// not tracking flags for these nodes.
1705multiclass MaskedRotateAmountPats<SDNode frag, string name> {
1706  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
1707  def : Pat<(frag GR8:$src1, (and CL, immShift8)),
1708  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1709  def : Pat<(frag GR16:$src1, (and CL, immShift16)),
1710  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1711  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1712  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1713  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst),
1714  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1715  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst),
1716  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1717  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1718  (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1719
1720  // (rot x (and y, 63)) ==> (rot x, y)
1721  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1722  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1723  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
1724  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1725}
1726
1727
1728defm : MaskedRotateAmountPats<rotl, "ROL">;
1729defm : MaskedRotateAmountPats<rotr, "ROR">;
1730
1731// Double shift amount is implicitly masked.
1732multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
1733  // (shift x (and y, 31)) ==> (shift x, y)
1734  def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
1735            (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
1736  def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
1737            (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
1738
1739  // (shift x (and y, 63)) ==> (shift x, y)
1740  def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
1741            (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
1742}
1743
1744defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
1745defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
1746
1747let Predicates = [HasBMI2] in {
1748  let AddedComplexity = 1 in {
1749    def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)),
1750              (SARX32rr GR32:$src1,
1751                        (INSERT_SUBREG
1752                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1753    def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)),
1754              (SARX64rr GR64:$src1,
1755                        (INSERT_SUBREG
1756                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1757
1758    def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)),
1759              (SHRX32rr GR32:$src1,
1760                        (INSERT_SUBREG
1761                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1762    def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)),
1763              (SHRX64rr GR64:$src1,
1764                        (INSERT_SUBREG
1765                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1766
1767    def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)),
1768              (SHLX32rr GR32:$src1,
1769                        (INSERT_SUBREG
1770                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1771    def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)),
1772              (SHLX64rr GR64:$src1,
1773                        (INSERT_SUBREG
1774                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1775  }
1776
1777  def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
1778            (SARX32rm addr:$src1,
1779                      (INSERT_SUBREG
1780                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1781  def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
1782            (SARX64rm addr:$src1,
1783                      (INSERT_SUBREG
1784                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1785
1786  def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
1787            (SHRX32rm addr:$src1,
1788                      (INSERT_SUBREG
1789                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1790  def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
1791            (SHRX64rm addr:$src1,
1792                      (INSERT_SUBREG
1793                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1794
1795  def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
1796            (SHLX32rm addr:$src1,
1797                      (INSERT_SUBREG
1798                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1799  def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
1800            (SHLX64rm addr:$src1,
1801                      (INSERT_SUBREG
1802                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1803}
1804
1805// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
1806multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
1807                            Instruction BTS, Instruction BTC,
1808                            ImmLeaf ImmShift> {
1809  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
1810            (BTR RC:$src1,
1811                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1812  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
1813            (BTS RC:$src1,
1814                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1815  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
1816            (BTC RC:$src1,
1817                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1818
1819  // Similar to above, but removing unneeded masking of the shift amount.
1820  def : Pat<(and RC:$src1, (rotl -2, (and GR8:$src2, ImmShift))),
1821            (BTR RC:$src1,
1822                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1823  def : Pat<(or RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
1824            (BTS RC:$src1,
1825                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1826  def : Pat<(xor RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
1827            (BTC RC:$src1,
1828                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1829}
1830
1831defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, immShift16>;
1832defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, immShift32>;
1833defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, immShift64>;
1834
1835
1836// (anyext (setcc_carry)) -> (setcc_carry)
1837def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1838          (SETB_C16r)>;
1839def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1840          (SETB_C32r)>;
1841def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1842          (SETB_C32r)>;
1843
1844//===----------------------------------------------------------------------===//
1845// EFLAGS-defining Patterns
1846//===----------------------------------------------------------------------===//
1847
1848// add reg, reg
1849def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1850def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1851def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1852def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
1853
1854// add reg, mem
1855def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1856          (ADD8rm GR8:$src1, addr:$src2)>;
1857def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1858          (ADD16rm GR16:$src1, addr:$src2)>;
1859def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1860          (ADD32rm GR32:$src1, addr:$src2)>;
1861def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1862          (ADD64rm GR64:$src1, addr:$src2)>;
1863
1864// add reg, imm
1865def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1866def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1867def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1868def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1869          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1870def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1871          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1872def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1873          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1874def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1875          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1876
1877// sub reg, reg
1878def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1879def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1880def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1881def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
1882
1883// sub reg, mem
1884def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1885          (SUB8rm GR8:$src1, addr:$src2)>;
1886def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1887          (SUB16rm GR16:$src1, addr:$src2)>;
1888def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1889          (SUB32rm GR32:$src1, addr:$src2)>;
1890def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1891          (SUB64rm GR64:$src1, addr:$src2)>;
1892
1893// sub reg, imm
1894def : Pat<(sub GR8:$src1, imm:$src2),
1895          (SUB8ri GR8:$src1, imm:$src2)>;
1896def : Pat<(sub GR16:$src1, imm:$src2),
1897          (SUB16ri GR16:$src1, imm:$src2)>;
1898def : Pat<(sub GR32:$src1, imm:$src2),
1899          (SUB32ri GR32:$src1, imm:$src2)>;
1900def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1901          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1902def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1903          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1904def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1905          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1906def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1907          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1908
1909// sub 0, reg
1910def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1911def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1912def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1913def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1914
1915// sub reg, relocImm
1916def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
1917          (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
1918def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
1919          (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
1920
1921// mul reg, reg
1922def : Pat<(mul GR16:$src1, GR16:$src2),
1923          (IMUL16rr GR16:$src1, GR16:$src2)>;
1924def : Pat<(mul GR32:$src1, GR32:$src2),
1925          (IMUL32rr GR32:$src1, GR32:$src2)>;
1926def : Pat<(mul GR64:$src1, GR64:$src2),
1927          (IMUL64rr GR64:$src1, GR64:$src2)>;
1928
1929// mul reg, mem
1930def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1931          (IMUL16rm GR16:$src1, addr:$src2)>;
1932def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1933          (IMUL32rm GR32:$src1, addr:$src2)>;
1934def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1935          (IMUL64rm GR64:$src1, addr:$src2)>;
1936
1937// mul reg, imm
1938def : Pat<(mul GR16:$src1, imm:$src2),
1939          (IMUL16rri GR16:$src1, imm:$src2)>;
1940def : Pat<(mul GR32:$src1, imm:$src2),
1941          (IMUL32rri GR32:$src1, imm:$src2)>;
1942def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1943          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1944def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1945          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1946def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1947          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1948def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1949          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1950
1951// reg = mul mem, imm
1952def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1953          (IMUL16rmi addr:$src1, imm:$src2)>;
1954def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1955          (IMUL32rmi addr:$src1, imm:$src2)>;
1956def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1957          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1958def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1959          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1960def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1961          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1962def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1963          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1964
1965// Increment/Decrement reg.
1966// Do not make INC/DEC if it is slow
1967let Predicates = [UseIncDec] in {
1968  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
1969  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
1970  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
1971  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
1972  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
1973  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1974  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1975  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1976}
1977
1978// or reg/reg.
1979def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1980def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1981def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1982def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1983
1984// or reg/mem
1985def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1986          (OR8rm GR8:$src1, addr:$src2)>;
1987def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1988          (OR16rm GR16:$src1, addr:$src2)>;
1989def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1990          (OR32rm GR32:$src1, addr:$src2)>;
1991def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1992          (OR64rm GR64:$src1, addr:$src2)>;
1993
1994// or reg/imm
1995def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1996def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1997def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1998def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1999          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2000def : Pat<(or GR32:$src1, i32immSExt8:$src2),
2001          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2002def : Pat<(or GR64:$src1, i64immSExt8:$src2),
2003          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2004def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2005          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2006
2007// xor reg/reg
2008def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
2009def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
2010def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
2011def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
2012
2013// xor reg/mem
2014def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
2015          (XOR8rm GR8:$src1, addr:$src2)>;
2016def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
2017          (XOR16rm GR16:$src1, addr:$src2)>;
2018def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
2019          (XOR32rm GR32:$src1, addr:$src2)>;
2020def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2021          (XOR64rm GR64:$src1, addr:$src2)>;
2022
2023// xor reg/imm
2024def : Pat<(xor GR8:$src1, imm:$src2),
2025          (XOR8ri GR8:$src1, imm:$src2)>;
2026def : Pat<(xor GR16:$src1, imm:$src2),
2027          (XOR16ri GR16:$src1, imm:$src2)>;
2028def : Pat<(xor GR32:$src1, imm:$src2),
2029          (XOR32ri GR32:$src1, imm:$src2)>;
2030def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
2031          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2032def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
2033          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2034def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
2035          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2036def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2037          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2038
2039// and reg/reg
2040def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
2041def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
2042def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
2043def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
2044
2045// and reg/mem
2046def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
2047          (AND8rm GR8:$src1, addr:$src2)>;
2048def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
2049          (AND16rm GR16:$src1, addr:$src2)>;
2050def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
2051          (AND32rm GR32:$src1, addr:$src2)>;
2052def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2053          (AND64rm GR64:$src1, addr:$src2)>;
2054
2055// and reg/imm
2056def : Pat<(and GR8:$src1, imm:$src2),
2057          (AND8ri GR8:$src1, imm:$src2)>;
2058def : Pat<(and GR16:$src1, imm:$src2),
2059          (AND16ri GR16:$src1, imm:$src2)>;
2060def : Pat<(and GR32:$src1, imm:$src2),
2061          (AND32ri GR32:$src1, imm:$src2)>;
2062def : Pat<(and GR16:$src1, i16immSExt8:$src2),
2063          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
2064def : Pat<(and GR32:$src1, i32immSExt8:$src2),
2065          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
2066def : Pat<(and GR64:$src1, i64immSExt8:$src2),
2067          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
2068def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2069          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
2070
2071// Bit scan instruction patterns to match explicit zero-undef behavior.
2072def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
2073def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
2074def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
2075def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
2076def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
2077def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
2078
2079// When HasMOVBE is enabled it is possible to get a non-legalized
2080// register-register 16 bit bswap. This maps it to a ROL instruction.
2081let Predicates = [HasMOVBE] in {
2082 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
2083}
2084
2085// These patterns are selected by some custom code in X86ISelDAGToDAG.cpp that
2086// custom combines and+srl into BEXTR. We use these patterns to avoid a bunch
2087// of manual code for folding loads.
2088let Predicates = [HasBMI, NoTBM] in {
2089  def : Pat<(X86bextr GR32:$src1, (i32 imm:$src2)),
2090            (BEXTR32rr GR32:$src1, (MOV32ri imm:$src2))>;
2091  def : Pat<(X86bextr (loadi32 addr:$src1), (i32 imm:$src2)),
2092            (BEXTR32rm addr:$src1, (MOV32ri imm:$src2))>;
2093  def : Pat<(X86bextr GR64:$src1, mov64imm32:$src2),
2094            (BEXTR64rr GR64:$src1,
2095                       (SUBREG_TO_REG (i64 0),
2096                                      (MOV32ri64 mov64imm32:$src2),
2097                                      sub_32bit))>;
2098  def : Pat<(X86bextr (loadi64 addr:$src1), mov64imm32:$src2),
2099            (BEXTR64rm addr:$src1,
2100                       (SUBREG_TO_REG (i64 0),
2101                                      (MOV32ri64 mov64imm32:$src2),
2102                                      sub_32bit))>;
2103} // HasBMI, NoTBM
2104