• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/CFG.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TargetTransformInfo.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
83 
84 #define DEBUG_TYPE "tailcallelim"
85 
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped,   "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89 
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
canTRE(Function & F)92 static bool canTRE(Function &F) {
93   // Because of PR962, we don't TRE dynamic allocas.
94   return llvm::all_of(instructions(F), [](Instruction &I) {
95     auto *AI = dyn_cast<AllocaInst>(&I);
96     return !AI || AI->isStaticAlloca();
97   });
98 }
99 
100 namespace {
101 struct AllocaDerivedValueTracker {
102   // Start at a root value and walk its use-def chain to mark calls that use the
103   // value or a derived value in AllocaUsers, and places where it may escape in
104   // EscapePoints.
walk__anon661e55750211::AllocaDerivedValueTracker105   void walk(Value *Root) {
106     SmallVector<Use *, 32> Worklist;
107     SmallPtrSet<Use *, 32> Visited;
108 
109     auto AddUsesToWorklist = [&](Value *V) {
110       for (auto &U : V->uses()) {
111         if (!Visited.insert(&U).second)
112           continue;
113         Worklist.push_back(&U);
114       }
115     };
116 
117     AddUsesToWorklist(Root);
118 
119     while (!Worklist.empty()) {
120       Use *U = Worklist.pop_back_val();
121       Instruction *I = cast<Instruction>(U->getUser());
122 
123       switch (I->getOpcode()) {
124       case Instruction::Call:
125       case Instruction::Invoke: {
126         CallSite CS(I);
127         bool IsNocapture =
128             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
129         callUsesLocalStack(CS, IsNocapture);
130         if (IsNocapture) {
131           // If the alloca-derived argument is passed in as nocapture, then it
132           // can't propagate to the call's return. That would be capturing.
133           continue;
134         }
135         break;
136       }
137       case Instruction::Load: {
138         // The result of a load is not alloca-derived (unless an alloca has
139         // otherwise escaped, but this is a local analysis).
140         continue;
141       }
142       case Instruction::Store: {
143         if (U->getOperandNo() == 0)
144           EscapePoints.insert(I);
145         continue;  // Stores have no users to analyze.
146       }
147       case Instruction::BitCast:
148       case Instruction::GetElementPtr:
149       case Instruction::PHI:
150       case Instruction::Select:
151       case Instruction::AddrSpaceCast:
152         break;
153       default:
154         EscapePoints.insert(I);
155         break;
156       }
157 
158       AddUsesToWorklist(I);
159     }
160   }
161 
callUsesLocalStack__anon661e55750211::AllocaDerivedValueTracker162   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
163     // Add it to the list of alloca users.
164     AllocaUsers.insert(CS.getInstruction());
165 
166     // If it's nocapture then it can't capture this alloca.
167     if (IsNocapture)
168       return;
169 
170     // If it can write to memory, it can leak the alloca value.
171     if (!CS.onlyReadsMemory())
172       EscapePoints.insert(CS.getInstruction());
173   }
174 
175   SmallPtrSet<Instruction *, 32> AllocaUsers;
176   SmallPtrSet<Instruction *, 32> EscapePoints;
177 };
178 }
179 
markTails(Function & F,bool & AllCallsAreTailCalls,OptimizationRemarkEmitter * ORE)180 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
181                       OptimizationRemarkEmitter *ORE) {
182   if (F.callsFunctionThatReturnsTwice())
183     return false;
184   AllCallsAreTailCalls = true;
185 
186   // The local stack holds all alloca instructions and all byval arguments.
187   AllocaDerivedValueTracker Tracker;
188   for (Argument &Arg : F.args()) {
189     if (Arg.hasByValAttr())
190       Tracker.walk(&Arg);
191   }
192   for (auto &BB : F) {
193     for (auto &I : BB)
194       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
195         Tracker.walk(AI);
196   }
197 
198   bool Modified = false;
199 
200   // Track whether a block is reachable after an alloca has escaped. Blocks that
201   // contain the escaping instruction will be marked as being visited without an
202   // escaped alloca, since that is how the block began.
203   enum VisitType {
204     UNVISITED,
205     UNESCAPED,
206     ESCAPED
207   };
208   DenseMap<BasicBlock *, VisitType> Visited;
209 
210   // We propagate the fact that an alloca has escaped from block to successor.
211   // Visit the blocks that are propagating the escapedness first. To do this, we
212   // maintain two worklists.
213   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
214 
215   // We may enter a block and visit it thinking that no alloca has escaped yet,
216   // then see an escape point and go back around a loop edge and come back to
217   // the same block twice. Because of this, we defer setting tail on calls when
218   // we first encounter them in a block. Every entry in this list does not
219   // statically use an alloca via use-def chain analysis, but may find an alloca
220   // through other means if the block turns out to be reachable after an escape
221   // point.
222   SmallVector<CallInst *, 32> DeferredTails;
223 
224   BasicBlock *BB = &F.getEntryBlock();
225   VisitType Escaped = UNESCAPED;
226   do {
227     for (auto &I : *BB) {
228       if (Tracker.EscapePoints.count(&I))
229         Escaped = ESCAPED;
230 
231       CallInst *CI = dyn_cast<CallInst>(&I);
232       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
233         continue;
234 
235       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
236 
237       if (!IsNoTail && CI->doesNotAccessMemory()) {
238         // A call to a readnone function whose arguments are all things computed
239         // outside this function can be marked tail. Even if you stored the
240         // alloca address into a global, a readnone function can't load the
241         // global anyhow.
242         //
243         // Note that this runs whether we know an alloca has escaped or not. If
244         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
245         bool SafeToTail = true;
246         for (auto &Arg : CI->arg_operands()) {
247           if (isa<Constant>(Arg.getUser()))
248             continue;
249           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
250             if (!A->hasByValAttr())
251               continue;
252           SafeToTail = false;
253           break;
254         }
255         if (SafeToTail) {
256           using namespace ore;
257           ORE->emit([&]() {
258             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
259                    << "marked as tail call candidate (readnone)";
260           });
261           CI->setTailCall();
262           Modified = true;
263           continue;
264         }
265       }
266 
267       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
268         DeferredTails.push_back(CI);
269       } else {
270         AllCallsAreTailCalls = false;
271       }
272     }
273 
274     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
275       auto &State = Visited[SuccBB];
276       if (State < Escaped) {
277         State = Escaped;
278         if (State == ESCAPED)
279           WorklistEscaped.push_back(SuccBB);
280         else
281           WorklistUnescaped.push_back(SuccBB);
282       }
283     }
284 
285     if (!WorklistEscaped.empty()) {
286       BB = WorklistEscaped.pop_back_val();
287       Escaped = ESCAPED;
288     } else {
289       BB = nullptr;
290       while (!WorklistUnescaped.empty()) {
291         auto *NextBB = WorklistUnescaped.pop_back_val();
292         if (Visited[NextBB] == UNESCAPED) {
293           BB = NextBB;
294           Escaped = UNESCAPED;
295           break;
296         }
297       }
298     }
299   } while (BB);
300 
301   for (CallInst *CI : DeferredTails) {
302     if (Visited[CI->getParent()] != ESCAPED) {
303       // If the escape point was part way through the block, calls after the
304       // escape point wouldn't have been put into DeferredTails.
305       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
306       CI->setTailCall();
307       Modified = true;
308     } else {
309       AllCallsAreTailCalls = false;
310     }
311   }
312 
313   return Modified;
314 }
315 
316 /// Return true if it is safe to move the specified
317 /// instruction from after the call to before the call, assuming that all
318 /// instructions between the call and this instruction are movable.
319 ///
canMoveAboveCall(Instruction * I,CallInst * CI,AliasAnalysis * AA)320 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
321   // FIXME: We can move load/store/call/free instructions above the call if the
322   // call does not mod/ref the memory location being processed.
323   if (I->mayHaveSideEffects())  // This also handles volatile loads.
324     return false;
325 
326   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
327     // Loads may always be moved above calls without side effects.
328     if (CI->mayHaveSideEffects()) {
329       // Non-volatile loads may be moved above a call with side effects if it
330       // does not write to memory and the load provably won't trap.
331       // Writes to memory only matter if they may alias the pointer
332       // being loaded from.
333       const DataLayout &DL = L->getModule()->getDataLayout();
334       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
335           !isSafeToLoadUnconditionally(L->getPointerOperand(),
336                                        L->getAlignment(), DL, L))
337         return false;
338     }
339   }
340 
341   // Otherwise, if this is a side-effect free instruction, check to make sure
342   // that it does not use the return value of the call.  If it doesn't use the
343   // return value of the call, it must only use things that are defined before
344   // the call, or movable instructions between the call and the instruction
345   // itself.
346   return !is_contained(I->operands(), CI);
347 }
348 
349 /// Return true if the specified value is the same when the return would exit
350 /// as it was when the initial iteration of the recursive function was executed.
351 ///
352 /// We currently handle static constants and arguments that are not modified as
353 /// part of the recursion.
isDynamicConstant(Value * V,CallInst * CI,ReturnInst * RI)354 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
355   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
356 
357   // Check to see if this is an immutable argument, if so, the value
358   // will be available to initialize the accumulator.
359   if (Argument *Arg = dyn_cast<Argument>(V)) {
360     // Figure out which argument number this is...
361     unsigned ArgNo = 0;
362     Function *F = CI->getParent()->getParent();
363     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
364       ++ArgNo;
365 
366     // If we are passing this argument into call as the corresponding
367     // argument operand, then the argument is dynamically constant.
368     // Otherwise, we cannot transform this function safely.
369     if (CI->getArgOperand(ArgNo) == Arg)
370       return true;
371   }
372 
373   // Switch cases are always constant integers. If the value is being switched
374   // on and the return is only reachable from one of its cases, it's
375   // effectively constant.
376   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
377     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
378       if (SI->getCondition() == V)
379         return SI->getDefaultDest() != RI->getParent();
380 
381   // Not a constant or immutable argument, we can't safely transform.
382   return false;
383 }
384 
385 /// Check to see if the function containing the specified tail call consistently
386 /// returns the same runtime-constant value at all exit points except for
387 /// IgnoreRI. If so, return the returned value.
getCommonReturnValue(ReturnInst * IgnoreRI,CallInst * CI)388 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
389   Function *F = CI->getParent()->getParent();
390   Value *ReturnedValue = nullptr;
391 
392   for (BasicBlock &BBI : *F) {
393     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
394     if (RI == nullptr || RI == IgnoreRI) continue;
395 
396     // We can only perform this transformation if the value returned is
397     // evaluatable at the start of the initial invocation of the function,
398     // instead of at the end of the evaluation.
399     //
400     Value *RetOp = RI->getOperand(0);
401     if (!isDynamicConstant(RetOp, CI, RI))
402       return nullptr;
403 
404     if (ReturnedValue && RetOp != ReturnedValue)
405       return nullptr;     // Cannot transform if differing values are returned.
406     ReturnedValue = RetOp;
407   }
408   return ReturnedValue;
409 }
410 
411 /// If the specified instruction can be transformed using accumulator recursion
412 /// elimination, return the constant which is the start of the accumulator
413 /// value.  Otherwise return null.
canTransformAccumulatorRecursion(Instruction * I,CallInst * CI)414 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
415   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
416   assert(I->getNumOperands() == 2 &&
417          "Associative/commutative operations should have 2 args!");
418 
419   // Exactly one operand should be the result of the call instruction.
420   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
421       (I->getOperand(0) != CI && I->getOperand(1) != CI))
422     return nullptr;
423 
424   // The only user of this instruction we allow is a single return instruction.
425   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
426     return nullptr;
427 
428   // Ok, now we have to check all of the other return instructions in this
429   // function.  If they return non-constants or differing values, then we cannot
430   // transform the function safely.
431   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
432 }
433 
firstNonDbg(BasicBlock::iterator I)434 static Instruction *firstNonDbg(BasicBlock::iterator I) {
435   while (isa<DbgInfoIntrinsic>(I))
436     ++I;
437   return &*I;
438 }
439 
findTRECandidate(Instruction * TI,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI)440 static CallInst *findTRECandidate(Instruction *TI,
441                                   bool CannotTailCallElimCallsMarkedTail,
442                                   const TargetTransformInfo *TTI) {
443   BasicBlock *BB = TI->getParent();
444   Function *F = BB->getParent();
445 
446   if (&BB->front() == TI) // Make sure there is something before the terminator.
447     return nullptr;
448 
449   // Scan backwards from the return, checking to see if there is a tail call in
450   // this block.  If so, set CI to it.
451   CallInst *CI = nullptr;
452   BasicBlock::iterator BBI(TI);
453   while (true) {
454     CI = dyn_cast<CallInst>(BBI);
455     if (CI && CI->getCalledFunction() == F)
456       break;
457 
458     if (BBI == BB->begin())
459       return nullptr;          // Didn't find a potential tail call.
460     --BBI;
461   }
462 
463   // If this call is marked as a tail call, and if there are dynamic allocas in
464   // the function, we cannot perform this optimization.
465   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
466     return nullptr;
467 
468   // As a special case, detect code like this:
469   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
470   // and disable this xform in this case, because the code generator will
471   // lower the call to fabs into inline code.
472   if (BB == &F->getEntryBlock() &&
473       firstNonDbg(BB->front().getIterator()) == CI &&
474       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
475       !TTI->isLoweredToCall(CI->getCalledFunction())) {
476     // A single-block function with just a call and a return. Check that
477     // the arguments match.
478     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
479                            E = CallSite(CI).arg_end();
480     Function::arg_iterator FI = F->arg_begin(),
481                            FE = F->arg_end();
482     for (; I != E && FI != FE; ++I, ++FI)
483       if (*I != &*FI) break;
484     if (I == E && FI == FE)
485       return nullptr;
486   }
487 
488   return CI;
489 }
490 
eliminateRecursiveTailCall(CallInst * CI,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE)491 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
492                                        BasicBlock *&OldEntry,
493                                        bool &TailCallsAreMarkedTail,
494                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
495                                        AliasAnalysis *AA,
496                                        OptimizationRemarkEmitter *ORE) {
497   // If we are introducing accumulator recursion to eliminate operations after
498   // the call instruction that are both associative and commutative, the initial
499   // value for the accumulator is placed in this variable.  If this value is set
500   // then we actually perform accumulator recursion elimination instead of
501   // simple tail recursion elimination.  If the operation is an LLVM instruction
502   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
503   // we are handling the case when the return instruction returns a constant C
504   // which is different to the constant returned by other return instructions
505   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
506   // special case of accumulator recursion, the operation being "return C".
507   Value *AccumulatorRecursionEliminationInitVal = nullptr;
508   Instruction *AccumulatorRecursionInstr = nullptr;
509 
510   // Ok, we found a potential tail call.  We can currently only transform the
511   // tail call if all of the instructions between the call and the return are
512   // movable to above the call itself, leaving the call next to the return.
513   // Check that this is the case now.
514   BasicBlock::iterator BBI(CI);
515   for (++BBI; &*BBI != Ret; ++BBI) {
516     if (canMoveAboveCall(&*BBI, CI, AA))
517       continue;
518 
519     // If we can't move the instruction above the call, it might be because it
520     // is an associative and commutative operation that could be transformed
521     // using accumulator recursion elimination.  Check to see if this is the
522     // case, and if so, remember the initial accumulator value for later.
523     if ((AccumulatorRecursionEliminationInitVal =
524              canTransformAccumulatorRecursion(&*BBI, CI))) {
525       // Yes, this is accumulator recursion.  Remember which instruction
526       // accumulates.
527       AccumulatorRecursionInstr = &*BBI;
528     } else {
529       return false;   // Otherwise, we cannot eliminate the tail recursion!
530     }
531   }
532 
533   // We can only transform call/return pairs that either ignore the return value
534   // of the call and return void, ignore the value of the call and return a
535   // constant, return the value returned by the tail call, or that are being
536   // accumulator recursion variable eliminated.
537   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
538       !isa<UndefValue>(Ret->getReturnValue()) &&
539       AccumulatorRecursionEliminationInitVal == nullptr &&
540       !getCommonReturnValue(nullptr, CI)) {
541     // One case remains that we are able to handle: the current return
542     // instruction returns a constant, and all other return instructions
543     // return a different constant.
544     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
545       return false; // Current return instruction does not return a constant.
546     // Check that all other return instructions return a common constant.  If
547     // so, record it in AccumulatorRecursionEliminationInitVal.
548     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
549     if (!AccumulatorRecursionEliminationInitVal)
550       return false;
551   }
552 
553   BasicBlock *BB = Ret->getParent();
554   Function *F = BB->getParent();
555 
556   using namespace ore;
557   ORE->emit([&]() {
558     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
559            << "transforming tail recursion into loop";
560   });
561 
562   // OK! We can transform this tail call.  If this is the first one found,
563   // create the new entry block, allowing us to branch back to the old entry.
564   if (!OldEntry) {
565     OldEntry = &F->getEntryBlock();
566     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
567     NewEntry->takeName(OldEntry);
568     OldEntry->setName("tailrecurse");
569     BranchInst::Create(OldEntry, NewEntry);
570 
571     // If this tail call is marked 'tail' and if there are any allocas in the
572     // entry block, move them up to the new entry block.
573     TailCallsAreMarkedTail = CI->isTailCall();
574     if (TailCallsAreMarkedTail)
575       // Move all fixed sized allocas from OldEntry to NewEntry.
576       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
577              NEBI = NewEntry->begin(); OEBI != E; )
578         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
579           if (isa<ConstantInt>(AI->getArraySize()))
580             AI->moveBefore(&*NEBI);
581 
582     // Now that we have created a new block, which jumps to the entry
583     // block, insert a PHI node for each argument of the function.
584     // For now, we initialize each PHI to only have the real arguments
585     // which are passed in.
586     Instruction *InsertPos = &OldEntry->front();
587     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
588          I != E; ++I) {
589       PHINode *PN = PHINode::Create(I->getType(), 2,
590                                     I->getName() + ".tr", InsertPos);
591       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
592       PN->addIncoming(&*I, NewEntry);
593       ArgumentPHIs.push_back(PN);
594     }
595   }
596 
597   // If this function has self recursive calls in the tail position where some
598   // are marked tail and some are not, only transform one flavor or another.  We
599   // have to choose whether we move allocas in the entry block to the new entry
600   // block or not, so we can't make a good choice for both.  NOTE: We could do
601   // slightly better here in the case that the function has no entry block
602   // allocas.
603   if (TailCallsAreMarkedTail && !CI->isTailCall())
604     return false;
605 
606   // Ok, now that we know we have a pseudo-entry block WITH all of the
607   // required PHI nodes, add entries into the PHI node for the actual
608   // parameters passed into the tail-recursive call.
609   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
610     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
611 
612   // If we are introducing an accumulator variable to eliminate the recursion,
613   // do so now.  Note that we _know_ that no subsequent tail recursion
614   // eliminations will happen on this function because of the way the
615   // accumulator recursion predicate is set up.
616   //
617   if (AccumulatorRecursionEliminationInitVal) {
618     Instruction *AccRecInstr = AccumulatorRecursionInstr;
619     // Start by inserting a new PHI node for the accumulator.
620     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
621     PHINode *AccPN = PHINode::Create(
622         AccumulatorRecursionEliminationInitVal->getType(),
623         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
624 
625     // Loop over all of the predecessors of the tail recursion block.  For the
626     // real entry into the function we seed the PHI with the initial value,
627     // computed earlier.  For any other existing branches to this block (due to
628     // other tail recursions eliminated) the accumulator is not modified.
629     // Because we haven't added the branch in the current block to OldEntry yet,
630     // it will not show up as a predecessor.
631     for (pred_iterator PI = PB; PI != PE; ++PI) {
632       BasicBlock *P = *PI;
633       if (P == &F->getEntryBlock())
634         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
635       else
636         AccPN->addIncoming(AccPN, P);
637     }
638 
639     if (AccRecInstr) {
640       // Add an incoming argument for the current block, which is computed by
641       // our associative and commutative accumulator instruction.
642       AccPN->addIncoming(AccRecInstr, BB);
643 
644       // Next, rewrite the accumulator recursion instruction so that it does not
645       // use the result of the call anymore, instead, use the PHI node we just
646       // inserted.
647       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
648     } else {
649       // Add an incoming argument for the current block, which is just the
650       // constant returned by the current return instruction.
651       AccPN->addIncoming(Ret->getReturnValue(), BB);
652     }
653 
654     // Finally, rewrite any return instructions in the program to return the PHI
655     // node instead of the "initval" that they do currently.  This loop will
656     // actually rewrite the return value we are destroying, but that's ok.
657     for (BasicBlock &BBI : *F)
658       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
659         RI->setOperand(0, AccPN);
660     ++NumAccumAdded;
661   }
662 
663   // Now that all of the PHI nodes are in place, remove the call and
664   // ret instructions, replacing them with an unconditional branch.
665   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
666   NewBI->setDebugLoc(CI->getDebugLoc());
667 
668   BB->getInstList().erase(Ret);  // Remove return.
669   BB->getInstList().erase(CI);   // Remove call.
670   ++NumEliminated;
671   return true;
672 }
673 
foldReturnAndProcessPred(BasicBlock * BB,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE)674 static bool foldReturnAndProcessPred(
675     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
676     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
677     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
678     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE) {
679   bool Change = false;
680 
681   // Make sure this block is a trivial return block.
682   assert(BB->getFirstNonPHIOrDbg() == Ret &&
683          "Trying to fold non-trivial return block");
684 
685   // If the return block contains nothing but the return and PHI's,
686   // there might be an opportunity to duplicate the return in its
687   // predecessors and perform TRE there. Look for predecessors that end
688   // in unconditional branch and recursive call(s).
689   SmallVector<BranchInst*, 8> UncondBranchPreds;
690   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
691     BasicBlock *Pred = *PI;
692     TerminatorInst *PTI = Pred->getTerminator();
693     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
694       if (BI->isUnconditional())
695         UncondBranchPreds.push_back(BI);
696   }
697 
698   while (!UncondBranchPreds.empty()) {
699     BranchInst *BI = UncondBranchPreds.pop_back_val();
700     BasicBlock *Pred = BI->getParent();
701     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
702       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
703                         << "INTO UNCOND BRANCH PRED: " << *Pred);
704       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
705 
706       // Cleanup: if all predecessors of BB have been eliminated by
707       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
708       // because the ret instruction in there is still using a value which
709       // eliminateRecursiveTailCall will attempt to remove.
710       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
711         BB->eraseFromParent();
712 
713       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
714                                  ArgumentPHIs, AA, ORE);
715       ++NumRetDuped;
716       Change = true;
717     }
718   }
719 
720   return Change;
721 }
722 
processReturningBlock(ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE)723 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
724                                   bool &TailCallsAreMarkedTail,
725                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
726                                   bool CannotTailCallElimCallsMarkedTail,
727                                   const TargetTransformInfo *TTI,
728                                   AliasAnalysis *AA,
729                                   OptimizationRemarkEmitter *ORE) {
730   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
731   if (!CI)
732     return false;
733 
734   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
735                                     ArgumentPHIs, AA, ORE);
736 }
737 
eliminateTailRecursion(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE)738 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
739                                    AliasAnalysis *AA,
740                                    OptimizationRemarkEmitter *ORE) {
741   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
742     return false;
743 
744   bool MadeChange = false;
745   bool AllCallsAreTailCalls = false;
746   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
747   if (!AllCallsAreTailCalls)
748     return MadeChange;
749 
750   // If this function is a varargs function, we won't be able to PHI the args
751   // right, so don't even try to convert it...
752   if (F.getFunctionType()->isVarArg())
753     return false;
754 
755   BasicBlock *OldEntry = nullptr;
756   bool TailCallsAreMarkedTail = false;
757   SmallVector<PHINode*, 8> ArgumentPHIs;
758 
759   // If false, we cannot perform TRE on tail calls marked with the 'tail'
760   // attribute, because doing so would cause the stack size to increase (real
761   // TRE would deallocate variable sized allocas, TRE doesn't).
762   bool CanTRETailMarkedCall = canTRE(F);
763 
764   // Change any tail recursive calls to loops.
765   //
766   // FIXME: The code generator produces really bad code when an 'escaping
767   // alloca' is changed from being a static alloca to being a dynamic alloca.
768   // Until this is resolved, disable this transformation if that would ever
769   // happen.  This bug is PR962.
770   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
771     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
772     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
773       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
774                                           ArgumentPHIs, !CanTRETailMarkedCall,
775                                           TTI, AA, ORE);
776       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
777         Change = foldReturnAndProcessPred(BB, Ret, OldEntry,
778                                           TailCallsAreMarkedTail, ArgumentPHIs,
779                                           !CanTRETailMarkedCall, TTI, AA, ORE);
780       MadeChange |= Change;
781     }
782   }
783 
784   // If we eliminated any tail recursions, it's possible that we inserted some
785   // silly PHI nodes which just merge an initial value (the incoming operand)
786   // with themselves.  Check to see if we did and clean up our mess if so.  This
787   // occurs when a function passes an argument straight through to its tail
788   // call.
789   for (PHINode *PN : ArgumentPHIs) {
790     // If the PHI Node is a dynamic constant, replace it with the value it is.
791     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
792       PN->replaceAllUsesWith(PNV);
793       PN->eraseFromParent();
794     }
795   }
796 
797   return MadeChange;
798 }
799 
800 namespace {
801 struct TailCallElim : public FunctionPass {
802   static char ID; // Pass identification, replacement for typeid
TailCallElim__anon661e55750611::TailCallElim803   TailCallElim() : FunctionPass(ID) {
804     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
805   }
806 
getAnalysisUsage__anon661e55750611::TailCallElim807   void getAnalysisUsage(AnalysisUsage &AU) const override {
808     AU.addRequired<TargetTransformInfoWrapperPass>();
809     AU.addRequired<AAResultsWrapperPass>();
810     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
811     AU.addPreserved<GlobalsAAWrapperPass>();
812   }
813 
runOnFunction__anon661e55750611::TailCallElim814   bool runOnFunction(Function &F) override {
815     if (skipFunction(F))
816       return false;
817 
818     return eliminateTailRecursion(
819         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
820         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
821         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
822   }
823 };
824 }
825 
826 char TailCallElim::ID = 0;
827 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
828                       false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)829 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
830 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
831 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
832                     false, false)
833 
834 // Public interface to the TailCallElimination pass
835 FunctionPass *llvm::createTailCallEliminationPass() {
836   return new TailCallElim();
837 }
838 
run(Function & F,FunctionAnalysisManager & AM)839 PreservedAnalyses TailCallElimPass::run(Function &F,
840                                         FunctionAnalysisManager &AM) {
841 
842   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
843   AliasAnalysis &AA = AM.getResult<AAManager>(F);
844   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
845 
846   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE);
847 
848   if (!Changed)
849     return PreservedAnalyses::all();
850   PreservedAnalyses PA;
851   PA.preserve<GlobalsAA>();
852   return PA;
853 }
854