1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/edit_distance.h"
14 #include <bitset>
15
16 using namespace llvm;
17
18 // MSVC emits references to this into the translation units which reference it.
19 #ifndef _MSC_VER
20 const size_t StringRef::npos;
21 #endif
22
ascii_tolower(char x)23 static char ascii_tolower(char x) {
24 if (x >= 'A' && x <= 'Z')
25 return x - 'A' + 'a';
26 return x;
27 }
28
ascii_toupper(char x)29 static char ascii_toupper(char x) {
30 if (x >= 'a' && x <= 'z')
31 return x - 'a' + 'A';
32 return x;
33 }
34
ascii_isdigit(char x)35 static bool ascii_isdigit(char x) {
36 return x >= '0' && x <= '9';
37 }
38
39 // strncasecmp() is not available on non-POSIX systems, so define an
40 // alternative function here.
ascii_strncasecmp(const char * LHS,const char * RHS,size_t Length)41 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
42 for (size_t I = 0; I < Length; ++I) {
43 unsigned char LHC = ascii_tolower(LHS[I]);
44 unsigned char RHC = ascii_tolower(RHS[I]);
45 if (LHC != RHC)
46 return LHC < RHC ? -1 : 1;
47 }
48 return 0;
49 }
50
51 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const52 int StringRef::compare_lower(StringRef RHS) const {
53 if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
54 return Res;
55 if (Length == RHS.Length)
56 return 0;
57 return Length < RHS.Length ? -1 : 1;
58 }
59
60 /// Check if this string starts with the given \p Prefix, ignoring case.
startswith_lower(StringRef Prefix) const61 bool StringRef::startswith_lower(StringRef Prefix) const {
62 return Length >= Prefix.Length &&
63 ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
64 }
65
66 /// Check if this string ends with the given \p Suffix, ignoring case.
endswith_lower(StringRef Suffix) const67 bool StringRef::endswith_lower(StringRef Suffix) const {
68 return Length >= Suffix.Length &&
69 ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
70 }
71
find_lower(char C,size_t From) const72 size_t StringRef::find_lower(char C, size_t From) const {
73 char L = ascii_tolower(C);
74 return find_if([L](char D) { return ascii_tolower(D) == L; }, From);
75 }
76
77 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const78 int StringRef::compare_numeric(StringRef RHS) const {
79 for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
80 // Check for sequences of digits.
81 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
82 // The longer sequence of numbers is considered larger.
83 // This doesn't really handle prefixed zeros well.
84 size_t J;
85 for (J = I + 1; J != E + 1; ++J) {
86 bool ld = J < Length && ascii_isdigit(Data[J]);
87 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
88 if (ld != rd)
89 return rd ? -1 : 1;
90 if (!rd)
91 break;
92 }
93 // The two number sequences have the same length (J-I), just memcmp them.
94 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
95 return Res < 0 ? -1 : 1;
96 // Identical number sequences, continue search after the numbers.
97 I = J - 1;
98 continue;
99 }
100 if (Data[I] != RHS.Data[I])
101 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
102 }
103 if (Length == RHS.Length)
104 return 0;
105 return Length < RHS.Length ? -1 : 1;
106 }
107
108 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance) const109 unsigned StringRef::edit_distance(llvm::StringRef Other,
110 bool AllowReplacements,
111 unsigned MaxEditDistance) const {
112 return llvm::ComputeEditDistance(
113 makeArrayRef(data(), size()),
114 makeArrayRef(Other.data(), Other.size()),
115 AllowReplacements, MaxEditDistance);
116 }
117
118 //===----------------------------------------------------------------------===//
119 // String Operations
120 //===----------------------------------------------------------------------===//
121
lower() const122 std::string StringRef::lower() const {
123 std::string Result(size(), char());
124 for (size_type i = 0, e = size(); i != e; ++i) {
125 Result[i] = ascii_tolower(Data[i]);
126 }
127 return Result;
128 }
129
upper() const130 std::string StringRef::upper() const {
131 std::string Result(size(), char());
132 for (size_type i = 0, e = size(); i != e; ++i) {
133 Result[i] = ascii_toupper(Data[i]);
134 }
135 return Result;
136 }
137
138 //===----------------------------------------------------------------------===//
139 // String Searching
140 //===----------------------------------------------------------------------===//
141
142
143 /// find - Search for the first string \arg Str in the string.
144 ///
145 /// \return - The index of the first occurrence of \arg Str, or npos if not
146 /// found.
find(StringRef Str,size_t From) const147 size_t StringRef::find(StringRef Str, size_t From) const {
148 if (From > Length)
149 return npos;
150
151 const char *Start = Data + From;
152 size_t Size = Length - From;
153
154 const char *Needle = Str.data();
155 size_t N = Str.size();
156 if (N == 0)
157 return From;
158 if (Size < N)
159 return npos;
160 if (N == 1) {
161 const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
162 return Ptr == nullptr ? npos : Ptr - Data;
163 }
164
165 const char *Stop = Start + (Size - N + 1);
166
167 // For short haystacks or unsupported needles fall back to the naive algorithm
168 if (Size < 16 || N > 255) {
169 do {
170 if (std::memcmp(Start, Needle, N) == 0)
171 return Start - Data;
172 ++Start;
173 } while (Start < Stop);
174 return npos;
175 }
176
177 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
178 uint8_t BadCharSkip[256];
179 std::memset(BadCharSkip, N, 256);
180 for (unsigned i = 0; i != N-1; ++i)
181 BadCharSkip[(uint8_t)Str[i]] = N-1-i;
182
183 do {
184 uint8_t Last = Start[N - 1];
185 if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
186 if (std::memcmp(Start, Needle, N - 1) == 0)
187 return Start - Data;
188
189 // Otherwise skip the appropriate number of bytes.
190 Start += BadCharSkip[Last];
191 } while (Start < Stop);
192
193 return npos;
194 }
195
find_lower(StringRef Str,size_t From) const196 size_t StringRef::find_lower(StringRef Str, size_t From) const {
197 StringRef This = substr(From);
198 while (This.size() >= Str.size()) {
199 if (This.startswith_lower(Str))
200 return From;
201 This = This.drop_front();
202 ++From;
203 }
204 return npos;
205 }
206
rfind_lower(char C,size_t From) const207 size_t StringRef::rfind_lower(char C, size_t From) const {
208 From = std::min(From, Length);
209 size_t i = From;
210 while (i != 0) {
211 --i;
212 if (ascii_tolower(Data[i]) == ascii_tolower(C))
213 return i;
214 }
215 return npos;
216 }
217
218 /// rfind - Search for the last string \arg Str in the string.
219 ///
220 /// \return - The index of the last occurrence of \arg Str, or npos if not
221 /// found.
rfind(StringRef Str) const222 size_t StringRef::rfind(StringRef Str) const {
223 size_t N = Str.size();
224 if (N > Length)
225 return npos;
226 for (size_t i = Length - N + 1, e = 0; i != e;) {
227 --i;
228 if (substr(i, N).equals(Str))
229 return i;
230 }
231 return npos;
232 }
233
rfind_lower(StringRef Str) const234 size_t StringRef::rfind_lower(StringRef Str) const {
235 size_t N = Str.size();
236 if (N > Length)
237 return npos;
238 for (size_t i = Length - N + 1, e = 0; i != e;) {
239 --i;
240 if (substr(i, N).equals_lower(Str))
241 return i;
242 }
243 return npos;
244 }
245
246 /// find_first_of - Find the first character in the string that is in \arg
247 /// Chars, or npos if not found.
248 ///
249 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const250 StringRef::size_type StringRef::find_first_of(StringRef Chars,
251 size_t From) const {
252 std::bitset<1 << CHAR_BIT> CharBits;
253 for (size_type i = 0; i != Chars.size(); ++i)
254 CharBits.set((unsigned char)Chars[i]);
255
256 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
257 if (CharBits.test((unsigned char)Data[i]))
258 return i;
259 return npos;
260 }
261
262 /// find_first_not_of - Find the first character in the string that is not
263 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const264 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
265 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
266 if (Data[i] != C)
267 return i;
268 return npos;
269 }
270
271 /// find_first_not_of - Find the first character in the string that is not
272 /// in the string \arg Chars, or npos if not found.
273 ///
274 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const275 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
276 size_t From) const {
277 std::bitset<1 << CHAR_BIT> CharBits;
278 for (size_type i = 0; i != Chars.size(); ++i)
279 CharBits.set((unsigned char)Chars[i]);
280
281 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
282 if (!CharBits.test((unsigned char)Data[i]))
283 return i;
284 return npos;
285 }
286
287 /// find_last_of - Find the last character in the string that is in \arg C,
288 /// or npos if not found.
289 ///
290 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const291 StringRef::size_type StringRef::find_last_of(StringRef Chars,
292 size_t From) const {
293 std::bitset<1 << CHAR_BIT> CharBits;
294 for (size_type i = 0; i != Chars.size(); ++i)
295 CharBits.set((unsigned char)Chars[i]);
296
297 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
298 if (CharBits.test((unsigned char)Data[i]))
299 return i;
300 return npos;
301 }
302
303 /// find_last_not_of - Find the last character in the string that is not
304 /// \arg C, or npos if not found.
find_last_not_of(char C,size_t From) const305 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
306 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
307 if (Data[i] != C)
308 return i;
309 return npos;
310 }
311
312 /// find_last_not_of - Find the last character in the string that is not in
313 /// \arg Chars, or npos if not found.
314 ///
315 /// Note: O(size() + Chars.size())
find_last_not_of(StringRef Chars,size_t From) const316 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
317 size_t From) const {
318 std::bitset<1 << CHAR_BIT> CharBits;
319 for (size_type i = 0, e = Chars.size(); i != e; ++i)
320 CharBits.set((unsigned char)Chars[i]);
321
322 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
323 if (!CharBits.test((unsigned char)Data[i]))
324 return i;
325 return npos;
326 }
327
split(SmallVectorImpl<StringRef> & A,StringRef Separator,int MaxSplit,bool KeepEmpty) const328 void StringRef::split(SmallVectorImpl<StringRef> &A,
329 StringRef Separator, int MaxSplit,
330 bool KeepEmpty) const {
331 StringRef S = *this;
332
333 // Count down from MaxSplit. When MaxSplit is -1, this will just split
334 // "forever". This doesn't support splitting more than 2^31 times
335 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
336 // but that seems unlikely to be useful.
337 while (MaxSplit-- != 0) {
338 size_t Idx = S.find(Separator);
339 if (Idx == npos)
340 break;
341
342 // Push this split.
343 if (KeepEmpty || Idx > 0)
344 A.push_back(S.slice(0, Idx));
345
346 // Jump forward.
347 S = S.slice(Idx + Separator.size(), npos);
348 }
349
350 // Push the tail.
351 if (KeepEmpty || !S.empty())
352 A.push_back(S);
353 }
354
split(SmallVectorImpl<StringRef> & A,char Separator,int MaxSplit,bool KeepEmpty) const355 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
356 int MaxSplit, bool KeepEmpty) const {
357 StringRef S = *this;
358
359 // Count down from MaxSplit. When MaxSplit is -1, this will just split
360 // "forever". This doesn't support splitting more than 2^31 times
361 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
362 // but that seems unlikely to be useful.
363 while (MaxSplit-- != 0) {
364 size_t Idx = S.find(Separator);
365 if (Idx == npos)
366 break;
367
368 // Push this split.
369 if (KeepEmpty || Idx > 0)
370 A.push_back(S.slice(0, Idx));
371
372 // Jump forward.
373 S = S.slice(Idx + 1, npos);
374 }
375
376 // Push the tail.
377 if (KeepEmpty || !S.empty())
378 A.push_back(S);
379 }
380
381 //===----------------------------------------------------------------------===//
382 // Helpful Algorithms
383 //===----------------------------------------------------------------------===//
384
385 /// count - Return the number of non-overlapped occurrences of \arg Str in
386 /// the string.
count(StringRef Str) const387 size_t StringRef::count(StringRef Str) const {
388 size_t Count = 0;
389 size_t N = Str.size();
390 if (N > Length)
391 return 0;
392 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
393 if (substr(i, N).equals(Str))
394 ++Count;
395 return Count;
396 }
397
GetAutoSenseRadix(StringRef & Str)398 static unsigned GetAutoSenseRadix(StringRef &Str) {
399 if (Str.empty())
400 return 10;
401
402 if (Str.startswith("0x") || Str.startswith("0X")) {
403 Str = Str.substr(2);
404 return 16;
405 }
406
407 if (Str.startswith("0b") || Str.startswith("0B")) {
408 Str = Str.substr(2);
409 return 2;
410 }
411
412 if (Str.startswith("0o")) {
413 Str = Str.substr(2);
414 return 8;
415 }
416
417 if (Str[0] == '0' && Str.size() > 1 && ascii_isdigit(Str[1])) {
418 Str = Str.substr(1);
419 return 8;
420 }
421
422 return 10;
423 }
424
consumeUnsignedInteger(StringRef & Str,unsigned Radix,unsigned long long & Result)425 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
426 unsigned long long &Result) {
427 // Autosense radix if not specified.
428 if (Radix == 0)
429 Radix = GetAutoSenseRadix(Str);
430
431 // Empty strings (after the radix autosense) are invalid.
432 if (Str.empty()) return true;
433
434 // Parse all the bytes of the string given this radix. Watch for overflow.
435 StringRef Str2 = Str;
436 Result = 0;
437 while (!Str2.empty()) {
438 unsigned CharVal;
439 if (Str2[0] >= '0' && Str2[0] <= '9')
440 CharVal = Str2[0] - '0';
441 else if (Str2[0] >= 'a' && Str2[0] <= 'z')
442 CharVal = Str2[0] - 'a' + 10;
443 else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
444 CharVal = Str2[0] - 'A' + 10;
445 else
446 break;
447
448 // If the parsed value is larger than the integer radix, we cannot
449 // consume any more characters.
450 if (CharVal >= Radix)
451 break;
452
453 // Add in this character.
454 unsigned long long PrevResult = Result;
455 Result = Result * Radix + CharVal;
456
457 // Check for overflow by shifting back and seeing if bits were lost.
458 if (Result / Radix < PrevResult)
459 return true;
460
461 Str2 = Str2.substr(1);
462 }
463
464 // We consider the operation a failure if no characters were consumed
465 // successfully.
466 if (Str.size() == Str2.size())
467 return true;
468
469 Str = Str2;
470 return false;
471 }
472
consumeSignedInteger(StringRef & Str,unsigned Radix,long long & Result)473 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
474 long long &Result) {
475 unsigned long long ULLVal;
476
477 // Handle positive strings first.
478 if (Str.empty() || Str.front() != '-') {
479 if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
480 // Check for value so large it overflows a signed value.
481 (long long)ULLVal < 0)
482 return true;
483 Result = ULLVal;
484 return false;
485 }
486
487 // Get the positive part of the value.
488 StringRef Str2 = Str.drop_front(1);
489 if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
490 // Reject values so large they'd overflow as negative signed, but allow
491 // "-0". This negates the unsigned so that the negative isn't undefined
492 // on signed overflow.
493 (long long)-ULLVal > 0)
494 return true;
495
496 Str = Str2;
497 Result = -ULLVal;
498 return false;
499 }
500
501 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
502 /// sequence of radix up to 36 to an unsigned long long value.
getAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)503 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
504 unsigned long long &Result) {
505 if (consumeUnsignedInteger(Str, Radix, Result))
506 return true;
507
508 // For getAsUnsignedInteger, we require the whole string to be consumed or
509 // else we consider it a failure.
510 return !Str.empty();
511 }
512
getAsSignedInteger(StringRef Str,unsigned Radix,long long & Result)513 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
514 long long &Result) {
515 if (consumeSignedInteger(Str, Radix, Result))
516 return true;
517
518 // For getAsSignedInteger, we require the whole string to be consumed or else
519 // we consider it a failure.
520 return !Str.empty();
521 }
522
getAsInteger(unsigned Radix,APInt & Result) const523 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
524 StringRef Str = *this;
525
526 // Autosense radix if not specified.
527 if (Radix == 0)
528 Radix = GetAutoSenseRadix(Str);
529
530 assert(Radix > 1 && Radix <= 36);
531
532 // Empty strings (after the radix autosense) are invalid.
533 if (Str.empty()) return true;
534
535 // Skip leading zeroes. This can be a significant improvement if
536 // it means we don't need > 64 bits.
537 while (!Str.empty() && Str.front() == '0')
538 Str = Str.substr(1);
539
540 // If it was nothing but zeroes....
541 if (Str.empty()) {
542 Result = APInt(64, 0);
543 return false;
544 }
545
546 // (Over-)estimate the required number of bits.
547 unsigned Log2Radix = 0;
548 while ((1U << Log2Radix) < Radix) Log2Radix++;
549 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
550
551 unsigned BitWidth = Log2Radix * Str.size();
552 if (BitWidth < Result.getBitWidth())
553 BitWidth = Result.getBitWidth(); // don't shrink the result
554 else if (BitWidth > Result.getBitWidth())
555 Result = Result.zext(BitWidth);
556
557 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
558 if (!IsPowerOf2Radix) {
559 // These must have the same bit-width as Result.
560 RadixAP = APInt(BitWidth, Radix);
561 CharAP = APInt(BitWidth, 0);
562 }
563
564 // Parse all the bytes of the string given this radix.
565 Result = 0;
566 while (!Str.empty()) {
567 unsigned CharVal;
568 if (Str[0] >= '0' && Str[0] <= '9')
569 CharVal = Str[0]-'0';
570 else if (Str[0] >= 'a' && Str[0] <= 'z')
571 CharVal = Str[0]-'a'+10;
572 else if (Str[0] >= 'A' && Str[0] <= 'Z')
573 CharVal = Str[0]-'A'+10;
574 else
575 return true;
576
577 // If the parsed value is larger than the integer radix, the string is
578 // invalid.
579 if (CharVal >= Radix)
580 return true;
581
582 // Add in this character.
583 if (IsPowerOf2Radix) {
584 Result <<= Log2Radix;
585 Result |= CharVal;
586 } else {
587 Result *= RadixAP;
588 CharAP = CharVal;
589 Result += CharAP;
590 }
591
592 Str = Str.substr(1);
593 }
594
595 return false;
596 }
597
598
599 // Implementation of StringRef hashing.
hash_value(StringRef S)600 hash_code llvm::hash_value(StringRef S) {
601 return hash_combine_range(S.begin(), S.end());
602 }
603