• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt < %s -instcombine -S | FileCheck %s
3
4
5define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) {
6; CHECK-LABEL: @foo(
7; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
8; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
9; CHECK-NEXT:    ret i32 [[TMP1]]
10;
11  %e = icmp slt i32 %a, %b
12  %f = sext i1 %e to i32
13  %g = and i32 %c, %f
14  %h = xor i32 %f, -1
15  %i = and i32 %d, %h
16  %j = or i32 %g, %i
17  ret i32 %j
18}
19
20define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) {
21; CHECK-LABEL: @bar(
22; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
23; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
24; CHECK-NEXT:    ret i32 [[TMP1]]
25;
26  %e = icmp slt i32 %a, %b
27  %f = sext i1 %e to i32
28  %g = and i32 %c, %f
29  %h = xor i32 %f, -1
30  %i = and i32 %d, %h
31  %j = or i32 %i, %g
32  ret i32 %j
33}
34
35define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) {
36; CHECK-LABEL: @goo(
37; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
38; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
39; CHECK-NEXT:    ret i32 [[TMP1]]
40;
41  %t0 = icmp slt i32 %a, %b
42  %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
43  %t1 = and i32 %iftmp.0.0, %c
44  %not = xor i32 %iftmp.0.0, -1
45  %t2 = and i32 %not, %d
46  %t3 = or i32 %t1, %t2
47  ret i32 %t3
48}
49
50define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) {
51; CHECK-LABEL: @poo(
52; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
53; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
54; CHECK-NEXT:    ret i32 [[T3]]
55;
56  %t0 = icmp slt i32 %a, %b
57  %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
58  %t1 = and i32 %iftmp.0.0, %c
59  %iftmp = select i1 %t0, i32 0, i32 -1
60  %t2 = and i32 %iftmp, %d
61  %t3 = or i32 %t1, %t2
62  ret i32 %t3
63}
64
65; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
66; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
67
68define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
69; CHECK-LABEL: @fold_inverted_icmp_preds(
70; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
71; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
72; CHECK-NEXT:    [[CMP2:%.*]] = icmp slt i32 [[A]], [[B]]
73; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 0, i32 [[D:%.*]]
74; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
75; CHECK-NEXT:    ret i32 [[OR]]
76;
77  %cmp1 = icmp slt i32 %a, %b
78  %sel1 = select i1 %cmp1, i32 %c, i32 0
79  %cmp2 = icmp sge i32 %a, %b
80  %sel2 = select i1 %cmp2, i32 %d, i32 0
81  %or = or i32 %sel1, %sel2
82  ret i32 %or
83}
84
85; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
86
87define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
88; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
89; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
90; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]]
91; CHECK-NEXT:    [[CMP2:%.*]] = icmp slt i32 [[A]], [[B]]
92; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
93; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
94; CHECK-NEXT:    ret i32 [[OR]]
95;
96  %cmp1 = icmp slt i32 %a, %b
97  %sel1 = select i1 %cmp1, i32 0, i32 %c
98  %cmp2 = icmp sge i32 %a, %b
99  %sel2 = select i1 %cmp2, i32 0, i32 %d
100  %or = or i32 %sel1, %sel2
101  ret i32 %or
102}
103
104; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
105
106define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
107; CHECK-LABEL: @fold_inverted_fcmp_preds(
108; CHECK-NEXT:    [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]]
109; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
110; CHECK-NEXT:    [[CMP2:%.*]] = fcmp uge float [[A]], [[B]]
111; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
112; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
113; CHECK-NEXT:    ret i32 [[OR]]
114;
115  %cmp1 = fcmp olt float %a, %b
116  %sel1 = select i1 %cmp1, i32 %c, i32 0
117  %cmp2 = fcmp uge float %a, %b
118  %sel2 = select i1 %cmp2, i32 %d, i32 0
119  %or = or i32 %sel1, %sel2
120  ret i32 %or
121}
122
123; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
124
125define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
126; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
127; CHECK-NEXT:    [[CMP1:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]]
128; CHECK-NEXT:    [[SEL1:%.*]] = select <2 x i1> [[CMP1]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]]
129; CHECK-NEXT:    [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]]
130; CHECK-NEXT:    [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer
131; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
132; CHECK-NEXT:    ret <2 x i32> [[OR]]
133;
134  %cmp1 = icmp ne <2 x i32> %a, %b
135  %sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0>
136  %cmp2 = icmp eq <2 x i32> %a, %b
137  %sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0>
138  %or = or <2 x i32> %sel1, %sel2
139  ret <2 x i32> %or
140}
141
142define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) {
143; CHECK-LABEL: @par(
144; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
145; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
146; CHECK-NEXT:    ret i32 [[TMP1]]
147;
148  %t0 = icmp slt i32 %a, %b
149  %iftmp.1.0 = select i1 %t0, i32 -1, i32 0
150  %t1 = and i32 %iftmp.1.0, %c
151  %not = xor i32 %iftmp.1.0, -1
152  %t2 = and i32 %not, %d
153  %t3 = or i32 %t1, %t2
154  ret i32 %t3
155}
156
157; In the following tests (8 commutation variants), verify that a bitcast doesn't get
158; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly
159; other vector code because of canonicalization to i64 elements for vectors.
160
161; The fptosi instructions are included to avoid commutation canonicalization based on
162; operator weight. Using another cast operator ensures that both operands of all logic
163; ops are equally weighted, and this ensures that we're testing all commutation
164; possibilities.
165
166define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
167; CHECK-LABEL: @bitcast_select_swap0(
168; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
169; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
170; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
171; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
172; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
173; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
174; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
175;
176  %sia = fptosi <2 x double> %a to <2 x i64>
177  %sib = fptosi <2 x double> %b to <2 x i64>
178  %sext = sext <4 x i1> %cmp to <4 x i32>
179  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
180  %and1 = and <2 x i64> %bc1, %sia
181  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
182  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
183  %and2 = and <2 x i64> %bc2, %sib
184  %or = or <2 x i64> %and1, %and2
185  ret <2 x i64> %or
186}
187
188define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
189; CHECK-LABEL: @bitcast_select_swap1(
190; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
191; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
192; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
193; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
194; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
195; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
196; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
197;
198  %sia = fptosi <2 x double> %a to <2 x i64>
199  %sib = fptosi <2 x double> %b to <2 x i64>
200  %sext = sext <4 x i1> %cmp to <4 x i32>
201  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
202  %and1 = and <2 x i64> %bc1, %sia
203  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
204  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
205  %and2 = and <2 x i64> %bc2, %sib
206  %or = or <2 x i64> %and2, %and1
207  ret <2 x i64> %or
208}
209
210define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
211; CHECK-LABEL: @bitcast_select_swap2(
212; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
213; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
214; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
215; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
216; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
217; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
218; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
219;
220  %sia = fptosi <2 x double> %a to <2 x i64>
221  %sib = fptosi <2 x double> %b to <2 x i64>
222  %sext = sext <4 x i1> %cmp to <4 x i32>
223  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
224  %and1 = and <2 x i64> %bc1, %sia
225  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
226  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
227  %and2 = and <2 x i64> %sib, %bc2
228  %or = or <2 x i64> %and1, %and2
229  ret <2 x i64> %or
230}
231
232define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
233; CHECK-LABEL: @bitcast_select_swap3(
234; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
235; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
236; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
237; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
238; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
239; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
240; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
241;
242  %sia = fptosi <2 x double> %a to <2 x i64>
243  %sib = fptosi <2 x double> %b to <2 x i64>
244  %sext = sext <4 x i1> %cmp to <4 x i32>
245  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
246  %and1 = and <2 x i64> %bc1, %sia
247  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
248  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
249  %and2 = and <2 x i64> %sib, %bc2
250  %or = or <2 x i64> %and2, %and1
251  ret <2 x i64> %or
252}
253
254define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
255; CHECK-LABEL: @bitcast_select_swap4(
256; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
257; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
258; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
259; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
260; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
261; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
262; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
263;
264  %sia = fptosi <2 x double> %a to <2 x i64>
265  %sib = fptosi <2 x double> %b to <2 x i64>
266  %sext = sext <4 x i1> %cmp to <4 x i32>
267  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
268  %and1 = and <2 x i64> %sia, %bc1
269  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
270  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
271  %and2 = and <2 x i64> %bc2, %sib
272  %or = or <2 x i64> %and1, %and2
273  ret <2 x i64> %or
274}
275
276define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
277; CHECK-LABEL: @bitcast_select_swap5(
278; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
279; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
280; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
281; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
282; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
283; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
284; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
285;
286  %sia = fptosi <2 x double> %a to <2 x i64>
287  %sib = fptosi <2 x double> %b to <2 x i64>
288  %sext = sext <4 x i1> %cmp to <4 x i32>
289  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
290  %and1 = and <2 x i64> %sia, %bc1
291  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
292  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
293  %and2 = and <2 x i64> %bc2, %sib
294  %or = or <2 x i64> %and2, %and1
295  ret <2 x i64> %or
296}
297
298define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
299; CHECK-LABEL: @bitcast_select_swap6(
300; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
301; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
302; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
303; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
304; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
305; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
306; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
307;
308  %sia = fptosi <2 x double> %a to <2 x i64>
309  %sib = fptosi <2 x double> %b to <2 x i64>
310  %sext = sext <4 x i1> %cmp to <4 x i32>
311  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
312  %and1 = and <2 x i64> %sia, %bc1
313  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
314  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
315  %and2 = and <2 x i64> %sib, %bc2
316  %or = or <2 x i64> %and1, %and2
317  ret <2 x i64> %or
318}
319
320define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
321; CHECK-LABEL: @bitcast_select_swap7(
322; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
323; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
324; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
325; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
326; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
327; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
328; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
329;
330  %sia = fptosi <2 x double> %a to <2 x i64>
331  %sib = fptosi <2 x double> %b to <2 x i64>
332  %sext = sext <4 x i1> %cmp to <4 x i32>
333  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
334  %and1 = and <2 x i64> %sia, %bc1
335  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
336  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
337  %and2 = and <2 x i64> %sib, %bc2
338  %or = or <2 x i64> %and2, %and1
339  ret <2 x i64> %or
340}
341
342define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) {
343; CHECK-LABEL: @bitcast_select_multi_uses(
344; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32>
345; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
346; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[BC1]], [[A:%.*]]
347; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
348; CHECK-NEXT:    [[BC2:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1>
349; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[BC2]], [[B:%.*]]
350; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
351; CHECK-NEXT:    [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]]
352; CHECK-NEXT:    [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]]
353; CHECK-NEXT:    ret <2 x i64> [[SUB]]
354;
355  %sext = sext <4 x i1> %cmp to <4 x i32>
356  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
357  %and1 = and <2 x i64> %a, %bc1
358  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
359  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
360  %and2 = and <2 x i64> %b, %bc2
361  %or = or <2 x i64> %and2, %and1
362  %add = add <2 x i64> %and2, %bc2
363  %sub = sub <2 x i64> %or, %add
364  ret <2 x i64> %sub
365}
366
367define i1 @bools(i1 %a, i1 %b, i1 %c) {
368; CHECK-LABEL: @bools(
369; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
370; CHECK-NEXT:    ret i1 [[TMP1]]
371;
372  %not = xor i1 %c, -1
373  %and1 = and i1 %not, %a
374  %and2 = and i1 %c, %b
375  %or = or i1 %and1, %and2
376  ret i1 %or
377}
378
379; Form a select if we know we can get replace 2 simple logic ops.
380
381define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) {
382; CHECK-LABEL: @bools_multi_uses1(
383; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
384; CHECK-NEXT:    [[AND1:%.*]] = and i1 [[NOT]], [[A:%.*]]
385; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
386; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[TMP1]], [[AND1]]
387; CHECK-NEXT:    ret i1 [[XOR]]
388;
389  %not = xor i1 %c, -1
390  %and1 = and i1 %not, %a
391  %and2 = and i1 %c, %b
392  %or = or i1 %and1, %and2
393  %xor = xor i1 %or, %and1
394  ret i1 %xor
395}
396
397; Don't replace a cheap logic op with a potentially expensive select
398; unless we can also eliminate one of the other original ops.
399
400define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) {
401; CHECK-LABEL: @bools_multi_uses2(
402; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
403; CHECK-NEXT:    ret i1 [[TMP1]]
404;
405  %not = xor i1 %c, -1
406  %and1 = and i1 %not, %a
407  %and2 = and i1 %c, %b
408  %or = or i1 %and1, %and2
409  %add = add i1 %and1, %and2
410  %and3 = and i1 %or, %add
411  ret i1 %and3
412}
413
414define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) {
415; CHECK-LABEL: @vec_of_bools(
416; CHECK-NEXT:    [[TMP1:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]]
417; CHECK-NEXT:    ret <4 x i1> [[TMP1]]
418;
419  %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
420  %and1 = and <4 x i1> %not, %a
421  %and2 = and <4 x i1> %b, %c
422  %or = or <4 x i1> %and2, %and1
423  ret <4 x i1> %or
424}
425
426define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) {
427; CHECK-LABEL: @vec_of_casted_bools(
428; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1>
429; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1>
430; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP2]], <4 x i1> [[TMP1]]
431; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i1> [[TMP3]] to i4
432; CHECK-NEXT:    ret i4 [[TMP4]]
433;
434  %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
435  %bc1 = bitcast <4 x i1> %not to i4
436  %bc2 = bitcast <4 x i1> %c to i4
437  %and1 = and i4 %a, %bc1
438  %and2 = and i4 %bc2, %b
439  %or = or i4 %and1, %and2
440  ret i4 %or
441}
442
443; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle.
444
445define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) {
446; CHECK-LABEL: @vec_sel_consts(
447; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3>
448; CHECK-NEXT:    ret <4 x i32> [[TMP1]]
449;
450  %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1>
451  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0>
452  %or = or <4 x i32> %and1, %and2
453  ret <4 x i32> %or
454}
455
456define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) {
457; CHECK-LABEL: @vec_sel_consts_weird(
458; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <3 x i129> [[B:%.*]], <3 x i129> [[A:%.*]], <3 x i32> <i32 3, i32 1, i32 5>
459; CHECK-NEXT:    ret <3 x i129> [[TMP1]]
460;
461  %and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1>
462  %and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0>
463  %or = or <3 x i129> %and2, %and1
464  ret <3 x i129> %or
465}
466
467; The mask elements must be inverted for this to be a select.
468
469define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) {
470; CHECK-LABEL: @vec_not_sel_consts(
471; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0>
472; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1>
473; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
474; CHECK-NEXT:    ret <4 x i32> [[OR]]
475;
476  %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
477  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1>
478  %or = or <4 x i32> %and1, %and2
479  ret <4 x i32> %or
480}
481
482define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) {
483; CHECK-LABEL: @vec_not_sel_consts_undef_elts(
484; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0>
485; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef>
486; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
487; CHECK-NEXT:    ret <4 x i32> [[OR]]
488;
489  %and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0>
490  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef>
491  %or = or <4 x i32> %and1, %and2
492  ret <4 x i32> %or
493}
494
495; The inverted constants may be operands of xor instructions.
496
497define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
498; CHECK-LABEL: @vec_sel_xor(
499; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true>
500; CHECK-NEXT:    [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
501; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
502;
503  %mask = sext <4 x i1> %c to <4 x i32>
504  %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
505  %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
506  %and1 = and <4 x i32> %not_mask_flip1, %a
507  %and2 = and <4 x i32> %mask_flip1, %b
508  %or = or <4 x i32> %and1, %and2
509  ret <4 x i32> %or
510}
511
512; Allow the transform even if the mask values have multiple uses because
513; there's still a net reduction of instructions from removing the and/and/or.
514
515define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
516; CHECK-LABEL: @vec_sel_xor_multi_use(
517; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false>
518; CHECK-NEXT:    [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32>
519; CHECK-NEXT:    [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true>
520; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
521; CHECK-NEXT:    [[ADD:%.*]] = add <4 x i32> [[TMP3]], [[MASK_FLIP1]]
522; CHECK-NEXT:    ret <4 x i32> [[ADD]]
523;
524  %mask = sext <4 x i1> %c to <4 x i32>
525  %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
526  %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
527  %and1 = and <4 x i32> %not_mask_flip1, %a
528  %and2 = and <4 x i32> %mask_flip1, %b
529  %or = or <4 x i32> %and1, %and2
530  %add = add <4 x i32> %or, %mask_flip1
531  ret <4 x i32> %add
532}
533
534