1; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA 2; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA 3; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV 4 5target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" 6 7; For this loop: 8; unsigned index = 0; 9; for (int i = 0; i < n; i++) { 10; A[2 * index] = A[2 * index] + B[i]; 11; index++; 12; } 13; 14; SCEV is unable to prove that A[2 * i] does not overflow. 15; 16; Analyzing the IR does not help us because the GEPs are not 17; affine AddRecExprs. However, we can turn them into AddRecExprs 18; using SCEV Predicates. 19; 20; Once we have an affine expression we need to add an additional NUSW 21; to check that the pointers don't wrap since the GEPs are not 22; inbound. 23 24; LAA-LABEL: f1 25; LAA: Memory dependences are safe{{$}} 26; LAA: SCEV assumptions: 27; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw> 28; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> 29 30; The expression for %mul_ext as analyzed by SCEV is 31; (zext i32 {0,+,2}<%for.body> to i64) 32; We have added the nusw flag to turn this expression into the SCEV expression: 33; i64 {0,+,2}<%for.body> 34 35; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: 36; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a) 37; LAA-NEXT: --> {%a,+,4}<%for.body> 38 39 40; LV-LABEL: f1 41; LV-LABEL: for.body.lver.check 42 43; LV: [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32 44; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]]) 45; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 46; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 47; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] 48; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] 49; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0 50; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0 51; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] 52; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 53; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] 54; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] 55 56; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] 57 58; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) 59; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 60; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 61; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] 62; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] 63; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] 64; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] 65; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] 66; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] 67 68; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] 69; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph 70define void @f1(i16* noalias %a, 71 i16* noalias %b, i64 %N) { 72entry: 73 br label %for.body 74 75for.body: ; preds = %for.body, %entry 76 %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] 77 %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] 78 79 %mul = mul i32 %ind1, 2 80 %mul_ext = zext i32 %mul to i64 81 82 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext 83 %loadA = load i16, i16* %arrayidxA, align 2 84 85 %arrayidxB = getelementptr i16, i16* %b, i64 %ind 86 %loadB = load i16, i16* %arrayidxB, align 2 87 88 %add = mul i16 %loadA, %loadB 89 90 store i16 %add, i16* %arrayidxA, align 2 91 92 %inc = add nuw nsw i64 %ind, 1 93 %inc1 = add i32 %ind1, 1 94 95 %exitcond = icmp eq i64 %inc, %N 96 br i1 %exitcond, label %for.end, label %for.body 97 98for.end: ; preds = %for.body 99 ret void 100} 101 102; For this loop: 103; unsigned index = n; 104; for (int i = 0; i < n; i++) { 105; A[2 * index] = A[2 * index] + B[i]; 106; index--; 107; } 108; 109; the SCEV expression for 2 * index is not an AddRecExpr 110; (and implictly not affine). However, we are able to make assumptions 111; that will turn the expression into an affine one and continue the 112; analysis. 113; 114; Once we have an affine expression we need to add an additional NUSW 115; to check that the pointers don't wrap since the GEPs are not 116; inbounds. 117; 118; This loop has a negative stride for A, and the nusw flag is required in 119; order to properly extend the increment from i32 -4 to i64 -4. 120 121; LAA-LABEL: f2 122; LAA: Memory dependences are safe{{$}} 123; LAA: SCEV assumptions: 124; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw> 125; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> 126 127; The expression for %mul_ext as analyzed by SCEV is 128; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) 129; We have added the nusw flag to turn this expression into the following SCEV: 130; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> 131 132; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: 133; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a) 134; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> 135 136; LV-LABEL: f2 137; LV-LABEL: for.body.lver.check 138 139; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) 140; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 141; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 142; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] 143; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] 144; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]] 145; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]] 146; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] 147; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 148; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] 149; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] 150 151; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] 152 153; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) 154; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 155; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 156; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] 157; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] 158; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] 159; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] 160; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] 161; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] 162 163; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] 164; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph 165define void @f2(i16* noalias %a, 166 i16* noalias %b, i64 %N) { 167entry: 168 %TruncN = trunc i64 %N to i32 169 br label %for.body 170 171for.body: ; preds = %for.body, %entry 172 %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] 173 %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] 174 175 %mul = mul i32 %ind1, 2 176 %mul_ext = zext i32 %mul to i64 177 178 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext 179 %loadA = load i16, i16* %arrayidxA, align 2 180 181 %arrayidxB = getelementptr i16, i16* %b, i64 %ind 182 %loadB = load i16, i16* %arrayidxB, align 2 183 184 %add = mul i16 %loadA, %loadB 185 186 store i16 %add, i16* %arrayidxA, align 2 187 188 %inc = add nuw nsw i64 %ind, 1 189 %dec = sub i32 %ind1, 1 190 191 %exitcond = icmp eq i64 %inc, %N 192 br i1 %exitcond, label %for.end, label %for.body 193 194for.end: ; preds = %for.body 195 ret void 196} 197 198; We replicate the tests above, but this time sign extend 2 * index instead 199; of zero extending it. 200 201; LAA-LABEL: f3 202; LAA: Memory dependences are safe{{$}} 203; LAA: SCEV assumptions: 204; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw> 205; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> 206 207; The expression for %mul_ext as analyzed by SCEV is 208; i64 (sext i32 {0,+,2}<%for.body> to i64) 209; We have added the nssw flag to turn this expression into the following SCEV: 210; i64 {0,+,2}<%for.body> 211 212; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: 213; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a) 214; LAA-NEXT: --> {%a,+,4}<%for.body> 215 216; LV-LABEL: f3 217; LV-LABEL: for.body.lver.check 218 219; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) 220; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 221; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 222; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] 223; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] 224; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0 225; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0 226; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] 227; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 228; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] 229; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] 230 231; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] 232 233; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) 234; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 235; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 236; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] 237; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] 238; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] 239; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] 240; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] 241; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] 242 243; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] 244; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph 245define void @f3(i16* noalias %a, 246 i16* noalias %b, i64 %N) { 247entry: 248 br label %for.body 249 250for.body: ; preds = %for.body, %entry 251 %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] 252 %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] 253 254 %mul = mul i32 %ind1, 2 255 %mul_ext = sext i32 %mul to i64 256 257 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext 258 %loadA = load i16, i16* %arrayidxA, align 2 259 260 %arrayidxB = getelementptr i16, i16* %b, i64 %ind 261 %loadB = load i16, i16* %arrayidxB, align 2 262 263 %add = mul i16 %loadA, %loadB 264 265 store i16 %add, i16* %arrayidxA, align 2 266 267 %inc = add nuw nsw i64 %ind, 1 268 %inc1 = add i32 %ind1, 1 269 270 %exitcond = icmp eq i64 %inc, %N 271 br i1 %exitcond, label %for.end, label %for.body 272 273for.end: ; preds = %for.body 274 ret void 275} 276 277; LAA-LABEL: f4 278; LAA: Memory dependences are safe{{$}} 279; LAA: SCEV assumptions: 280; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> 281; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw> 282 283; The expression for %mul_ext as analyzed by SCEV is 284; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) 285; We have added the nssw flag to turn this expression into the following SCEV: 286; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> 287 288; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: 289; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a) 290; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> 291 292; LV-LABEL: f4 293; LV-LABEL: for.body.lver.check 294 295; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) 296; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 297; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 298; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] 299; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] 300; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] 301; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] 302; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] 303; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 304; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] 305; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] 306 307; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] 308 309; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) 310; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 311; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 312; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] 313; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] 314; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] 315; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] 316; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] 317; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] 318 319; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] 320; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph 321define void @f4(i16* noalias %a, 322 i16* noalias %b, i64 %N) { 323entry: 324 %TruncN = trunc i64 %N to i32 325 br label %for.body 326 327for.body: ; preds = %for.body, %entry 328 %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] 329 %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] 330 331 %mul = mul i32 %ind1, 2 332 %mul_ext = sext i32 %mul to i64 333 334 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext 335 %loadA = load i16, i16* %arrayidxA, align 2 336 337 %arrayidxB = getelementptr i16, i16* %b, i64 %ind 338 %loadB = load i16, i16* %arrayidxB, align 2 339 340 %add = mul i16 %loadA, %loadB 341 342 store i16 %add, i16* %arrayidxA, align 2 343 344 %inc = add nuw nsw i64 %ind, 1 345 %dec = sub i32 %ind1, 1 346 347 %exitcond = icmp eq i64 %inc, %N 348 br i1 %exitcond, label %for.end, label %for.body 349 350for.end: ; preds = %for.body 351 ret void 352} 353 354; The following function is similar to the one above, but has the GEP 355; to pointer %A inbounds. The index %mul doesn't have the nsw flag. 356; This means that the SCEV expression for %mul can wrap and we need 357; a SCEV predicate to continue analysis. 358; 359; We can still analyze this by adding the required no wrap SCEV predicates. 360 361; LAA-LABEL: f5 362; LAA: Memory dependences are safe{{$}} 363; LAA: SCEV assumptions: 364; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> 365; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw> 366 367; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul: 368; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw> 369; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> 370 371; LV-LABEL: f5 372; LV-LABEL: for.body.lver.check 373; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) 374; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 375; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 376; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] 377; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] 378; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] 379; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] 380; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] 381; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 382; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] 383; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] 384 385; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] 386 387; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) 388; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 389; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 390; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] 391; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] 392; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] 393; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] 394; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] 395; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] 396 397; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] 398; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph 399define void @f5(i16* noalias %a, 400 i16* noalias %b, i64 %N) { 401entry: 402 %TruncN = trunc i64 %N to i32 403 br label %for.body 404 405for.body: ; preds = %for.body, %entry 406 %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] 407 %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] 408 409 %mul = mul i32 %ind1, 2 410 411 %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul 412 %loadA = load i16, i16* %arrayidxA, align 2 413 414 %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind 415 %loadB = load i16, i16* %arrayidxB, align 2 416 417 %add = mul i16 %loadA, %loadB 418 419 store i16 %add, i16* %arrayidxA, align 2 420 421 %inc = add nuw nsw i64 %ind, 1 422 %dec = sub i32 %ind1, 1 423 424 %exitcond = icmp eq i64 %inc, %N 425 br i1 %exitcond, label %for.end, label %for.body 426 427for.end: ; preds = %for.body 428 ret void 429} 430