• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class contains all of the shared state and information that is used by
11 // the BugPoint tool to track down errors in optimizations.  This class is the
12 // main driver class that invokes all sub-functionality.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
17 #define LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
18 
19 #include "llvm/IR/ValueMap.h"
20 #include "llvm/Support/Error.h"
21 #include "llvm/Support/FileSystem.h"
22 #include "llvm/Transforms/Utils/ValueMapper.h"
23 #include <memory>
24 #include <string>
25 #include <vector>
26 
27 namespace llvm {
28 
29 class Value;
30 class PassInfo;
31 class Module;
32 class GlobalVariable;
33 class Function;
34 class BasicBlock;
35 class AbstractInterpreter;
36 class Instruction;
37 class LLVMContext;
38 
39 class DebugCrashes;
40 
41 class CC;
42 
43 extern bool DisableSimplifyCFG;
44 
45 /// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
46 ///
47 extern bool BugpointIsInterrupted;
48 
49 class BugDriver {
50   LLVMContext &Context;
51   const char *ToolName;            // argv[0] of bugpoint
52   std::string ReferenceOutputFile; // Name of `good' output file
53   std::unique_ptr<Module> Program; // The raw program, linked together
54   std::vector<std::string> PassesToRun;
55   AbstractInterpreter *Interpreter;     // How to run the program
56   AbstractInterpreter *SafeInterpreter; // To generate reference output, etc.
57   CC *cc;
58   bool run_find_bugs;
59   unsigned Timeout;
60   unsigned MemoryLimit;
61   bool UseValgrind;
62 
63   // FIXME: sort out public/private distinctions...
64   friend class ReducePassList;
65   friend class ReduceMisCodegenFunctions;
66 
67 public:
68   BugDriver(const char *toolname, bool find_bugs, unsigned timeout,
69             unsigned memlimit, bool use_valgrind, LLVMContext &ctxt);
70   ~BugDriver();
71 
getToolName()72   const char *getToolName() const { return ToolName; }
73 
getContext()74   LLVMContext &getContext() const { return Context; }
75 
76   // Set up methods... these methods are used to copy information about the
77   // command line arguments into instance variables of BugDriver.
78   //
79   bool addSources(const std::vector<std::string> &FileNames);
addPass(std::string p)80   void addPass(std::string p) { PassesToRun.push_back(std::move(p)); }
setPassesToRun(const std::vector<std::string> & PTR)81   void setPassesToRun(const std::vector<std::string> &PTR) {
82     PassesToRun = PTR;
83   }
getPassesToRun()84   const std::vector<std::string> &getPassesToRun() const { return PassesToRun; }
85 
86   /// run - The top level method that is invoked after all of the instance
87   /// variables are set up from command line arguments. The \p as_child argument
88   /// indicates whether the driver is to run in parent mode or child mode.
89   ///
90   Error run();
91 
92   /// debugOptimizerCrash - This method is called when some optimizer pass
93   /// crashes on input.  It attempts to prune down the testcase to something
94   /// reasonable, and figure out exactly which pass is crashing.
95   ///
96   Error debugOptimizerCrash(const std::string &ID = "passes");
97 
98   /// debugCodeGeneratorCrash - This method is called when the code generator
99   /// crashes on an input.  It attempts to reduce the input as much as possible
100   /// while still causing the code generator to crash.
101   Error debugCodeGeneratorCrash();
102 
103   /// debugMiscompilation - This method is used when the passes selected are not
104   /// crashing, but the generated output is semantically different from the
105   /// input.
106   Error debugMiscompilation();
107 
108   /// debugPassMiscompilation - This method is called when the specified pass
109   /// miscompiles Program as input.  It tries to reduce the testcase to
110   /// something that smaller that still miscompiles the program.
111   /// ReferenceOutput contains the filename of the file containing the output we
112   /// are to match.
113   ///
114   bool debugPassMiscompilation(const PassInfo *ThePass,
115                                const std::string &ReferenceOutput);
116 
117   /// compileSharedObject - This method creates a SharedObject from a given
118   /// BitcodeFile for debugging a code generator.
119   ///
120   Expected<std::string> compileSharedObject(const std::string &BitcodeFile);
121 
122   /// debugCodeGenerator - This method narrows down a module to a function or
123   /// set of functions, using the CBE as a ``safe'' code generator for other
124   /// functions that are not under consideration.
125   Error debugCodeGenerator();
126 
127   /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
128   ///
129   bool isExecutingJIT();
130 
getProgram()131   Module &getProgram() const { return *Program; }
132 
133   /// Set the current module to the specified module, returning the old one.
134   std::unique_ptr<Module> swapProgramIn(std::unique_ptr<Module> M);
135 
switchToSafeInterpreter()136   AbstractInterpreter *switchToSafeInterpreter() {
137     AbstractInterpreter *Old = Interpreter;
138     Interpreter = (AbstractInterpreter *)SafeInterpreter;
139     return Old;
140   }
141 
switchToInterpreter(AbstractInterpreter * AI)142   void switchToInterpreter(AbstractInterpreter *AI) { Interpreter = AI; }
143 
144   /// If we reduce or update the program somehow, call this method to update
145   /// bugdriver with it.  This deletes the old module and sets the specified one
146   /// as the current program.
147   void setNewProgram(std::unique_ptr<Module> M);
148 
149   /// Try to compile the specified module. This is used for code generation
150   /// crash testing.
151   Error compileProgram(Module &M) const;
152 
153   /// This method runs "Program", capturing the output of the program to a file.
154   /// A recommended filename may be optionally specified.
155   Expected<std::string> executeProgram(const Module &Program,
156                                        std::string OutputFilename,
157                                        std::string Bitcode,
158                                        const std::string &SharedObjects,
159                                        AbstractInterpreter *AI) const;
160 
161   /// Used to create reference output with the "safe" backend, if reference
162   /// output is not provided.  If there is a problem with the code generator
163   /// (e.g., llc crashes), this will return false and set Error.
164   Expected<std::string>
165   executeProgramSafely(const Module &Program,
166                        const std::string &OutputFile) const;
167 
168   /// Calls compileProgram and then records the output into ReferenceOutputFile.
169   /// Returns true if reference file created, false otherwise. Note:
170   /// initializeExecutionEnvironment should be called BEFORE this function.
171   Error createReferenceFile(Module &M, const std::string &Filename =
172                                            "bugpoint.reference.out-%%%%%%%");
173 
174   /// This method executes the specified module and diffs the output against the
175   /// file specified by ReferenceOutputFile.  If the output is different, 1 is
176   /// returned.  If there is a problem with the code generator (e.g., llc
177   /// crashes), this will return -1 and set Error.
178   Expected<bool> diffProgram(const Module &Program,
179                              const std::string &BitcodeFile = "",
180                              const std::string &SharedObj = "",
181                              bool RemoveBitcode = false) const;
182 
183   /// This function is used to output M to a file named "bugpoint-ID.bc".
184   void EmitProgressBitcode(const Module &M, const std::string &ID,
185                            bool NoFlyer = false) const;
186 
187   /// This method clones the current Program and deletes the specified
188   /// instruction from the cloned module.  It then runs a series of cleanup
189   /// passes (ADCE and SimplifyCFG) to eliminate any code which depends on the
190   /// value. The modified module is then returned.
191   ///
192   std::unique_ptr<Module> deleteInstructionFromProgram(const Instruction *I,
193                                                        unsigned Simp);
194 
195   /// This method clones the current Program and performs a series of cleanups
196   /// intended to get rid of extra cruft on the module. If the
197   /// MayModifySemantics argument is true, then the cleanups is allowed to
198   /// modify how the code behaves.
199   ///
200   std::unique_ptr<Module> performFinalCleanups(std::unique_ptr<Module> M,
201                                                bool MayModifySemantics = false);
202 
203   /// Given a module, extract up to one loop from it into a new function. This
204   /// returns null if there are no extractable loops in the program or if the
205   /// loop extractor crashes.
206   std::unique_ptr<Module> extractLoop(Module *M);
207 
208   /// Extract all but the specified basic blocks into their own functions. The
209   /// only detail is that M is actually a module cloned from the one the BBs are
210   /// in, so some mapping needs to be performed. If this operation fails for
211   /// some reason (ie the implementation is buggy), this function should return
212   /// null, otherwise it returns a new Module.
213   std::unique_ptr<Module>
214   extractMappedBlocksFromModule(const std::vector<BasicBlock *> &BBs,
215                                 Module *M);
216 
217   /// Carefully run the specified set of pass on the specified/ module,
218   /// returning the transformed module on success, or a null pointer on failure.
219   std::unique_ptr<Module> runPassesOn(Module *M,
220                                       const std::vector<std::string> &Passes,
221                                       unsigned NumExtraArgs = 0,
222                                       const char *const *ExtraArgs = nullptr);
223 
224   /// runPasses - Run the specified passes on Program, outputting a bitcode
225   /// file and writting the filename into OutputFile if successful.  If the
226   /// optimizations fail for some reason (optimizer crashes), return true,
227   /// otherwise return false.  If DeleteOutput is set to true, the bitcode is
228   /// deleted on success, and the filename string is undefined.  This prints to
229   /// outs() a single line message indicating whether compilation was successful
230   /// or failed, unless Quiet is set.  ExtraArgs specifies additional arguments
231   /// to pass to the child bugpoint instance.
232   ///
233   bool runPasses(Module &Program, const std::vector<std::string> &PassesToRun,
234                  std::string &OutputFilename, bool DeleteOutput = false,
235                  bool Quiet = false, unsigned NumExtraArgs = 0,
236                  const char *const *ExtraArgs = nullptr) const;
237 
238   /// runPasses - Just like the method above, but this just returns true or
239   /// false indicating whether or not the optimizer crashed on the specified
240   /// input (true = crashed).  Does not produce any output.
241   ///
runPasses(Module & M,const std::vector<std::string> & PassesToRun)242   bool runPasses(Module &M, const std::vector<std::string> &PassesToRun) const {
243     std::string Filename;
244     return runPasses(M, PassesToRun, Filename, true);
245   }
246 
247   /// Take the specified pass list and create different combinations of passes
248   /// to compile the program with. Compile the program with each set and mark
249   /// test to see if it compiled correctly. If the passes compiled correctly
250   /// output nothing and rearrange the passes into a new order. If the passes
251   /// did not compile correctly, output the command required to recreate the
252   /// failure.
253   Error runManyPasses(const std::vector<std::string> &AllPasses);
254 
255   /// This writes the current "Program" to the named bitcode file.  If an error
256   /// occurs, true is returned.
257   bool writeProgramToFile(const std::string &Filename, const Module &M) const;
258   bool writeProgramToFile(const std::string &Filename, int FD,
259                           const Module &M) const;
260   bool writeProgramToFile(int FD, const Module &M) const;
261 
262 private:
263   /// initializeExecutionEnvironment - This method is used to set up the
264   /// environment for executing LLVM programs.
265   ///
266   Error initializeExecutionEnvironment();
267 };
268 
269 struct DiscardTemp {
270   sys::fs::TempFile &File;
271   ~DiscardTemp();
272 };
273 
274 ///  Given a bitcode or assembly input filename, parse and return it, or return
275 ///  null if not possible.
276 ///
277 std::unique_ptr<Module> parseInputFile(StringRef InputFilename,
278                                        LLVMContext &ctxt);
279 
280 /// getPassesString - Turn a list of passes into a string which indicates the
281 /// command line options that must be passed to add the passes.
282 ///
283 std::string getPassesString(const std::vector<std::string> &Passes);
284 
285 /// PrintFunctionList - prints out list of problematic functions
286 ///
287 void PrintFunctionList(const std::vector<Function *> &Funcs);
288 
289 /// PrintGlobalVariableList - prints out list of problematic global variables
290 ///
291 void PrintGlobalVariableList(const std::vector<GlobalVariable *> &GVs);
292 
293 // DeleteGlobalInitializer - "Remove" the global variable by deleting its
294 // initializer, making it external.
295 //
296 void DeleteGlobalInitializer(GlobalVariable *GV);
297 
298 // DeleteFunctionBody - "Remove" the function by deleting all of it's basic
299 // blocks, making it external.
300 //
301 void DeleteFunctionBody(Function *F);
302 
303 /// Given a module and a list of functions in the module, split the functions
304 /// OUT of the specified module, and place them in the new module.
305 std::unique_ptr<Module>
306 SplitFunctionsOutOfModule(Module *M, const std::vector<Function *> &F,
307                           ValueToValueMapTy &VMap);
308 
309 } // End llvm namespace
310 
311 #endif
312