• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Release 2.0.1
2
3## Bug Fixes and Other Changes
4* Fixes a security vulnerability where converting a Python string to a `tf.float16` value produces a segmentation fault ([CVE-2020-5215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215))
5* Updates `curl` to `7.66.0` to handle [CVE-2019-5482](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5482) and [CVE-2019-5481](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5481)
6* Updates `sqlite3` to `3.30.01` to handle [CVE-2019-19646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19646), [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645) and [CVE-2019-16168](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16168)
7
8
9# Release 1.15.2
10
11## Bug Fixes and Other Changes
12* Fixes a security vulnerability where converting a Python string to a `tf.float16` value produces a segmentation fault ([CVE-2020-5215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215))
13* Updates `curl` to `7.66.0` to handle [CVE-2019-5482](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5482) and [CVE-2019-5481](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5481)
14* Updates `sqlite3` to `3.30.01` to handle [CVE-2019-19646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19646), [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645) and [CVE-2019-16168](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16168)
15
16
17# Release 2.1.0
18
19TensorFlow 2.1 will be the last TF release supporting Python 2. Python 2 support [officially ends an January 1, 2020](https://www.python.org/dev/peps/pep-0373/#update). [As announced earlier](https://groups.google.com/a/tensorflow.org/d/msg/announce/gVwS5RC8mds/dCt1ka2XAAAJ), TensorFlow will also stop supporting Python 2 starting January 1, 2020, and no more releases are expected in 2019.
20
21## Major Features and Improvements
22* The `tensorflow` pip package now includes GPU support by default (same as `tensorflow-gpu`) for both Linux and Windows. This runs on machines with and without NVIDIA GPUs. `tensorflow-gpu` is still available, and CPU-only packages can be downloaded at `tensorflow-cpu` for users who are concerned about package size.
23* **Windows users:** Officially-released `tensorflow` Pip packages are now built with Visual Studio 2019 version 16.4 in order to take advantage of the new `/d2ReducedOptimizeHugeFunctions` compiler flag. To use these new packages, you must install "Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017 and 2019", available from Microsoft's website [here](https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads).
24  * This does not change the minimum required version for building TensorFlow from source on Windows, but builds enabling `EIGEN_STRONG_INLINE` can take over 48 hours to compile without this flag. Refer to `configure.py` for more information about `EIGEN_STRONG_INLINE` and `/d2ReducedOptimizeHugeFunctions`.
25  * If either of the required DLLs, `msvcp140.dll` (old) or `msvcp140_1.dll` (new), are missing on your machine, `import tensorflow` will print a warning message.
26* The `tensorflow` pip package is built with CUDA 10.1 and cuDNN 7.6.
27* `tf.keras`
28  * Experimental support for mixed precision is available on GPUs and Cloud TPUs. See [usage guide](https://www.tensorflow.org/guide/keras/mixed_precision).
29  * Introduced the `TextVectorization` layer, which takes as input raw strings and takes care of text standardization, tokenization, n-gram generation, and vocabulary indexing. See this [end-to-end text classification example](https://colab.research.google.com/drive/1RvCnR7h0_l4Ekn5vINWToI9TNJdpUZB3).
30  * Keras `.compile` `.fit` `.evaluate` and `.predict` are allowed to be outside of the DistributionStrategy scope, as long as the model was constructed inside of a scope.
31  * Experimental support for Keras `.compile`, `.fit`, `.evaluate`, and `.predict` is available for Cloud TPUs, Cloud TPU, for all types of Keras models (sequential, functional and subclassing models).
32  * Automatic outside compilation is now enabled for Cloud TPUs. This allows `tf.summary` to be used more conveniently with Cloud TPUs.
33  * Dynamic batch sizes with DistributionStrategy and Keras are supported on Cloud TPUs.
34  * Support for `.fit`, `.evaluate`, `.predict` on TPU using numpy data, in addition to `tf.data.Dataset`.
35  * Keras reference implementations for many popular models are available in the TensorFlow [Model Garden](https://github.com/tensorflow/models/tree/master/official).
36* `tf.data`
37  * Changes rebatching for `tf.data datasets` + DistributionStrategy for better performance. Note that the dataset also behaves slightly differently, in that the rebatched dataset cardinality will always be a multiple of the number of replicas.
38  * `tf.data.Dataset` now supports automatic data distribution and sharding in distributed environments, including on TPU pods.
39  * Distribution policies for `tf.data.Dataset` can now be tuned with 1. `tf.data.experimental.AutoShardPolicy(OFF, AUTO, FILE, DATA)` 2. `tf.data.experimental.ExternalStatePolicy(WARN, IGNORE, FAIL)`
40* `tf.debugging`
41  * Add `tf.debugging.enable_check_numerics()` and `tf.debugging.disable_check_numerics()` to help debugging the root causes of issues involving infinities and `NaN`s.
42* `tf.distribute`
43  * Custom training loop support on TPUs and TPU pods is avaiable through `strategy.experimental_distribute_dataset`, `strategy.experimental_distribute_datasets_from_function`, `strategy.experimental_run_v2`, `strategy.reduce`.
44  * Support for a global distribution strategy through `tf.distribute.experimental_set_strategy(),` in addition to `strategy.scope()`.
45* `TensorRT`
46  * [TensorRT 6.0](https://developer.nvidia.com/tensorrt#tensorrt-whats-new) is now supported and enabled by default. This adds support for more TensorFlow ops including Conv3D, Conv3DBackpropInputV2, AvgPool3D, MaxPool3D, ResizeBilinear, and ResizeNearestNeighbor. In addition, the TensorFlow-TensorRT python conversion API is exported as `tf.experimental.tensorrt.Converter`.
47* Environment variable `TF_DETERMINISTIC_OPS` has been added. When set to "true" or "1", this environment variable makes `tf.nn.bias_add` operate deterministically (i.e. reproducibly), but currently only when XLA JIT compilation is *not* enabled. Setting `TF_DETERMINISTIC_OPS` to "true" or "1" also makes cuDNN convolution and max-pooling operate deterministically. This makes Keras Conv\*D and MaxPool\*D layers operate deterministically in both the forward and backward directions when running on a CUDA-enabled GPU.
48
49## Breaking Changes
50* Deletes `Operation.traceback_with_start_lines` for which we know of no usages.
51* Removed `id` from `tf.Tensor.__repr__()` as `id` is not useful other than internal debugging.
52* Some `tf.assert_*` methods now raise assertions at operation creation time if the input tensors' values are known at that time, not during the `session.run()`. This only changes behavior when the graph execution would have resulted in an error. When this happens, a noop is returned and the input tensors are marked non-feedable. In other words, if they are used as keys in `feed_dict` argument to `session.run()`, an error will be raised. Also, because some assert ops don't make it into the graph, the graph structure changes. A different graph can result in different per-op random seeds when they are not given explicitly (most often).
53* The following APIs are not longer experimental: `tf.config.list_logical_devices`, `tf.config.list_physical_devices`, `tf.config.get_visible_devices`, `tf.config.set_visible_devices`, `tf.config.get_logical_device_configuration`, `tf.config.set_logical_device_configuration`.
54* `tf.config.experimentalVirtualDeviceConfiguration` has been renamed to `tf.config.LogicalDeviceConfiguration`.
55* `tf.config.experimental_list_devices` has been removed, please use
56`tf.config.list_logical_devices`.
57
58## Bug Fixes and Other Changes
59* `tf.data`
60  * Fixes concurrency issue with `tf.data.experimental.parallel_interleave` with `sloppy=True`.
61  * Add `tf.data.experimental.dense_to_ragged_batch()`.
62  * Extend `tf.data` parsing ops to support `RaggedTensors`.
63* `tf.distribute`
64  * Fix issue where GRU would crash or give incorrect output when a `tf.distribute.Strategy` was used.
65* `tf.estimator`
66  * Added option in `tf.estimator.CheckpointSaverHook` to not save the `GraphDef`.
67  * Moving the checkpoint reader from swig to pybind11.
68* `tf.keras`
69  * Export `depthwise_conv2d` in `tf.keras.backend`.
70  * In Keras Layers and Models, Variables in `trainable_weights`, `non_trainable_weights`, and `weights` are explicitly deduplicated.
71  * Keras `model.load_weights` now accepts `skip_mismatch` as an argument. This was available in external Keras, and has now been copied over to `tf.keras`.
72  * Fix the input shape caching behavior of Keras convolutional layers.
73  * `Model.fit_generator`, `Model.evaluate_generator`, `Model.predict_generator`, `Model.train_on_batch`, `Model.test_on_batch`, and `Model.predict_on_batch` methods now respect the `run_eagerly` property, and will correctly run using `tf.function` by default. Note that `Model.fit_generator`, `Model.evaluate_generator`, and `Model.predict_generator` are deprecated endpoints. They are subsumed by `Model.fit`, `Model.evaluate`, and `Model.predict` which now support generators and Sequences.
74* `tf.lite`
75  * Legalization for `NMS` ops in TFLite.
76  * add `narrow_range` and `axis` to `quantize_v2` and `dequantize` ops.
77  * Added support for `FusedBatchNormV3` in converter.
78  * Add an `errno`-like field to `NNAPI` delegate for detecting `NNAPI` errors for fallback behaviour.
79  * Refactors `NNAPI` Delegate to support detailed reason why an operation is not accelerated.
80  * Converts hardswish subgraphs into atomic ops.
81* Other
82  * Critical stability updates for TPUs, especially in cases where the XLA compiler produces compilation errors.
83  * TPUs can now be re-initialized multiple times, using `tf.tpu.experimental.initialize_tpu_system`.
84  * Add `RaggedTensor.merge_dims()`.
85  * Added new `uniform_row_length` row-partitioning tensor to `RaggedTensor`.
86  * Add `shape` arg to `RaggedTensor.to_tensor`; Improve speed of `RaggedTensor.to_tensor`.
87  * `tf.io.parse_sequence_example` and `tf.io.parse_single_sequence_example` now support ragged features.
88  * Fix `while_v2` with variables in custom gradient.
89  * Support taking gradients of V2 `tf.cond` and `tf.while_loop` using `LookupTable`.
90  * Fix bug where `vectorized_map` failed on inputs with unknown static shape.
91  * Add preliminary support for sparse CSR matrices.
92  * Tensor equality with `None` now behaves as expected.
93  * Make calls to `tf.function(f)()`, `tf.function(f).get_concrete_function` and `tf.function(f).get_initialization_function` thread-safe.
94  * Extend `tf.identity` to work with CompositeTensors (such as SparseTensor)
95  * Added more `dtypes` and zero-sized inputs to `Einsum` Op and improved its performance
96  * Enable multi-worker `NCCL` `all-reduce` inside functions executing eagerly.
97  * Added complex128 support to `RFFT`, `RFFT2D`, `RFFT3D`, `IRFFT`, `IRFFT2D`, and `IRFFT3D`.
98  * Add `pfor` converter for `SelfAdjointEigV2`.
99  * Add `tf.math.ndtri` and `tf.math.erfinv`.
100  * Add `tf.config.experimental.enable_mlir_bridge` to allow using MLIR compiler bridge in eager model.
101  * Added support for MatrixSolve on Cloud TPU / XLA.
102  * Added `tf.autodiff.ForwardAccumulator` for forward-mode autodiff
103  * Add `LinearOperatorPermutation`.
104  * A few performance optimizations on `tf.reduce_logsumexp`.
105  * Added multilabel handling to `AUC` metric
106  * Optimization on `zeros_like`.
107  * Dimension constructor now requires `None` or types with an `__index__` method.
108  * Add `tf.random.uniform` microbenchmark.
109  * Use `_protogen` suffix for proto library targets instead of `_cc_protogen` suffix.
110  * Moving the checkpoint reader from `swig` to `pybind11`.
111  * `tf.device` & `MirroredStrategy` now supports passing in a `tf.config.LogicalDevice`
112  * If you're building Tensorflow from source, consider using [bazelisk](https://github.com/bazelbuild/bazelisk) to automatically download and use the correct Bazel version. Bazelisk reads the `.bazelversion` file at the root of the project directory.
113
114## Thanks to our Contributors
115
116This release contains contributions from many people at Google, as well as:
117
1188bitmp3, Aaron Ma, AbdüLhamit Yilmaz, Abhai Kollara, aflc, Ag Ramesh, Albert Z. Guo, Alex Torres, amoitra, Andrii Prymostka, angeliand, Anshuman Tripathy, Anthony Barbier, Anton Kachatkou, Anubh-V, Anuja Jakhade, Artem Ryabov, autoih, Bairen Yi, Bas Aarts, Basit Ayantunde, Ben Barsdell, Bhavani Subramanian, Brett Koonce, candy.dc, Captain-Pool, caster, cathy, Chong Yan, Choong Yin Thong, Clayne Robison, Colle, Dan Ganea, David Norman, David Refaeli, dengziming, Diego Caballero, Divyanshu, djshen, Douman, Duncan Riach, EFanZh, Elena Zhelezina, Eric Schweitz, Evgenii Zheltonozhskii, Fei Hu, fo40225, Fred Reiss, Frederic Bastien, Fredrik Knutsson, fsx950223, fwcore, George Grzegorz Pawelczak, George Sterpu, Gian Marco Iodice, Giorgio Arena, giuros01, Gomathi Ramamurthy, Guozhong Zhuang, Haifeng Jin, Haoyu Wu, HarikrishnanBalagopal, HJYOO, Huang Chen-Yi, Ilham Firdausi Putra, Imran Salam, Jared Nielsen, Jason Zaman, Jasper Vicenti, Jeff Daily, Jeff Poznanovic, Jens Elofsson, Jerry Shih, jerryyin, Jesper Dramsch, jim.meyer, Jongwon Lee, Jun Wan, Junyuan Xie, Kaixi Hou, kamalkraj, Kan Chen, Karthik Muthuraman, Keiji Ariyama, Kevin Rose, Kevin Wang, Koan-Sin Tan, kstuedem, Kwabena W. Agyeman, Lakshay Tokas, latyas, Leslie-Fang-Intel, Li, Guizi, Luciano Resende, Lukas Folle, Lukas Geiger, Mahmoud Abuzaina, Manuel Freiberger, Mark Ryan, Martin Mlostek, Masaki Kozuki, Matthew Bentham, Matthew Denton, mbhuiyan, mdfaijul, Muhwan Kim, Nagy Mostafa, nammbash, Nathan Luehr, Nathan Wells, Niranjan Hasabnis, Oleksii Volkovskyi, Olivier Moindrot, olramde, Ouyang Jin, OverLordGoldDragon, Pallavi G, Paul Andrey, Paul Wais, pkanwar23, Pooya Davoodi, Prabindh Sundareson, Rajeshwar Reddy T, Ralovich, Kristof, Refraction-Ray, Richard Barnes, richardbrks, Robert Herbig, Romeo Kienzler, Ryan Mccormick, saishruthi, Saket Khandelwal, Sami Kama, Sana Damani, Satoshi Tanaka, Sergey Mironov, Sergii Khomenko, Shahid, Shawn Presser, ShengYang1, Siddhartha Bagaria, Simon Plovyt, skeydan, srinivasan.narayanamoorthy, Stephen Mugisha, sunway513, Takeshi Watanabe, Taylor Jakobson, TengLu, TheMindVirus, ThisIsIsaac, Tim Gates, Timothy Liu, Tomer Gafner, Trent Lo, Trevor Hickey, Trevor Morris, vcarpani, Wei Wang, Wen-Heng (Jack) Chung, wenshuai, Wenshuai-Xiaomi, wenxizhu, william, William D. Irons, Xinan Jiang, Yannic, Yasir Modak, Yasuhiro Matsumoto, Yong Tang, Yongfeng Gu, Youwei Song, Zaccharie Ramzi, Zhang, Zhenyu Guo, 王振华 (Zhenhua Wang), 韩董, 이중건 Isaac Lee
119
120# Release 1.15.0
121This is the last 1.x release for TensorFlow. We do not expect to update the 1.x branch with features, although we will issue patch releases to fix vulnerabilities for at least one year.
122
123## Major Features and Improvements
124* As [announced](https://groups.google.com/a/tensorflow.org/forum/#!topic/developers/iRCt5m4qUz0), `tensorflow` pip package will by default include GPU support (same as `tensorflow-gpu` now) for the platforms we currently have GPU support (Linux and Windows). It will work on machines with and without Nvidia GPUs. `tensorflow-gpu` will still be available, and CPU-only packages can be downloaded at `tensorflow-cpu` for users who are concerned about package size.
125* TensorFlow 1.15 contains a complete implementation of the 2.0 API in its `compat.v2` module. It contains a copy of the 1.15 main module (without `contrib`) in the `compat.v1` module. TensorFlow 1.15 is able to emulate 2.0 behavior using the `enable_v2_behavior()` function.
126This enables writing forward compatible code: by explicitly importing either `tensorflow.compat.v1` or `tensorflow.compat.v2`, you can ensure that your code works without modifications against an installation of 1.15 or 2.0.
127* EagerTensor now supports numpy buffer interface for tensors.
128* Add toggles `tf.enable_control_flow_v2()` and `tf.disable_control_flow_v2()` for enabling/disabling v2 control flow.
129* Enable v2 control flow as part of `tf.enable_v2_behavior()` and `TF2_BEHAVIOR=1`.
130* AutoGraph translates Python control flow into TensorFlow expressions, allowing users to write regular Python inside `tf.function`-decorated functions. AutoGraph is also applied in functions used with `tf.data`, `tf.distribute` and `tf.keras` APIS.
131* Adds `enable_tensor_equality()`, which switches the behavior such that:
132  * Tensors are no longer hashable.
133  * Tensors can be compared with `==` and `!=`, yielding a Boolean Tensor with element-wise comparison results. This will be the default behavior in 2.0.
134
135## Breaking Changes
136* Tensorflow code now produces 2 different pip packages: `tensorflow_core` containing all the code (in the future it will contain only the private implementation) and `tensorflow` which is a virtual pip package doing forwarding to `tensorflow_core` (and in the future will contain only the public API of tensorflow). We don't expect this to be breaking, unless you were importing directly from the implementation.
137* TensorFlow 1.15 is built using devtoolset7 (GCC7) on Ubuntu 16. This may lead to ABI incompatibilities with extensions built against earlier versions of TensorFlow.
138* Deprecated the use of `constraint=` and `.constraint` with ResourceVariable.
139* `tf.keras`:
140  * `OMP_NUM_THREADS` is no longer used by the default Keras config. To configure the number of threads, use `tf.config.threading` APIs.
141  * `tf.keras.model.save_model` and `model.save` now defaults to saving a TensorFlow SavedModel.
142  * `keras.backend.resize_images` (and consequently, `keras.layers.Upsampling2D`) behavior has changed, a bug in the resizing implementation was fixed.
143  * Layers now default to `float32`, and automatically cast their inputs to the layer's dtype. If you had a model that used `float64`, it will probably silently use `float32` in TensorFlow2, and a warning will be issued that starts with Layer "layer-name" is casting an input tensor from dtype float64 to the layer's dtype of float32. To fix, either set the default dtype to float64 with `tf.keras.backend.set_floatx('float64')`, or pass `dtype='float64'` to each of the Layer constructors. See `tf.keras.layers.Layer` for more information.
144  * Some `tf.assert_*` methods now raise assertions at operation creation time (i.e. when this Python line executes) if the input tensors' values are known at that time, not during the session.run(). When this happens, a noop is returned and the input tensors are marked non-feedable. In other words, if they are used as keys in `feed_dict` argument to `session.run()`, an error will be raised. Also, because some assert ops don't make it into the graph, the graph structure changes. A different graph can result in different per-op random seeds when they are not given explicitly (most often).
145
146## Bug Fixes and Other Changes
147* `tf.estimator`:
148  * `tf.keras.estimator.model_to_estimator` now supports exporting to `tf.train.Checkpoint` format, which allows the saved checkpoints to be compatible with `model.load_weights`.
149  * Fix tests in canned estimators.
150  * Expose Head as public API.
151  * Fixes critical bugs that help with `DenseFeatures` usability in TF2
152* `tf.data`:
153  * Promoting `unbatch` from experimental to core API.
154  * Adding support for datasets as inputs to `from_tensors` and `from_tensor_slices` and batching and unbatching of nested datasets.
155* `tf.keras`:
156  * `tf.keras.estimator.model_to_estimator` now supports exporting to tf.train.Checkpoint format, which allows the saved checkpoints to be compatible with `model.load_weights`.
157  * Saving a Keras Model using `tf.saved_model.save` now saves the list of variables, trainable variables, regularization losses, and the call function.
158  * Deprecated `tf.keras.experimental.export_saved_model` and `tf.keras.experimental.function`. Please use `tf.keras.models.save_model(..., save_format='tf')` and `tf.keras.models.load_model` instead.
159  * Add an `implementation=3` mode for `tf.keras.layers.LocallyConnected2D` and `tf.keras.layers.LocallyConnected1D` layers using `tf.SparseTensor` to store weights,  allowing a dramatic speedup for large sparse models.
160  * Enable the Keras compile API `experimental_run_tf_function` flag by default. This flag enables single training/eval/predict execution path. With this 1. All input types are converted to `Dataset`. 2. When distribution strategy is not specified this goes through the no-op distribution strategy path. 3. Execution is wrapped in tf.function unless `run_eagerly=True` is set in compile.
161  * Raise error if `batch_size` argument is used when input is dataset/generator/keras sequence.
162* `tf.lite`
163  * Add `GATHER` support to NN API delegate.
164  * tflite object detection script has a debug mode.
165  * Add delegate support for `QUANTIZE`.
166  * Added evaluation script for COCO minival.
167  * Add delegate support for `QUANTIZED_16BIT_LSTM`.
168  * Converts hardswish subgraphs into atomic ops.
169* Add support for defaulting the value of `cycle_length` argument of `tf.data.Dataset.interleave` to the number of schedulable CPU cores.
170* `parallel_for`: Add converter for `MatrixDiag`.
171* Add `narrow_range` attribute to `QuantizeAndDequantizeV2` and V3.
172* Added new op: `tf.strings.unsorted_segment_join`.
173* Add HW acceleration support for `topK_v2`.
174* Add new `TypeSpec` classes.
175* CloudBigtable version updated to v0.10.0.
176* Expose `Head` as public API.
177* Update docstring for gather to properly describe the non-empty `batch_dims` case.
178* Added `tf.sparse.from_dense` utility function.
179* Improved ragged tensor support in `TensorFlowTestCase`.
180* Makes the a-normal form transformation in Pyct configurable as to which nodes are converted to variables and which are not.
181* `ResizeInputTensor` now works for all delegates.
182* Add `EXPAND_DIMS` support to NN API delegate TEST:  expand_dims_test
183* `tf.cond` emits a StatelessIf op if the branch functions are stateless and do not touch any resources.
184* `tf.cond`, `tf.while` and `if` and `while` in AutoGraph now accept a nonscalar predicate if has a single element. This does not affect non-V2 control flow.
185* `tf.while_loop` emits a StatelessWhile op if the cond and body functions are stateless and do not touch any resources.
186* Refactors code in Quant8 LSTM support to reduce TFLite binary size.
187* Add support of local soft device placement for eager op.
188* Add HW acceleration support for `LogSoftMax`.
189* Added a function `nested_value_rowids` for ragged tensors.
190* Add guard to avoid acceleration of L2 Normalization with input rank != 4
191* Add `tf.math.cumulative_logsumexp operation`.
192* Add `tf.ragged.stack`.
193* Fix memory allocation problem when calling `AddNewInputConstantTensor`.
194* Delegate application failure leaves interpreter in valid state.
195* Add check for correct memory alignment to `MemoryAllocation::MemoryAllocation()`.
196* Extracts `NNAPIDelegateKernel` from nnapi_delegate.cc
197* Added support for `FusedBatchNormV3` in converter.
198* A ragged to dense op for directly calculating tensors.
199* Fix accidental quadratic graph construction cost in graph-mode `tf.gradients()`.
200
201## Thanks to our Contributors
202
203This release contains contributions from many people at Google, as well as:
204
205a6802739, Aaron Ma, Abdullah Selek, Abolfazl Shahbazi, Ag Ramesh, Albert Z. Guo, Albin Joy, Alex Itkes, Alex Sergeev, Alexander Pivovarov, Alexey Romanov, alhkad, Amit Srivastava, amoitra, Andrew Lihonosov, Andrii Prymostka, Anuj Rawat, Astropeak, Ayush Agrawal, Bairen Yi, Bas Aarts, Bastian Eichenberger, Ben Barsdell, Benjamin Peterson, bhack, Bharat Raghunathan, Bhavani Subramanian, Bryan Cutler, candy.dc, Cao Zongyan, Captain-Pool, Casper Da Costa-Luis, Chen Guoyin, Cheng Chang, chengchingwen, Chong Yan, Choong Yin Thong, Christopher Yeh, Clayne Robison, Coady, Patrick, Dan Ganea, David Norman, Denis Khalikov, Deven Desai, Diego Caballero, Duncan Dean, Duncan Riach, Dwight J Lyle, Eamon Ito-Fisher, eashtian3, EFanZh, ejot, Elroy Ashtian Jr, Eric Schweitz, Fangjun Kuang, Fei Hu, fo40225, formath, Fred Reiss, Frederic Bastien, Fredrik Knutsson, G. Hussain Chinoy, Gabriel, gehring, George Grzegorz Pawelczak, Gianluca Varisco, Gleb Popov, Greg Peatfield, Guillaume Klein, Gurpreet Singh, Gustavo Lima Chaves, haison, Haraldur TóMas HallgríMsson, HarikrishnanBalagopal, HåKon Sandsmark, I-Hong, Ilham Firdausi Putra, Imran Salam, Jason Zaman, Jason Zavaglia, jayhpark530, jefby, Jeff Daily, Jeffrey Poznanovic, Jekyll Lai, Jeroen BéDorf, Jerry Shih, jerryyin, jiakai, JiangXIAO, Joe Bowser, Joel Shapiro, Johan Gunnarsson, Jojimon Varghese, Joon, Josh Beal, Julian Niedermeier, Jun Wan, Junqin Zhang, Junyuan Xie, Justin Tunis, Kaixi Hou, Karl Lessard, Karthik Muthuraman, Kbhute-Ibm, khanhlvg, Koock Yoon, kstuedem, Kyuwon Kim, Lakshay Tokas, leike666666, leonard951, Leslie-Fang, Leslie-Fang-Intel, Li, Guizi, Lukas Folle, Lukas Geiger, Mahmoud Abuzaina, Manraj Singh Grover, Margaret Maynard-Reid, Mark Ryan, Matt Conley, Matthew Bentham, Matthew Denton, mbhuiyan, mdfaijul, Mei Jie, merturl, MichaelKonobeev, Michal W. Tarnowski, minds, mpppk, musikisomorphie, Nagy Mostafa, Nayana Thorat, Neil, Niels Ole Salscheider, Niklas SilfverströM, Niranjan Hasabnis, ocjosen, olramde, Pariksheet Pinjari, Patrick J. Lopresti, Patrik Gustavsson, per1234, PeterLee, Phan Van Nguyen Duc, Phillip Kravtsov, Pooya Davoodi, Pranav Marathe, Putra Manggala, Qingqing Cao, Rajeshwar Reddy T, Ramon ViñAs, Rasmus Diederichsen, Reuben Morais, richardbrks, robert, RonLek, Ryan Jiang, saishruthi, Saket Khandelwal, Saleem Abdulrasool, Sami Kama, Sana-Damani, Sergii Khomenko, Severen Redwood, Shubham Goyal, Sigrid Keydana, Siju Samuel, sleighsoft, smilu97, Son Tran, Srini511, srinivasan.narayanamoorthy, Sumesh Udayakumaran, Sungmann Cho, Tae-Hwan Jung, Taehoon Lee, Takeshi Watanabe, TengLu, terryky, TheMindVirus, ThisIsIsaac, Till Hoffmann, Timothy Liu, Tomer Gafner, Tongxuan Liu, Trent Lo, Trevor Morris, Uday Bondhugula, Vasileios Lioutas, vbvg2008, Vishnuvardhan Janapati, Vivek Suryamurthy, Wei Wang, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons, winstonq, wyzhao, Xiaoming (Jason) Cui, Xinan Jiang, Xinping Wang, Yann-Yy, Yasir Modak, Yong Tang, Yongfeng Gu, Yuchen Ying, Yuxin Wu, zyeric, 王振华 (Zhenhua Wang)
206
207# Release 2.0.0
208
209## Major Features and Improvements
210
211TensorFlow 2.0 focuses on **simplicity** and **ease of use**, featuring updates like:
212
213* Easy model building with Keras and eager execution.
214* Robust model deployment in production on any platform.
215* Powerful experimentation for research.
216* API simplification by reducing duplication and removing deprecated endpoints.
217
218For details on best practices with 2.0, see [the Effective 2.0 guide](https://www.tensorflow.org/beta/guide/effective_tf2)
219
220
221For information on upgrading your existing TensorFlow 1.x models, please refer to our [Upgrade](https://medium.com/tensorflow/upgrading-your-code-to-tensorflow-2-0-f72c3a4d83b5) and [Migration](https://www.tensorflow.org/beta/guide/migration_guide) guides. We have also released a collection of [tutorials and getting started guides](https://www.tensorflow.org/beta).
222
223## Highlights
224
225*   TF 2.0 delivers Keras as the central high level API used to build and train
226    models. Keras provides several model-building APIs such as Sequential,
227    Functional, and Subclassing along with eager execution, for immediate
228    iteration and intuitive debugging, and `tf.data`, for building scalable
229    input pipelines. Checkout
230    [guide](https://www.tensorflow.org/beta/guide/keras/overview) for additional
231    details.
232*   Distribution Strategy: TF 2.0 users will be able to use the
233    [`tf.distribute.Strategy`](https://www.tensorflow.org/beta/guide/distribute_strategy)
234    API to distribute training with minimal code changes, yielding great
235    out-of-the-box performance. It supports distributed training with Keras
236    model.fit, as well as with custom training loops. Multi-GPU support is
237    available, along with experimental support for multi worker and Cloud TPUs.
238    Check out the
239    [guide](https://www.tensorflow.org/beta/guide/distribute_strategy) for more
240    details.
241*   Functions, not Sessions. The traditional declarative programming model of
242    building a graph and executing it via a `tf.Session` is discouraged, and
243    replaced with by writing regular Python functions. Using the `tf.function`
244    decorator, such functions can be turned into graphs which can be executed
245    remotely, serialized, and optimized for performance.
246*   Unification of `tf.train.Optimizers` and `tf.keras.Optimizers`. Use
247    `tf.keras.Optimizers` for TF2.0. `compute_gradients` is removed as public
248    API, use `GradientTape` to compute gradients.
249*   AutoGraph translates Python control flow into TensorFlow expressions,
250    allowing users to write regular Python inside `tf.function`-decorated
251    functions. AutoGraph is also applied in functions used with tf.data,
252    tf.distribute and tf.keras APIs.
253*   Unification of exchange formats to SavedModel. All TensorFlow ecosystem
254    projects (TensorFlow Lite, TensorFlow JS, TensorFlow Serving, TensorFlow
255    Hub) accept SavedModels. Model state should be saved to and restored from
256    SavedModels.
257*   API Changes: Many API symbols have been renamed or removed, and argument
258    names have changed. Many of these changes are motivated by consistency and
259    clarity. The 1.x API remains available in the compat.v1 module. A list of
260    all symbol changes can be found
261    [here](https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0).
262    *   API clean-up, included removing `tf.app`, `tf.flags`, and `tf.logging`
263        in favor of [absl-py](https://github.com/abseil/abseil-py).
264*   No more global variables with helper methods like
265    `tf.global_variables_initializer` and `tf.get_global_step`.
266*   Add toggles `tf.enable_control_flow_v2()` and `tf.disable_control_flow_v2()`
267    for enabling/disabling v2 control flow.
268*   Enable v2 control flow as part of `tf.enable_v2_behavior()` and
269    `TF2_BEHAVIOR=1`.
270*   Fixes autocomplete for most TensorFlow API references by switching to use
271    relative imports in API `__init__.py` files.
272*   Auto Mixed-Precision graph optimizer simplifies converting models to
273    `float16` for acceleration on Volta and Turing Tensor Cores. This feature
274    can be enabled by wrapping an optimizer class with
275    `tf.train.experimental.enable_mixed_precision_graph_rewrite()`.
276*   Add environment variable `TF_CUDNN_DETERMINISTIC`. Setting to "true" or "1"
277    forces the selection of deterministic cuDNN convolution and max-pooling
278    algorithms. When this is enabled, the algorithm selection procedure itself
279    is also deterministic.
280
281## Breaking Changes
282* Many backwards incompatible API changes have been made to clean up the APIs and make them more consistent.
283* Toolchains:
284  * TensorFlow 2.0.0 is built using devtoolset7 (GCC7) on Ubuntu 16. This may lead to ABI incompatibilities with extensions built against earlier versions of TensorFlow.
285  * Tensorflow code now produces 2 different pip packages: tensorflow_core containing all the code (in the future it will contain only the private implementation) and tensorflow which is a virtual pip package doing forwarding to tensorflow_core (and in the future will contain only the public API of tensorflow). We don't expect this to be breaking, unless you were importing directly from the implementation.
286  Removed the `freeze_graph` command line tool; `SavedModel` should be used in place of frozen graphs.
287
288* `tf.contrib`:
289  * `tf.contrib` has been deprecated, and functionality has been either migrated to the core TensorFlow API, to an ecosystem project such as [tensorflow/addons](https://www.github.com/tensorflow/addons) or [tensorflow/io](https://www.github.com/tensorflow/io), or removed entirely.
290  * Remove `tf.contrib.timeseries` dependency on TF distributions.
291  * Replace contrib references with `tf.estimator.experimental.*` for apis in `early_stopping.py`.
292
293* `tf.estimator`:
294  * Premade estimators in the tf.estimator.DNN/Linear/DNNLinearCombined family have been updated to use `tf.keras.optimizers` instead of the `tf.compat.v1.train.Optimizer`s. If you do not pass in an `optimizer=` arg or if you use a string, the premade estimator will use the Keras optimizer. This is checkpoint breaking, as the optimizers have separate variables. A checkpoint converter tool for converting optimizers is included with the release,  but if you want to avoid any change, switch to the v1 version of the estimator:  `tf.compat.v1.estimator.DNN/Linear/DNNLinearCombined*`.
295  * Default aggregation for canned Estimators is now `SUM_OVER_BATCH_SIZE`. To maintain previous default behavior, please pass `SUM` as the loss aggregation method.
296  * Canned Estimators don’t support `input_layer_partitioner` arg in the API. If you have this arg, you will have to switch to `tf.compat.v1 canned Estimators`.
297  * `Estimator.export_savedmodel` has been renamed to `export_saved_model`.
298  * When saving to SavedModel, Estimators will strip default op attributes. This is almost always the correct behavior, as it is more forwards compatible, but if you require that default attributes to be saved with the model, please use `tf.compat.v1.Estimator`.
299  * Feature Columns have been upgraded to be more Eager-friendly and to work with Keras. As a result, `tf.feature_column.input_layer` has been deprecated in favor of `tf.keras.layers.DenseFeatures`. v1 feature columns have direct analogues in v2 except for `shared_embedding_columns`, which are not cross-compatible with v1 and v2. Use `tf.feature_column.shared_embeddings` instead.
300
301* `tf.keras`:
302  * `OMP_NUM_THREADS` is no longer used by the default Keras config.  To configure the number of threads, use `tf.config.threading` APIs.
303  * `tf.keras.model.save_model` and `model.save` now defaults to saving a TensorFlow SavedModel. HDF5 files are still supported.
304  * Deprecated `tf.keras.experimental.export_saved_model` and `tf.keras.experimental.function`. Please use `tf.keras.models.save_model(..., save_format='tf')` and `tf.keras.models.load_model` instead.
305  * Layers now default to float32, and automatically cast their inputs to the layer's dtype. If you had a model that used float64, it will probably silently use float32 in TensorFlow 2, and a warning will be issued that starts with `Layer <layer-name>` is casting an input tensor from dtype float64 to the layer's dtype of float32. To fix, either set the default dtype to float64 with `tf.keras.backend.set_floatx('float64')`, or pass `dtype='float64'` to each of the Layer constructors. See `tf.keras.layers.Layer` for more information.
306
307* `tf.lite`:
308  * Removed `lite.OpHint`, `lite.experimental`, and `lite.constant` from 2.0 API.
309* Tensors are no longer hashable, but instead compare element-wise with `==` and `!=`. Use `tf.compat.v1.disable_tensor_equality()` to return to the previous behavior.
310* Performing equality operations on Tensors or Variables with incompatible shapes an exception is no longer thrown. Instead `__eq__` returns False and `__ne__` returns True.
311* Removed `tf.string_split` from v2 API.
312* Deprecated the use of `constraint=` and `.constraint` with ResourceVariable.
313* Add `UnifiedGRU` as the new GRU implementation for tf2.0. Change the default recurrent activation function for GRU from `hard_sigmoid` to `sigmoid`, and `reset_after` to True in 2.0. Historically recurrent activation is `hard_sigmoid` since it is fast than 'sigmoid'. With new unified backend between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we change the default for CPU mode to sigmoid as well. With that, the default GRU will be compatible with both CPU and GPU kernel. This will enable user with GPU to use CuDNN kernel by default and get a 10x performance boost in training. Note that this is checkpoint breaking change. If user want to use their 1.x pre-trained checkpoint, please construct the layer with GRU(recurrent_activation='hard_sigmoid', reset_after=False) to fallback to 1.x behavior.
314* `CUDNN_INSTALL_PATH`, `TENSORRT_INSTALL_PATH`, `NCCL_INSTALL_PATH`, `NCCL_HDR_PATH` are deprecated. Use `TF_CUDA_PATHS` instead which supports a comma-separated list of base paths that are searched to find CUDA libraries and headers.
315
316Refer to our [public project status tracker](https://github.com/orgs/tensorflow/projects/4) and [issues tagged with `2.0`](https://github.com/tensorflow/tensorflow/issues?q=is%3Aopen+is%3Aissue+label%3A2.0) on GitHub for insight into recent issues and development progress.
317
318If you experience any snags when using TF 2.0, please let us know at the [TF 2.0 Testing User Group](https://groups.google.com/a/tensorflow.org/forum/?utm_medium=email&utm_source=footer#!forum/testing). We have a support mailing list as well as weekly testing meetings, and would love to hear your migration feedback and questions.
319
320
321## Bug Fixes and Other Changes
322
323*   `tf.contrib`:
324
325    *   Expose `tf.contrib.proto.*` ops in `tf.io` (they will exist in TF2)
326
327*   `tf.data`:
328
329    *   Add support for TensorArrays to `tf.data Dataset`.
330    *   Integrate Ragged Tensors with `tf.data`.
331    *   All core and experimental tf.data transformations that input
332        user-defined functions can span multiple devices now.
333    *   Extending the TF 2.0 support for `shuffle(...,
334        reshuffle_each_iteration=True)` and `cache()` to work across different
335        Python iterators for the same dataset.
336    *   Removing the `experimental_numa_aware` option from `tf.data.Options`.
337    *   Add `num_parallel_reads` and passing in a Dataset containing filenames
338        into `TextLineDataset` and `FixedLengthRecordDataset`.
339    *   Add support for defaulting the value of `cycle_length` argument of
340        `tf.data.Dataset.interleave` to the number of schedulable CPU cores.
341    *   Promoting `tf.data.experimental.enumerate_dataset` to core as
342        `tf.data.Dataset.enumerate`.
343    *   Promoting `tf.data.experimental.unbatch` to core as
344        `tf.data.Dataset.unbatch`.
345    *   Adds option for introducing slack in the pipeline to reduce CPU
346        contention, via `tf.data.Options().experimental_slack = True`
347    *   Added experimental support for parallel batching to `batch()` and
348        `padded_batch()`. This functionality can be enabled through
349        `tf.data.Options()`.
350    *   Support cancellation of long-running `reduce`.
351    *   Now we use `dataset` node name as prefix instead of the op name, to
352        identify the component correctly in metrics, for pipelines with repeated
353        components.
354    *   Improve the performance of datasets using `from_tensors()`.
355    *   Promoting `unbatch` from experimental to core API.
356    *   Adding support for datasets as inputs to `from_tensors` and
357        `from_tensor_slices` and batching and unbatching of nested datasets.
358
359*   `tf.distribute`:
360
361    *   Enable `tf.distribute.experimental.MultiWorkerMirroredStrategy` working
362        in eager mode.
363    *   Callbacks are supported in `MultiWorkerMirroredStrategy`.
364    *   Disable `run_eagerly` and distribution strategy if there are symbolic
365        tensors added to the model using `add_metric` or `add_loss`.
366    *   Loss and gradients should now more reliably be correctly scaled w.r.t.
367        the global batch size when using a `tf.distribute.Strategy`.
368    *   Set default loss reduction as `AUTO` for improving reliability of loss
369        scaling with distribution strategy and custom training loops. `AUTO`
370        indicates that the reduction option will be determined by the usage
371        context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`.
372        When used in distribution strategy scope, outside of built-in training
373        loops such as `tf.keras` `compile` and `fit`, we expect reduction value
374        to be 'None' or 'SUM'. Using other values will raise an error.
375    *   Support for multi-host `ncclAllReduce` in Distribution Strategy.
376
377*   `tf.estimator`:
378
379    *   Replace `tf.contrib.estimator.add_metrics` with
380        `tf.estimator.add_metrics`
381    *   Use `tf.compat.v1.estimator.inputs` instead of `tf.estimator.inputs`
382    *   Replace contrib references with `tf.estimator.experimental.*` for apis
383        in early_s in Estimator
384    *   Canned Estimators will now use keras optimizers by default. An error
385        will be raised if tf.train.Optimizers are used, and you will have to
386        switch to tf.keras.optimizers or tf.compat.v1 canned Estimators.
387    *   A checkpoint converter for canned Estimators has been provided to
388        transition canned Estimators that are warm started from
389        `tf.train.Optimizers` to `tf.keras.optimizers`.
390    *   Losses are scaled in canned estimator v2 and not in the optimizers
391        anymore. If you are using Estimator + distribution strategy + optimikzer
392        v1 then the behavior does not change. This implies that if you are using
393        custom estimator with optimizer v2, you have to scale losses. We have
394        new utilities to help scale losses `tf.nn.compute_average_loss`,
395        `tf.nn.scale_regularization_loss`.
396
397*   `tf.keras`:
398
399    *   Premade models (including Linear and WideDeep) have been introduced for
400        the purpose of replacing Premade estimators.
401    *   Model saving changes
402    *   `model.save` and `tf.saved_model.save` may now save to the TensorFlow
403        SavedModel format. The model can be restored using
404        `tf.keras.models.load_model`. HDF5 files are still supported, and may be
405        used by specifying `save_format="h5"` when saving.
406    *   Raw TensorFlow functions can now be used in conjunction with the Keras
407        Functional API during model creation. This obviates the need for users
408        to create Lambda layers in most cases when using the Functional API.
409        Like Lambda layers, TensorFlow functions that result in Variable
410        creation or assign ops are not supported.
411    *   Add support for passing list of lists to the `metrics` argument in Keras
412        `compile`.
413    *   Add `tf.keras.layers.AbstractRNNCell` as the preferred implementation
414        for RNN cells in TF v2. User can use it to implement RNN cells with
415        custom behavior.
416    *   Keras training and validation curves are shown on the same plot when
417        using the TensorBoard callback.
418    *   Switched Keras `fit/evaluate/predict` execution to use only a single
419        unified path by default unless eager execution has been explicitly
420        disabled, regardless of input type. This unified path places an
421        eager-friendly training step inside of a `tf.function`. With this
422    *   All input types are converted to `Dataset`.
423    *   The path assumes there is always a distribution strategy. when
424        distribution strategy is not specified the path uses a no-op
425        distribution strategy.
426    *   The training step is wrapped in `tf.function` unless `run_eagerly=True`
427        is set in compile. The single path execution code does not yet support
428        all use cases. We fallback to the existing v1 execution paths if your
429        model contains the following:
430        1.  `sample_weight_mode` in compile
431        2.  `weighted_metrics` in compile
432        3.  v1 optimizer
433        4.  target tensors in compile If you are experiencing any issues because
434            of this change, please inform us (file an issue) about your use case
435            and you can unblock yourself by setting
436            `experimental_run_tf_function=False` in compile meanwhile. We have
437            seen couple of use cases where the model usage pattern is not as
438            expected and would not work with this change.
439    *   output tensors of one layer is used in the constructor of another.
440    *   symbolic tensors outside the scope of the model are used in custom loss
441        functions. The flag can be disabled for these cases and ideally the
442        usage pattern will need to be fixed.
443    *   Mark Keras `set_session` as `compat.v1` only.
444    *   `tf.keras.estimator.model_to_estimator` now supports exporting to
445        `tf.train.Checkpoint format`, which allows the saved checkpoints to be
446        compatible with `model.load_weights`.
447    *   `keras.backend.resize_images` (and consequently,
448        `keras.layers.Upsampling2D`) behavior has changed, a bug in the resizing
449        implementation was fixed.
450    *   Add an `implementation=3` mode for `tf.keras.layers.LocallyConnected2D`
451        and `tf.keras.layers.LocallyConnected1D` layers using `tf.SparseTensor`
452        to store weights, allowing a dramatic speedup for large sparse models.
453    *   Raise error if `batch_size` argument is used when input is
454        dataset/generator/keras sequence.
455    *   Update TF 2.0 `keras.backend.name_scope` to use TF 2.0 `name_scope`.
456    *   Add v2 module aliases for losses, metrics, initializers and optimizers:
457        `tf.losses = tf.keras.losses` & `tf.metrics = tf.keras.metrics` &
458        `tf.initializers = tf.keras.initializers` & `tf.optimizers =
459        tf.keras.optimizers`.
460    *   Updates binary cross entropy logic in Keras when input is probabilities.
461        Instead of converting probabilities to logits, we are using the cross
462        entropy formula for probabilities.
463    *   Added public APIs for `cumsum` and `cumprod` keras backend functions.
464    *   Add support for temporal sample weight mode in subclassed models.
465    *   Raise `ValueError` if an integer is passed to the training APIs.
466    *   Added fault-tolerance support for training Keras model via `model.fit()`
467        with `MultiWorkerMirroredStrategy`, tutorial available.
468    *   Custom Callback tutorial is now available.
469    *   To train with `tf.distribute`, Keras API is recommended over estimator.
470    *   `steps_per_epoch` and `steps` arguments are supported with numpy arrays.
471    *   New error message when unexpected keys are used in
472        sample_weight/class_weight dictionaries
473    *   Losses are scaled in Keras compile/fit and not in the optimizers
474        anymore. If you are using custom training loop, we have new utilities to
475        help scale losses `tf.nn.compute_average_loss`,
476        `tf.nn.scale_regularization_loss`.
477    *   `Layer` apply and add_variable APIs are deprecated.
478    *   Added support for channels first data format in cross entropy losses
479        with logits and support for tensors with unknown ranks.
480    *   Error messages will be raised if `add_update`, `add_metric`, `add_loss`,
481        activity regularizers are used inside of a control flow branch.
482    *   New loss reduction types:
483    *   `AUTO`: Indicates that the reduction option will be determined by the
484        usage context. For almost all cases this defaults to
485        `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside
486        of built-in training loops such as `tf.keras` `compile` and `fit`, we
487        expect reduction value to be `SUM` or `NONE`. Using `AUTO` in that case
488        will raise an error.
489    *   `NONE`: Weighted losses with one dimension reduced (axis=-1, or axis
490        specified by loss function). When this reduction type used with built-in
491        Keras training loops like `fit`/`evaluate`, the unreduced vector loss is
492        passed to the optimizer but the reported loss will be a scalar value.
493    *   `SUM`: Scalar sum of weighted losses. 4. `SUM_OVER_BATCH_SIZE`: Scalar
494        `SUM` divided by number of elements in losses. This reduction type is
495        not supported when used with `tf.distribute.Strategy` outside of
496        built-in training loops like `tf.keras` `compile`/`fit`.
497    *   Wraps losses passed to the `compile` API (strings and v1 losses) which
498        are not instances of v2 `Loss` class in `LossWrapper` class. => All
499        losses will now use `SUM_OVER_BATCH_SIZE` reduction as default.
500    *   `model.add_loss(symbolic_tensor)` should work in ambient eager.
501    *   Update metric name to always reflect what the user has given in compile.
502        Affects following cases
503    *   When name is given as 'accuracy'/'crossentropy'
504    *   When an aliased function name is used eg. 'mse'
505    *   Removing the `weighted` prefix from weighted metric names.
506    *   Allow non-Tensors through v2 losses.
507    *   Add v2 sparse categorical crossentropy metric.
508    *   Add v2 APIs for `AUCCurve` and `AUCSummationMethod` enums.
509    *   `add_update` can now be passed a zero-arg callable in order to support
510        turning off the update when setting `trainable=False` on a Layer of a
511        Model compiled with `run_eagerly=True`.
512    *   Standardize the LayerNormalization API by replacing the args `norm_axis`
513        and `params_axis` with `axis`.
514    *   Fixed critical bugs that help with DenseFeatures usability in TF2
515
516*   `tf.lite`:
517
518    *   Added evaluation script for `COCO` minival
519    *   Add delegate support for `QUANTIZE`.
520    *   Add `GATHER` support to NN API delegate.
521    *   Added support for TFLiteConverter Python API in 2.0. Contains functions
522        from_saved_model, from_keras_file, and from_concrete_functions.
523    *   Add `EXPAND_DIMS` support to NN API delegate TEST.
524    *   Add `narrow_range` attribute to QuantizeAndDequantizeV2 and V3.
525    *   Added support for `tflite_convert` command line tool in 2.0.
526    *   Post-training quantization tool supports quantizing weights shared by
527        multiple operations. The models made with versions of this tool will use
528        INT8 types for weights and will only be executable interpreters from
529        this version onwards.
530    *   Post-training quantization tool supports fp16 weights and GPU delegate
531        acceleration for fp16.
532    *   Add delegate support for `QUANTIZED_16BIT_LSTM`.
533    *   Extracts `NNAPIDelegateKernel` from nnapi_delegate.cc
534
535*   TensorRT
536
537    *   Add TensorFlow 2.0-compatible `TrtGraphConverterV2` API for TensorRT
538        conversion. TensorRT initialization arguments are now passed wrapped in
539        a named-tuple, `TrtConversionParams`, rather than as separate arguments
540        as in `TrtGraphConverter`.
541    *   Changed API to optimize TensorRT enginges during graph optimization.
542        This is now done by calling `converter.build()` where previously
543        `is_dynamic_op=False` would be set.
544    *   `converter.convert()` no longer returns a `tf.function`. Now the
545        function must be accessed from the saved model.
546    *   The `converter.calibrate()` method has been removed. To trigger
547        calibration, a `calibration_input_fn` should be provided to
548        `converter.convert()`.
549
550*   Other:
551
552    *   Fix accidental quadratic graph construction cost in graph-mode
553        `tf.gradients()`.
554    *   ResourceVariable's gather op supports batch dimensions.
555    *   ResourceVariable support for `gather_nd`.
556    *   `ResourceVariable` and `Variable` no longer accepts `constraint` in the
557        constructor, nor expose it as a @property.
558    *   Added gradient for `SparseToDense` op.
559    *   Expose a flag that allows the number of threads to vary across Python
560        benchmarks.
561    *   `image.resize` in 2.0 now supports gradients for the new resize kernels.
562    *   `image.resize` now considers proper pixel centers and has new kernels
563        (incl. anti-aliasing).
564    *   Renamed `tf.image` functions to remove duplicate "image" where it is
565        redundant.
566    *   Variadic reduce is supported on CPU Variadic reduce is supported on CPU
567    *   Remove unused `StringViewVariantWrapper`.
568    *   Delete unused `Fingerprint64Map` op registration
569    *   Add broadcasting support to `tf.matmul`.
570    *   Add C++ Gradient for `BatchMatMulV2`.
571    *   Add `tf.math.cumulative_logsumexp` operation.
572    *   Add ellipsis (...) support for `tf.einsum()`.
573    *   Add expand_composites argument to all `nest.*` methods.
574    *   Added `strings.byte_split`.
575    *   Add a new "result_type" parameter to `tf.strings.split`.
576    *   Add name argument to `tf.string_split` and `tf.strings_split`.
577    *   Extend `tf.strings.split` to support inputs with any rank.
578    *   Added `tf.random.binomial`.
579    *   Added `key` and `skip` methods to `random.experimental.Generator`.
580    *   Extend `tf.function` with basic support for CompositeTensors arguments
581        (such as `SparseTensor` and `RaggedTensor`).
582    *   `parallel_for.pfor`: add converters for Softmax, LogSoftmax, IsNaN, All,
583        Any, and MatrixSetDiag.
584    *   `parallel_for`: add converters for LowerTriangularSolve and Cholesky.
585    *   `parallel_for`: add converters for `LogMatrixDeterminant` and
586        `MatrixBandPart`.
587    *   `parallel_for`: Add converter for `MatrixDiag`.
588    *   `parallel_for`: Add converters for `OneHot`, `LowerBound`, `UpperBound`.
589    *   `parallel_for`: add converter for `BroadcastTo`.
590    *   Add `pfor` converter for `Squeeze`.
591    *   Add `RaggedTensor.placeholder()`.
592    *   Add ragged tensor support to `tf.squeeze`.
593    *   Update RaggedTensors to support int32 row_splits.
594    *   Allow `LinearOperator.solve` to take a `LinearOperator`.
595    *   Allow all dtypes for `LinearOperatorCirculant`.
596    *   Introduce MaxParallelism method
597    *   Add `LinearOperatorHouseholder`.
598    *   Adds Philox support to new stateful RNG's XLA path.
599    *   Added `TensorSpec` support for CompositeTensors.
600    *   Added `tf.linalg.tridiagonal_solve` op.
601    *   Added partial_pivoting input parameter to `tf.linalg.tridiagonal_solve`.
602    *   Added gradient to `tf.linalg.tridiagonal_solve`.
603    *   Added `tf.linalg.tridiagonal_mul op`.
604    *   Added GPU implementation of `tf.linalg.tridiagonal_matmul`.
605    *   Added `LinearOperatorToeplitz`.
606    *   Upgraded LIBXSMM to version 1.11.
607    *   Uniform processing of quantized embeddings by Gather and EmbeddingLookup
608        Ops.
609    *   Correct a misstatement in the documentation of the sparse softmax cross
610        entropy logit parameter.
611    *   Add `tf.ragged.boolean_mask`.
612    *   `tf.switch_case` added, which selects a branch_fn based on a
613        branch_index.
614    *   The C++ kernel of gather op supports batch dimensions.
615    *   Fixed default value and documentation for `trainable` arg of
616        tf.Variable.
617    *   `EagerTensor` now supports numpy buffer interface for tensors.
618    *   This change bumps the version number of the `FullyConnected` Op to 5.
619    *   Added new op: `tf.strings.unsorted_segment_join`.
620    *   Added HW acceleration support for `topK_v2`.
621    *   CloudBigtable version updated to v0.10.0 BEGIN_PUBLIC CloudBigtable
622        version updated to v0.10.0.
623    *   Expose `Head` as public API.
624    *   Added `tf.sparse.from_dense` utility function.
625    *   Improved ragged tensor support in `TensorFlowTestCase`.
626    *   Added a function `nested_value_rowids` for ragged tensors.
627    *   Added `tf.ragged.stack`.
628    *   Makes the a-normal form transformation in Pyct configurable as to which
629        nodes are converted to variables and which are not.
630    *   `ResizeInputTensor` now works for all delegates.
631    *   `tf.cond` emits a StatelessIf op if the branch functions are stateless
632        and do not touch any resources.
633    *   Add support of local soft device placement for eager op.
634    *   Pass partial_pivoting to the `_TridiagonalSolveGrad`.
635    *   Add HW acceleration support for `LogSoftMax`.
636    *   Add guard to avoid acceleration of L2 Normalization with input rank != 4
637    *   Fix memory allocation problem when calling `AddNewInputConstantTensor`.
638    *   Delegate application failure leaves interpreter in valid state
639    *   `tf.while_loop` emits a StatelessWhile op if the cond and body functions
640        are stateless and do not touch any resources.
641    *   `tf.cond`, `tf.while` and if and while in AutoGraph now accept a
642        nonscalar predicate if has a single element. This does not affect non-V2
643        control flow.
644    *   Fix potential security vulnerability where decoding variant tensors from
645        proto could result in heap out of bounds memory access.
646    *   Only create a GCS directory object if the object does not already exist.
647    *   Introduce `dynamic` constructor argument in Layer and Model, which
648        should be set to `True` when using imperative control flow in the `call`
649        method.
650    *   Begin adding Go wrapper for C Eager API.
651    *   XLA HLO graphs can be inspected with interactive_graphviz tool now.
652    *   Add dataset ops to the graph (or create kernels in Eager execution)
653        during the python Dataset object creation instead doing it during
654        Iterator creation time.
655    *   Add `batch_dims` argument to `tf.gather`.
656    *   The behavior of `tf.gather` is now correct when `axis=None` and
657        `batch_dims<0`.
658    *   Update docstring for gather to properly describe the non-empty
659        `batch_dims` case.
660    *   Removing of dtype in the constructor of initializers and partition_info
661        in call.
662    *   Add `tf.math.nextafter` op.
663    *   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
664        dispatches the best kernel implementation based on CPU vector
665        architecture. To disable them, build with
666        `--define=tensorflow_mkldnn_contraction_kernel=0`.
667    *   `tf.linspace(start, stop, num)` now always uses "stop" as last value
668        (for num > 1)
669    *   Added top-k to precision and recall to keras metrics.
670    *   Add a ragged size op and register it to the op dispatcher
671    *   Transitive dependencies on :`pooling_ops` were removed. Some users may
672        need to add explicit dependencies on :`pooling_ops` if they reference
673        the operators from that library.
674    *   Add `CompositeTensor` base class.
675    *   Malformed gif images could result in an access out of bounds in the
676        color palette of the frame. This has been fixed now
677    *   Add templates and interfaces for creating lookup tables
678    *   `Tensor::UnsafeCopyFromInternal` deprecated in favor
679        `Tensor::BitcastFrom`.
680    *   In `map_vectorization` optimization, reduce the degree of parallelism in
681        the vectorized map node.
682    *   Add variant wrapper for `absl::string_view`.
683    *   Add OpKernels for some stateless maps.
684    *   DType is no longer convertible to an int. Use `dtype.as_datatype_enum`
685        instead of `int(dtype)` to get the same result.
686    *   Support both binary and -1/1 label input in v2 hinge and squared hinge
687        losses.
688    *   Added `LinearOperator.adjoint` and `LinearOperator.H` (alias).
689    *   Expose CriticalSection in core as `tf.CriticalSection`.
690    *   Enhanced graphviz output.
691    *   Add opkernel templates for common table operations.
692    *   Fix callbacks do not log values in eager mode when a deferred build
693        model is used.
694    *   `SignatureDef` util functions have been deprecated.
695    *   Update `Fingerprint64Map` to use aliases
696    *   Add legacy string flat hash map op kernels.
697    *   Add support for `add_metric` in the graph function mode.
698    *   Updating cosine similarity loss - removed the negate sign from cosine
699        similarity.
700    *   Changed default for gradient accumulation for TPU embeddings to true.
701    *   Adds summary trace API for collecting graph and profile information.
702    *   The `precision_mode` argument to `TrtGraphConverter` is now case
703        insensitive.
704
705## Thanks to our Contributors
706
707This release contains contributions from many people at Google, as well as:
708
7091e100, a6802739, 4d55397500, a6802739, Abdullah Selek, abenmao, Abolfazl
710Shahbazi, Adam Richter, Adam Weiss, Ag Ramesh, Alan Du, Albin Joy, Alex, Alex
711Itkes, Alex Sergeev, Alexander Pivovarov, Alexey Romanov, alhkad, Aman Patel,
712Amit, Amit Kumar Jaiswal, Amit Srivastava, amoitra, Andreas Eberle, Andrew
713Lihonosov, Andy Craze, Anshuman Tripathy, Anthony Hsu, Anthony Platanios, Anuj
714Rawat, arp95, Arpit Shah, Armen Poghosov, armenpoghosov, Astropeak, Ashwin
715Ramaswami, Arpit Shah, Augustina Ragwitz, Aurelien Geron, AuréLien Geron,
716avasid, aweers, awesomealex1, Ayush Agrawal, Bas Aarts, Bastian Eichenberger,
717Bairen Yi, Bayberry Z, Ben Barsdell, Benjamin Peterson, bhack, Bharat
718Raghunathan, Bhavani Subramanian, Bin Fan, blairhan, BléNesi Attila, Bodin-E,
719Brandon Carter, Bryan Cutler, candy.dc, Cao Zongyan, Casper Da Costa-Luis, Chao
720Liu, Chen Guoyin, chenchc, chengchingwen, chie8842, Christian Hansen, Christoph
721Boeddeker, Christopher Yeh, Clayne Robison, Coady, Patrick, crafet, csukuangfj,
722ctiijima, Dan Jarvis, Dan Lazewatsky, Daniel Ingram, Daniel Rasmussen, Daniel
723Salvadori, Dave Airlie, David Norman, Dayananda V, delock, Denis Khalikov, Deven
724Desai, Dheeraj Rajaram Reddy, Diego Caballero, dmitrievanthony, Donovan Ong,
725Drew Szurko, Duncan Dean, Duncan Riach, Dustin Neighly, Dwight J Lyle, Eamon
726Ito-Fisher, eashtian3, Edward Forgacs, EFanZh, ejot, Elroy Ashtian Jr, Eric
727Schweitz, Evgeniy Polyakov, Fangjun Kuang, Federico Martinez, Fei Hu, Felix
728Lemke, Filip Matzner, FlashTek, fo40225, formath, FrançOis Chollet, frreiss,
729Fred Reiss, Frederic Bastien, Fredrik Knutsson, G. Hussain Chinoy, Gabriel,
730Gautam, gehring, Geoffrey Irving, George Grzegorz Pawelczak, Grzegorz Pawelczak,
731George Sterpu, Gianluca Varisco, Gleb Popov, Greg Peatfield, Guillaume Klein,
732Gurpreet Singh, Gustavo Lima Chaves, Gyoung-Yoon Ryoo, haison, Hanton Yang,
733HanGuo97, Haraldur TóMas HallgríMsson, Hari Shankar, hehongliang, Heungsub Lee,
734Hoeseong Kim, Huan Li (李卓桓), HåKon Sandsmark, I-Hong, I-Hong Jhuo, Ilham
735Firdausi Putra, Ilango R, Imran Salam, Innovimax, Jacky Ko, Irene Dea, Ivan
736Habernal, Jakub Lipinski, Jacky, Jason Zaman, Jason Zavaglia, jayhpark530,
737jcf94, jefby, Jeff Daily, Jeff Poznanovic, Jeffrey Poznanovic, Jekyll Lai, jer,
738Jeroen BéDorf, jerryyin, jhalakp, jiakai, Jia Qingtong, Jiankang, JiangXIAO, Joe
739Bowser, Joe Q, Joe Quadrino, Joel Shapiro, Johan Gunnarsson, Jojimon Varghese,
740Jonas Rauber, Jonathan Kyl, Jonathan, Joon, Joppe Geluykens, Joseph Friedman,
741Josh Beal, jtressle, Julian Niedermeier, Junqin Zhang, Justin Dujardin, Justin
742Tunis, jwu, K. Hodges, kaixih, Kaixi Hou, kjopek, Karl Lessard, Karl
743Weinmeister, Karthik Muthuraman, Kashif Rasul, Kay Zhu, Kbhute-Ibm, KDR, Keno
744Fischer, Kevin Mader, khanhlvg, Kilaru Yasaswi Sri Chandra Gandhi, Koan-Sin Tan,
745Koock Yoon, kouml, ktaebum, Kyuwon Kim, Lakshay Tokas, Laurent Le Brun,
746leike666666, leonard951, Leslie-Fang, Letian Kang, Li, Guizi, Loo Rong Jie,
747Lucas Hendren, Lukas Folle, Lukas Geiger, Luke Han, luxupu, lvli, Ma, Guokai,
748Mahmoud Abuzaina, Maksym Kysylov, Mandar Deshpande, manhyuk, Manraj Singh
749Grover, Marco Gaido, Marek Drozdowski, Margaret Maynard-Reid, Mark Ryan, mars20,
750Mateusz Chudyk, Matt Conley, mbhuiyan, mdfaijul, Mei Jie, Melissa Grueter,
751merturl, MichaelKonobeev, Michael KäUfl, Michal W. Tarnowski, MickaëL
752Schoentgen, Miguel Morin, Mihail Salnikov, Mikalai Drabovich, Mike Arpaia, Mike
753Holcomb, minds, monklof, Moses Marin, mpppk, Mr. Metal, Mshr-H, musikisomorphie,
754nammbash, Natalia Gimelshein, Nathan Luehr, Nayana-Ibm, Nayana Thorat, neargye,
755Neeraj Pradhan, Nehal J Wani, Neil, Nick, Nick Lewycky, Niels Ole Salscheider,
756Niklas SilfverströM, Niranjan Hasabnis, Nuka-137, Nutti, ocjosen, olicht,
757omeir1, P Sudeepam, Paige Bailey, Palmer Lao, Pan Daoxin, Pariksheet Pinjari,
758Pasquale Minervini, Patrick J. Lopresti, Patrik Gustavsson, Pavel Akhtyamov,
759Pavel Samolysov, PENGWA, per1234, PeterLee, Phan Van Nguyen Duc, Philipp Jund,
760Phillip Kravtsov, Pooya Davoodi, Pranav Marathe, Putra Manggala, Qingqing Cao, R
761S Nikhil Krishna, Rajeshwar Reddy T, Ramon ViñAs, Rasmus Diederichsen, Reuben
762Morais, robert, Rohit Gupta, Roland Zimmermann, Roman Soldatow, RonLek, Ruizhe,
763Ryan Jiang, saishruthi, Saleem Abdulrasool, Samantha Andow, Sami Kama,
764Sana-Damani, Saurabh Deoras, sdamani, Sean Morgan, seanshpark, Sebastien Iooss,
765Serv-Inc, Severen Redwood, Shahzad Lone, Shashank Gupta, shashvat, Shashvat
766Chand Shahi, Shubham Goyal, Shashi, Sigrid Keydana, Siju, Siju Samuel,
767sleighsoft, smilu97, Snease-Abq, Son Tran, Spencer Schaber, sremedios, Srini511,
768srinivasan.narayanamoorthy, Steve Lang, Steve Nesae, Subin, Sumesh Udayakumaran,
769Sungmann Cho, sunway513, Supriya Rao, sxwang, Tae-Hwan Jung, Taehoon Lee, Takeo
770Sawada, Taylor Jakobson, Taylor Thornton, Ted Chang, TengLu, terryky,
771ThisIsIsaac, ThisIsPIRI, Thomas Deegan, Thomas Hagebols, tianyapiaozi, Till
772Hoffmann, Tim Zaman, tomguluson92, Tongxuan Liu, Trent Lo, Trevor Morris,
773TungJerry, Tyorden, Uday Bondhugula, v1incent, Vagif, Vasileios Lioutas,
774vbvg2008, vcarpani, Vijay Ravichandran, Vikram Tiwari,Viktor Gal, Vishwak
775Srinivasan, Vincent, Vishnuvardhan Janapati, Vitor-Alves, Vivek Suryamurthy,
776wangsiyu, wateryzephyr, WeberXie, Wei Wang, WeijieSun, Wen-Heng (Jack) Chung,
777wenxizhu, Will Battel, William D. Irons, winstonq, wyzhao, Xiaoming (Jason) Cui,
778Xiaoquan Kong, Xin, Xinping Wang, Yan Facai (颜发才), Yann-Yy, Yasir Modak,
779Yasuhiro Matsumoto, ymodak, Yong Tang, Yongfeng Gu, Younes Khoudli, Yuan Lin,
780Yuan (Terry) Tang, Yuchen Ying, Yves-Noel Weweler, zhangyujing, zjjott, zyeric,
781王振华 (Zhenhua Wang), 黄鑫
782
783# Release 1.14.0
784
785## Major Features and Improvements
786
787*   This is the first 1.x release containing the compat.v2 module. This module
788    is required to allow libraries to publish code which works in both 1.x and
789    2.x. After this release, no backwards incompatible changes are allowed in
790    the 2.0 Python API.
791*   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
792    dispatches the best kernel implementation based on CPU vector architecture.
793    To disable them, build with --define=tensorflow_mkldnn_contraction_kernel=0.
794
795## Behavioral changes
796
797*   Set default loss reduction as `AUTO` for improving reliability of loss
798    scaling with distribution strategy and custom training loops. `AUTO`
799    indicates that the reduction option will be determined by the usage context.
800    For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used in
801    distribution strategy scope, outside of built-in training loops such as
802    `tf.keras` `compile` and `fit`, we expect reduction value to be 'None' or
803    'SUM'. Using other values will raise an error.
804*   Wraps losses passed to the `compile` API (strings and v1 losses) which are
805    not instances of v2 `Loss` class in `LossWrapper` class. => All losses will
806    now use `SUM_OVER_BATCH_SIZE` reduction as default.
807*   Disable `run_eagerly` and distribution strategy if there are symbolic
808    tensors added to the model using `add_metric` or `add_loss`.
809*   tf.linspace(start, stop, num) now always uses "stop" as last value (for
810    num > 1)
811*   `ResourceVariable` and `Variable` no longer accepts `constraint` in the
812    constructor, nor expose it as a @property.
813*   The behavior of tf.gather is now correct when axis=None and batch_dims<0.
814*   Only create a GCS directory object if the object does not already exist.
815*   In `map_vectorization` optimization, reduce the degree of parallelism in the
816    vectorized map node.
817*   Bug fix: loss and gradients should now more reliably be correctly scaled
818    w.r.t. the global batch size when using a tf.distribute.Strategy.
819*   Updating cosine similarity loss - removed the negate sign from cosine
820    similarity.
821*   DType is no longer convertible to an int. Use dtype.as_datatype_enum instead
822    of int(dtype) to get the same result.
823*   Changed default for gradient accumulation for TPU embeddings to true.
824*   Callbacks now log values in eager mode when a deferred build model is used.
825*   Transitive dependencies on :pooling_ops were removed. Some users may need to
826    add explicit dependencies on :pooling_ops if they reference the operators
827    from that library.
828*   tf.keras.optimizers default learning rate changes:
829    *   Adadelta: 1.000 to 0.001
830    *   Adagrad: 0.01 to 0.001
831    *   Adamax: 0.002 to 0.001
832    *   NAdam: 0.002 to 0.001
833
834## Bug Fixes and Other Changes
835
836*   Documentation
837*   Deprecations and Symbol renames.
838    *   Remove unused StringViewVariantWrapper
839    *   Delete unused Fingerprint64Map op registration
840    *   SignatureDef util functions have been deprecated.
841    *   Renamed tf.image functions to remove duplicate "image" where it is
842        redundant.
843    *   tf.keras.experimental.export renamed to
844        tf.keras.experimental.export_saved_model
845    *   Standardize the LayerNormalization API by replacing the args `norm_axis`
846        and `params_axis` with `axis`.
847    *   Tensor::UnsafeCopyFromInternal deprecated in favor Tensor::BitcastFrom
848*   Keras & Python API
849    *   Add v2 module aliases for:
850    *   tf.initializers => tf.keras.initializers
851    *   tf.losses => tf.keras.losses & tf.metrics => tf.keras.metrics
852    *   tf.optimizers => tf.keras.optimizers
853    *   Add tf.keras.layers.AbstractRNNCell as the preferred implementation of
854        RNN cell for TF v2. User can use it to implement RNN cell with custom
855        behavior.
856    *   Adding `clear_losses` API to be able to clear losses at the end of
857        forward pass in a custom training loop in eager.
858    *   Add support for passing list of lists to the `metrics` param in Keras
859        `compile`.
860    *   Added top-k to precision and recall to keras metrics.
861    *   Adding public APIs for `cumsum` and `cumprod` keras backend functions.
862    *   Fix: model.add_loss(symbolic_tensor) should work in ambient eager.
863    *   Add name argument to tf.string_split and tf.strings_split
864    *   Minor change to SavedModels exported from Keras using
865        tf.keras.experimental.export. (SignatureDef key for evaluation mode is
866        now "eval" instead of "test"). This will be reverted back to "test" in
867        the near future.
868    *   Updates binary cross entropy logic in Keras when input is probabilities.
869        Instead of converting probabilities to logits, we are using the cross
870        entropy formula for probabilities.
871    *   Raw TensorFlow functions can now be used in conjunction with the Keras
872        Functional API during model creation. This obviates the need for users
873        to create Lambda layers in most cases when using the Functional API.
874        Like Lambda layers, TensorFlow functions that result in Variable
875        creation or assign ops are not supported.
876    *   Keras training and validation curves are shown on the same plot.
877    *   Introduce `dynamic` constructor argument in Layer and Model, which
878        should be set to True when using imperative control flow in the `call`
879        method.
880    *   Removing of dtype in the constructor of initializers and partition_info
881        in call.
882*   New ops and improved op functionality
883    *   Add OpKernels for some stateless maps
884    *   Add v2 APIs for AUCCurve and AUCSummationMethod
885        enums. #tf-metrics-convergence
886    *   Add tf.math.nextafter op.
887    *   Add CompositeTensor base class.
888    *   Add tf.linalg.tridiagonal_solve op.
889    *   Add opkernel templates for common table operations.
890    *   Added support for TFLite in TensorFlow 2.0.
891    *   Adds summary trace API for collecting graph and profile information.
892    *   Add batch_dims argument to tf.gather.
893    *   Add support for `add_metric` in the graph function mode.
894    *   Add C++ Gradient for BatchMatMulV2.
895    *   Added tf.random.binomial
896    *   Added gradient for SparseToDense op.
897    *   Add legacy string flat hash map op kernels
898    *   Add a ragged size op and register it to the op dispatcher
899    *   Add broadcasting support to tf.matmul.
900    *   Add ellipsis (...) support for tf.einsum()
901    *   Added LinearOperator.adjoint and LinearOperator.H (alias).
902    *   Added GPU implementation of tf.linalg.tridiagonal_solve.
903    *   Added strings.byte_split
904    *   Add RaggedTensor.placeholder()
905    *   Add a new "result_type" parameter to tf.strings.split
906    *   `add_update` can now be passed a zero-arg callable in order to support
907        turning off the update when setting `trainable=False` on a Layer of a
908        Model compiled with `run_eagerly=True`.
909    *   Add variant wrapper for absl::string_view
910    *   Add expand_composites argument to all nest.* methods.
911    *   Add pfor converter for Squeeze.
912    *   Bug fix for tf.tile gradient
913    *   Expose CriticalSection in core as tf.CriticalSection.
914    *   Update Fingerprint64Map to use aliases
915    *   ResourceVariable support for gather_nd.
916    *   ResourceVariable's gather op supports batch dimensions.
917    *   Variadic reduce is supported on CPU
918    *   Extend tf.function with basic support for CompositeTensors arguments
919        (such as SparseTensor and RaggedTensor).
920    *   Add templates and interfaces for creating lookup tables
921    *   Post-training quantization tool supports quantizing weights shared by
922        multiple operations. The models made with versions of this tool will use
923        INT8 types for weights and will only be executable interpreters from
924        this version onwards.
925    *   Malformed gif images could result in an access out of bounds in the
926        color palette of the frame. This has been fixed now
927    *   image.resize now considers proper pixel centers and has new kernels
928        (incl. anti-aliasing).
929*   Performance
930    *   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
931        dispatches the best kernel implementation based on CPU vector
932        architecture. To disable them, build with
933        --define=tensorflow_mkldnn_contraction_kernel=0.
934    *   Support for multi-host ncclAllReduce in Distribution Strategy.
935    *   Expose a flag that allows the number of threads to vary across Python
936        benchmarks.
937*   TensorFlow 2.0 Development
938    *   Add v2 sparse categorical crossentropy metric.
939    *   Allow non-Tensors through v2 losses.
940    *   Add UnifiedGRU as the new GRU implementation for tf2.0. Change the
941        default recurrent activation function for GRU from 'hard_sigmoid' to
942        'sigmoid', and 'reset_after' to True in 2.0. Historically recurrent
943        activation is 'hard_sigmoid' since it is fast than 'sigmoid'. With new
944        unified backend between CPU and GPU mode, since the CuDNN kernel is
945        using sigmoid, we change the default for CPU mode to sigmoid as well.
946        With that, the default GRU will be compatible with both CPU and GPU
947        kernel. This will enable user with GPU to use CuDNN kernel by default
948        and get a 10x performance boost in training. Note that this is
949        checkpoint breaking change. If user want to use their 1.x pre-trained
950        checkpoint, please construct the layer with
951        GRU(recurrent_activation='hard_sigmoid', reset_after=False) to fallback
952        to 1.x behavior.
953    *   TF 2.0 - Update metric name to always reflect what the user has given in
954        compile. Affects following cases 1. When name is given as
955        'accuracy'/'crossentropy' 2. When an aliased function name is used eg.
956        'mse' 3. Removing the `weighted` prefix from weighted metric names.
957    *   Begin adding Go wrapper for C Eager API
958    *   image.resize in 2.0 now supports gradients for the new resize kernels.
959    *   removed tf.string_split from v2 API
960    *   Expose tf.contrib.proto.* ops in tf.io (they will exist in TF2)
961    *   "Updates the TFLiteConverter API in 2.0. Changes from_concrete_function
962        to from_concrete_functions."
963    *   Enable tf.distribute.experimental.MultiWorkerMirroredStrategy working in
964        eager mode.
965    *   Support both binary and -1/1 label input in v2 hinge and squared hinge
966        losses.
967*   TensorFlow Lite
968    *   "Adds support for tflite_convert in 2.0."
969    *   "Remove lite.OpHint, lite.experimental, and lite.constant from 2.0 API."
970*   tf.contrib
971    *   Added Neural Turing Implementation as described in
972        https://arxiv.org/abs/1807.08518.
973    *   Remove tf.contrib.timeseries dependency on TF distributions.
974*   tf.data
975    *   Add num_parallel_reads and passing in a Dataset containing filenames
976        into TextLineDataset and FixedLengthRecordDataset
977    *   Going forward we operate in TF 2.0, this change is part of the effort to
978        slowly converting XYZDataset to DatasetV2 type which is the official
979        version going to be used in TF 2.0 and motivated by some compatibility
980        issue found, _BigtableXYZDataset (of type DatasetV2) does not implement
981        the _as_variant_tensor() of DatasetV1, when moving contrib.bigtable to
982        tensorflow_io. Converting into DatasetV2 removes the overheads to
983        maintain V1 while we are moving into TF 2.0.
984    *   Add dataset ops to the graph (or create kernels in Eager execution)
985        during the python Dataset object creation instead doing it during
986        Iterator creation time.
987    *   Add support for TensorArrays to tf.data Dataset.
988    *   Switching tf.data functions to use `defun`, providing an escape hatch to
989        continue using the legacy `Defun`.
990*   Toolchains
991    *   CUDNN_INSTALL_PATH, TENSORRT_INSTALL_PATH, NCCL_INSTALL_PATH,
992        NCCL_HDR_PATH are deprecated. Use TF_CUDA_PATHS instead which supports a
993        comma-separated list of base paths that are searched to find CUDA
994        libraries and headers.
995    *   TF code now resides in `tensorflow_core` and `tensorflow` is just a
996        virtual pip package. No code changes are needed for projects using
997        TensorFlow, the change is transparent
998*   XLA
999    *   XLA HLO graphs can be inspected with interactive_graphviz tool now.
1000*   Estimator
1001    *   Use tf.compat.v1.estimator.inputs instead of tf.estimator.inputs
1002    *   Replace contrib references with tf.estimator.experimental.* for apis in
1003        early_stopping.py
1004
1005## Thanks to our Contributors
1006
1007This release contains contributions from many people at Google, as well as:
1008
10091e100, 4d55397500, a6802739, abenmao, Adam Weiss, Ag Ramesh, Alan Du, Albin Joy,
1010Alex, Aman Patel, Amit, Amit Kumar Jaiswal, Amit Srivastava, Andreas Eberle,
1011Andy Craze, Anthony Platanios, Armen Poghosov, armenpoghosov, arp95, Arpit Shah,
1012Ashwin Ramaswami, Aurelien Geron, AuréLien Geron, aweers, awesomealex1, Ayush
1013Agrawal, Ben Barsdell, Bharat Raghunathan, Bhavani Subramanian, blairhan,
1014BléNesi Attila, Brandon Carter, candy.dc, Chao Liu, chenchc, chie8842, Christian
1015Hansen, Christian Sigg, Clayne Robison, crafet, csukuangfj, ctiijima, Dan
1016Jarvis, Dan Lazewatsky, Daniel Ingram, Daniel Salvadori, Dave Airlie, David
1017Norman, Dayananda V, Dayananda-V, delock, Denis Khalikov, Deven Desai, Dheeraj
1018Rajaram Reddy, dmitrievanthony, Donovan Ong, Drew Szurko, Duncan Riach, Dustin
1019Neighly, Edward Forgacs, EFanZh, Fei Hu, Felix Lemke, Filip Matzner, fo40225,
1020frreiss, Gautam, gehring, Geoffrey Irving, Grzegorz George Pawelczak, Grzegorz
1021Pawelczak, Gyoung-Yoon Ryoo, HanGuo97, Hanton Yang, Hari Shankar, hehongliang,
1022Heungsub Lee, Hoeseong Kim, I-Hong Jhuo, Ilango R, Innovimax, Irene Dea, Jacky
1023Ko, Jakub Lipinski, Jason Zaman, jcf94, Jeffrey Poznanovic, Jens Elofsson,
1024Jeroen BéDorf, Jia Qingtong, Jiankang, Joe Q, Joe Quadrino, Joeran Beel, Jonas
1025Rauber, Jonathan, Jonathan Kyl, Joppe Geluykens, Joseph Friedman, jtressle, jwu,
1026K Yasaswi Sri Chandra Gandhi, K. Hodges, Kaixi Hou, Karl Lessard, Karl
1027Weinmeister, Karthik Muthuraman, Kashif Rasul, KDR, Keno Fischer, Kevin Mader,
1028kjopek, Koan-Sin Tan, kouml, ktaebum, Lakshay Tokas, Laurent Le Brun, Letian
1029Kang, Li, Guizi, Loo Rong Jie, Lucas Hendren, Lukas Geiger, Luke Han, luxupu,
1030Ma, Guokai, Mahmoud Abuzaina, Mandar Deshpande, manhyuk, Marco Gaido, Marek
1031Drozdowski, Mark Collier, Mark Ryan, mars20, Mateusz Chudyk, Matt Conley,
1032MattConley, mbhuiyan, mdfaijul, Melissa Grueter, Michael KäUfl, MickaëL
1033Schoentgen, Miguel Morin, Mihail Salnikov, Mike Arpaia, Mike Holcomb, monklof,
1034Moses Marin, Mshr-H, nammbash, Natalia Gimelshein, Nayana-Ibm, neargye, Neeraj
1035Pradhan, Nehal J Wani, Nick, Niels Ole Salscheider, Niranjan Hasabnis, nlewycky,
1036Nuka-137, Nutti, olicht, P Sudeepam, Palmer Lao, Pan Daoxin, Pariksheet Pinjari,
1037Pavel Samolysov, PENGWA, Pooya Davoodi, R S Nikhil Krishna, Rohit Gupta, Roman
1038Soldatow, rthadur, Ruizhe, Ryan Jiang, Samantha Andow, Sami Kama, Sana-Damani,
1039Saurabh Deoras, sdamani, seanshpark, Sebastien Iooss, Serv-Inc, Shahzad Lone,
1040Shashank Gupta, Shashi, shashvat, shashvatshahi1998, Siju, Siju Samuel,
1041Snease-Abq, Spencer Schaber, sremedios, srinivasan.narayanamoorthy, Steve Lang,
1042Steve Nesae, Sumesh Udayakumaran, Supriya Rao, Taylor Jakobson, Taylor Thornton,
1043Ted Chang, ThisIsPIRI, Thomas Deegan, Thomas Hagebols, tianyapiaozi, Tim Zaman,
1044tomguluson92, Tongxuan Liu, TungJerry, v1incent, Vagif, vcarpani, Vikram Tiwari,
1045Vishwak Srinivasan, Vitor-Alves, wangsiyu, wateryzephyr, WeberXie, WeijieSun,
1046Wen-Heng (Jack) Chung, wenxizhu, Will Battel, William D. Irons, wyzhao, Xin,
1047Yasuhiro Matsumoto, ymodak, Yong Tang, Younes Khoudli, Yuan Lin, Yves-Noel
1048Weweler, Zantares, zjjott, 卜居, 王振华 (Wang Zhenhua), 黄鑫
1049
1050# Release 1.12.3
1051
1052## Bug Fixes and Other Changes
1053
1054*   Updates `png_archive` dependency to 1.6.37 to not be affected by
1055    CVE-2019-7317, CVE-2018-13785, and CVE-2018-14048.
1056*   Updates `sqlite` dependency to 3.28.0 to not be affected by CVE-2018-20506,
1057    CVE-2018-20346, and CVE-2018-20505.
1058
1059# Release 1.12.2
1060
1061## Bug Fixes and Other Changes
1062
1063*   Fixes a potential security vulnerability where carefully crafted GIF images
1064    can produce a null pointer dereference during decoding.
1065
1066# Release 1.13.0
1067
1068## Major Features and Improvements
1069
1070* TensorFlow Lite has moved from contrib to core. This means that Python modules are under `tf.lite` and source code is now under `tensorflow/lite` rather than `tensorflow/contrib/lite`.
1071* TensorFlow GPU binaries are now built against CUDA 10 and TensorRT 5.0.
1072* Support for Python3.7 on all operating systems.
1073* Moved NCCL to core.
1074
1075## Behavioral changes
1076
1077* Disallow conversion of python floating types to uint32/64 (matching behavior of other integer types) in `tf.constant`.
1078* Make the `gain` argument of convolutional orthogonal initializers (`convolutional_delta_orthogonal`, `convolutional_orthogonal_1D`, `convolutional_orthogonal_2D`, `convolutional_orthogonal_3D`) have consistent behavior with the `tf.initializers.orthogonal` initializer, i.e. scale the output l2-norm by `gain` and NOT by `sqrt(gain)`. (Note that these functions are currently in `tf.contrib` which is not guaranteed backward compatible).
1079
1080## Bug Fixes and Other Changes
1081
1082*   Documentation
1083    *   Update the doc with the details about the rounding mode used in
1084        quantize_and_dequantize_v2.
1085    *   Clarify that tensorflow::port::InitMain() _should_ be called before
1086        using the TensorFlow library. Programs failing to do this are not
1087        portable to all platforms.
1088*   Deprecations and Symbol renames.
1089    *   Removing deprecations for the following endpoints: `tf.acos`,
1090        `tf.acosh`, `tf.add`, `tf.as_string`, `tf.asin`, `tf.asinh`, `tf.atan`,
1091        `tf.atan2`, `tf.atanh`, `tf.cos`, `tf.cosh`, `tf.equal`, `tf.exp`,
1092        `tf.floor`, `tf.greater`, `tf.greater_equal`, `tf.less`,
1093        `tf.less_equal`, `tf.log`, `tf.logp1`, `tf.logical_and`,
1094        `tf.logical_not`, `tf.logical_or`, `tf.maximum`, `tf.minimum`,
1095        `tf.not_equal`, `tf.sin`, `tf.sinh`, `tf.tan`
1096    *   Deprecate `tf.data.Dataset.shard`.
1097    *   Deprecate `saved_model.loader.load` which is replaced by
1098        `saved_model.load` and `saved_model.main_op`, which will be replaced by
1099        `saved_model.main_op` in V2.
1100    *   Deprecate tf.QUANTIZED_DTYPES. The official new symbol is
1101        tf.dtypes.QUANTIZED_DTYPES.
1102    *   Update sklearn imports for deprecated packages.
1103    *   Deprecate `Variable.count_up_to` and `tf.count_up_to` in favor of
1104        `Dataset.range`.
1105    *   Export `confusion_matrix` op as `tf.math.confusion_matrix` instead of
1106        `tf.train.confusion_matrix`.
1107    *   Add `tf.dtypes.` endpoint for every constant in dtypes.py. Moving
1108        endpoints in versions.py to corresponding endpoints in `tf.sysconfig.`
1109        and `tf.version.`. Moving all constants under `tf.saved_model`
1110        submodules to `tf.saved_model` module. New endpoints are added in V1 and
1111        V2 but existing endpoint removals are only applied in V2.
1112    *   Deprecates behavior where device assignment overrides collocation
1113        constraints inside a collocation context manager.
1114*   Keras & Python API
1115    *   Add to Keras functionality analogous to
1116        `tf.register_tensor_conversion_function`.
1117    *   Subclassed Keras models can now be saved through
1118        `tf.contrib.saved_model.save_keras_model`.
1119    *   `LinearOperator.matmul` now returns a new `LinearOperator`.
1120*   New ops and improved op functionality
1121    *   Add a Nearest Neighbor Resize op.
1122    *   Add an `ignore_unknown` argument to `parse_values` which suppresses
1123        ValueError for unknown hyperparameter types. Such * Add
1124        `tf.linalg.matvec` convenience function.
1125    *   `tf.einsum()`raises `ValueError` for unsupported equations like
1126        `"ii->"`.
1127    *   Add DCT-I and IDCT-I in `tf.signal.dct` and `tf.signal.idct`.
1128    *   Add LU decomposition op.
1129    *   Add quantile loss to gradient boosted trees in estimator.
1130    *   Add `round_mode` to `QuantizeAndDequantizeV2` op to select rounding
1131        algorithm.
1132    *   Add `unicode_encode`, `unicode_decode`, `unicode_decode_with_offsets`,
1133        `unicode_split`, `unicode_split_with_offset`, and `unicode_transcode`
1134        ops. Amongst other things, this Op adds the ability to encode, decode,
1135        and transcode a variety of input text encoding formats into the main
1136        Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)
1137    *   Add "unit" attribute to the substr op, which allows obtaining the
1138        substring of a string containing unicode characters.
1139    *   Broadcasting support for Ragged Tensors.
1140    *   `SpaceToDepth` supports uint8 data type.
1141    *   Support multi-label quantile regression in estimator.
1142    *   We now use "div" as the default partition_strategy in
1143        `tf.nn.safe_embedding_lookup_sparse`, `tf.nn.sampled_softmax` and
1144        `tf.nn.nce_loss`. hyperparameter are ignored.
1145*   Performance
1146    *   Improve performance of GPU cumsum/cumprod by up to 300x.
1147    *   Added support for weight decay in most TPU embedding optimizers,
1148        including AdamW and MomentumW.
1149*   TensorFlow 2.0 Development
1150    *   Add a command line tool to convert to TF2.0, tf_upgrade_v2
1151    *   Merge `tf.spectral` into `tf.signal` for TensorFlow 2.0.
1152    *   Change the default recurrent activation function for LSTM from
1153        'hard_sigmoid' to 'sigmoid' in 2.0. Historically recurrent activation is
1154        'hard_sigmoid' since it is fast than 'sigmoid'. With new unified backend
1155        between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we
1156        change the default for CPU mode to sigmoid as well. With that, the
1157        default LSTM will be compatible with both CPU and GPU kernel. This will
1158        enable user with GPU to use CuDNN kernel by default and get a 10x
1159        performance boost in training. Note that this is checkpoint breaking
1160        change. If user want to use their 1.x pre-trained checkpoint, please
1161        construct the layer with LSTM(recurrent_activation='hard_sigmoid') to
1162        fallback to 1.x behavior.
1163*   TensorFlow Lite
1164    *   Move from `tensorflow/contrib/lite` to `tensorflow/lite`.
1165    *   Add experimental Java API for injecting TensorFlow Lite delegates
1166    *   Add support for strings in TensorFlow Lite Java API.
1167*   `tf.contrib`:
1168    *   Add Apache Ignite Filesystem plugin to support accessing Apache IGFS.
1169    *   Dropout now takes `rate` argument, `keep_prob` is deprecated.
1170    *   Estimator occurrences references `tf.contrib.estimator` were changed to
1171        `tf.estimator`:
1172    *   `tf.contrib.estimator.BaselineEstimator` with
1173        `tf.estimator.BaselineEstimator`
1174    *   `tf.contrib.estimator.DNNLinearCombinedEstimator` with
1175        `tf.estimator.DNNLinearCombinedEstimator`
1176    *   `tf.contrib.estimator.DNNEstimator` with `tf.estimator.DNNEstimator`
1177    *   `tf.contrib.estimator.LinearEstimator` with
1178        `tf.estimator.LinearEstimator`
1179    *   `tf.contrib.estimator.InMemoryEvaluatorHook` and
1180        tf.estimator.experimental.InMemoryEvaluatorHook`.
1181    *   `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
1182        `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`.
1183    *   Expose `tf.distribute.Strategy as the new name for
1184        tf.contrib.distribute.DistributionStrategy.
1185    *   Migrate linear optimizer from contrib to core.
1186    *   Move `tf.contrib.signal` to `tf.signal` (preserving aliases in
1187        tf.contrib.signal).
1188    *   Users of `tf.contrib.estimator.export_all_saved_models` and related
1189        should switch to
1190        `tf.estimator.Estimator.experimental_export_all_saved_models`.
1191*   tf.data:
1192    *   Add `tf.data.experimental.StatsOptions()`, to configure options to
1193        collect statistics from `tf.data.Dataset` pipeline using
1194        `StatsAggregator`. Add nested option, `experimental_stats` (which takes
1195        a `tf.data.experimen tal.StatsOptions` object), to `tf.data.Options`.
1196        Deprecates `tf.data.experimental.set_stats_agregator`.
1197    *   Performance optimizations:
1198    *   Add `tf.data.experimental.OptimizationOptions()`, to configure options
1199        to enable `tf.data` performance optimizations. Add nested option,
1200        `experimental_optimization` (which takes a
1201        `tf.data.experimental.OptimizationOptions` object), to
1202        `tf.data.Options`. Remove performance optimization options from
1203        `tf.data.Options`, and add them under
1204        `tf.data.experimental.OptimizationOptions` instead.
1205    *   Enable `map_and_batch_fusion` and `noop_elimination` optimizations by
1206        default. They can be disabled by configuring
1207        `tf.data.experimental.OptimizationOptions` to set `map_and_batch =
1208        False` or `noop_elimination = False` respectively. To disable all
1209        default optimizations, set `apply_default_optimizations = False`.
1210    *   Support parallel map in `map_and_filter_fusion`.
1211    *   Disable static optimizations for input pipelines that use non-resource
1212        `tf.Variable`s.
1213    *   Add NUMA-aware MapAndBatch dataset.
1214    *   Deprecate `tf.data.Dataset.make_one_shot_iterator()` in V1, removed it
1215        from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.
1216    *   Deprecate `tf.data.Dataset.make_initializable_iterator()` in V1, removed
1217        it from V2, and added `tf.compat.v1.data.make_initializable_iterator()`.
1218    *   Enable nested dataset support in core `tf.data` transformations.
1219    *   For `tf.data.Dataset` implementers: Added
1220        `tf.data.Dataset._element_structured property` to replace
1221        `Dataset.output_{types,shapes,classes}`.
1222    *   Make `num_parallel_calls` of `tf.data.Dataset.interleave` and
1223        `tf.data.Dataset.map` work in Eager mode.
1224*   Toolchains
1225    *   Fixed OpenSSL compatibility by avoiding `EVP_MD_CTX_destroy`.
1226    *   Added bounds checking to printing deprecation warnings.
1227    *   Upgraded CUDA dependency to 10.0
1228    *   To build with Android NDK r14b, add "#include <linux/compiler.h>" to
1229        android-ndk-r14b/platforms/android-14/arch-*/usr/include/linux/futex.h
1230    *   Removed `:android_tensorflow_lib_selective_registration*` targets, use
1231        `:android_tensorflow_lib_lite*` targets instead.
1232*   XLA
1233    *   Move `RoundToEven` function to xla/client/lib/math.h.
1234    *   A new environment variable `TF_XLA_DEBUG_OPTIONS_PASSTHROUGH` set to "1"
1235        or "true" allows the debug options passed within an XRTCompile op to be
1236        passed directly to the XLA compilation backend. If such variable is not
1237        set (service side), only a restricted set will be passed through.
1238    *   Allow the XRTCompile op to return the ProgramShape resulted form the XLA
1239        compilation as a second return argument.
1240    *   XLA HLO graphs can now be rendered as SVG/HTML.
1241*   Estimator
1242    *   Replace all occurrences of `tf.contrib.estimator.BaselineEstimator` with
1243        `tf.estimator.BaselineEstimator`
1244    *   Replace all occurrences of
1245        `tf.contrib.estimator.DNNLinearCombinedEstimator` with
1246        `tf.estimator.DNNLinearCombinedEstimator`
1247    *   Replace all occurrences of `tf.contrib.estimator.DNNEstimator` with
1248        `tf.estimator.DNNEstimator`
1249    *   Replace all occurrences of `tf.contrib.estimator.LinearEstimator` with
1250        `tf.estimator.LinearEstimator`
1251    *   Users of `tf.contrib.estimator.export_all_saved_models` and related
1252        should switch to
1253        `tf.estimator.Estimator.experimental_export_all_saved_models`.
1254    *   Update `regression_head` to the new Head API for Canned Estimator V2.
1255    *   Switch `multi_class_head` to Head API for Canned Estimator V2.
1256    *   Replace all occurrences of `tf.contrib.estimator.InMemoryEvaluatorHook`
1257        and `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
1258        `tf.estimator.experimental.InMemoryEvaluatorHook` and
1259        `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`
1260    *   Migrate linear optimizer from contrib to core.
1261
1262## Thanks to our Contributors
1263
1264This release contains contributions from many people at Google, as well as:
1265
1266Abhinav Upadhyay, Ag Ramesh, akikaaa, Alexis Louis, Anders Huss, Andreas Madsen, Andrew Banchich, Andy Craze, Anton Dmitriev, Artem Malykh, Avijit-Nervana, Balint Cristian, Benjamin Tan Wei Hao, Bhavani Subramanian, Brendan Finan, Brian Nemsick, Bryan Cutler, By Shen, Cao Zongyan, Castiel, Chris Antaki, Christian Goll, Cibifang, Clayne Robison, Codrut Grosu, Cong Xu, Dalmo Cirne, Daniel Hunter, Dougal J. Sutherland, Edvard Fagerholm, EFanZh, Erik Smistad, Evgeniy Polyakov, Feiyang Chen, franklin5, Fred Reiss, Gautam, gehring, Geoffrey Irving, George Sterpu, Gitea, Grzegorz George Pawelczak, Guozhong Zhuang, himkt, Hoeseong Kim, Huan Li (李卓桓), HuiyangFei, hyunyoung, Isaac Burbank, jackonan, Jacky Ko, Jason Furmanek, Jason Zaman, Javier Luraschi, Jiang,Zhoulong, joaak, John Lin, Jonathan Wyatt Hoech, josephyearsley, Josh Gordon, Julian Niedermeier, Karl Lessard, Keno Fischer, lanhin, Leon Graser, leondgarse, Li, Guizi, Li, Yiqiang, lxl910915, Mahmoud Abuzaina, manhyuk, Marcela Morales Quispe, margaretmz, Matt Conley, Max Pumperla, mbhuiyan, mdfaijul, Meng, Peng, Michael, Michael Gielda, mrTsjolder, Muhammad Wildan, neargye, Nehal J Wani, NEWPLAN, Niranjan Hasabnis, Nutti, olicht, Pan Daoxin, Pedro Monreal, Peng Yu, pillarpond, Pooya Davoodi, qiezi, Rholais Lii, Richard Yu, Rin Arakaki, Roger Iyengar, sahilbadyal, Sami Kama, Sandip Giri, Scott Leishman, Serge Panev, Seunghoon Park, Shafi Dayatar, shengfuintel, Shimin Guo, Siju, silent567, Stefan Dyulgerov, steven, Tao Wei, Thor Johnsen, Tingbo Lu, tomguluson92, Tongxuan Liu, Trevor Morris, Ubuntu, Vadim Borisov, vanderliang, wangsiyu, Wen Yun, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons, Xiaoming (Jason) Cui, Yan Facai (颜发才), Yanbo Liang, Yaniv Blumenfeld, Yash Gaurkar, Yicheng Fan, Yong Tang, Yongjoon Lee, Yuan (Terry) Tang, Yuxin Wu, zldrobit
1267
1268# Release 1.12.0
1269
1270## Major Features and Improvements
1271
1272*   Keras models can now be directly exported to the SavedModel
1273    format(`tf.contrib.saved_model.save_keras_model()`) and used with Tensorflow
1274    Serving.
1275*   Keras models now support evaluating with a `tf.data.Dataset`.
1276*   TensorFlow binaries are built with XLA support linked in by default.
1277*   Ignite Dataset added to contrib/ignite that allows to work with Apache
1278    Ignite.
1279
1280## Bug Fixes and Other Changes
1281
1282*   tf.data:
1283    *   tf.data users can now represent, get, and set options of TensorFlow
1284        input pipelines using `tf.data.Options()`, `tf.data.Dataset.options()`,
1285        and `tf.data.Dataset.with_options()` respectively.
1286    *   New `tf.data.Dataset.reduce()` API allows users to reduce a finite
1287        dataset to a single element using a user-provided reduce function.
1288    *   New `tf.data.Dataset.window()` API allows users to create finite windows
1289        of input dataset; when combined with the `tf.data.Dataset.reduce()` API,
1290        this allows users to implement customized batching.
1291    *   All C++ code moves to the `tensorflow::data` namespace.
1292    *   Add support for `num_parallel_calls` to `tf.data.Dataset.interleave`.
1293*   `tf.contrib`:
1294    *   Remove `tf.contrib.linalg`. `tf.linalg` should be used instead.
1295    *   Replace any calls to `tf.contrib.get_signature_def_by_key(metagraph_def,
1296        signature_def_key)` with
1297        `meta_graph_def.signature_def[signature_def_key]`. Catching a ValueError
1298        exception thrown by `tf.contrib.get_signature_def_by_key` should be
1299        replaced by catching a KeyError exception.
1300*   `tf.contrib.data`
1301    *   Deprecate, and replace by tf.data.experimental.
1302*   Other:
1303    *   Instead of jemalloc, revert back to using system malloc since it
1304        simplifies build and has comparable performance.
1305    *   Remove integer types from `tf.nn.softplus` and `tf.nn.softsign` OpDefs.
1306        This is a bugfix; these ops were never meant to support integers.
1307    *   Allow subslicing Tensors with a single dimension.
1308    *   Add option to calculate string length in Unicode characters.
1309    *   Add functionality to SubSlice a tensor.
1310    *   Add searchsorted (ie lower/upper_bound) op.
1311    *   Add model explainability to Boosted Trees.
1312    *   Support negative positions for tf.substr.
1313    *   There was previously a bug in the bijector_impl where the
1314        _reduce_jacobian_det_over_event does not handle scalar ILDJ
1315        implementations properly.
1316    *   In tf eager execution, allow re-entering a GradientTape context.
1317    *   Add tf_api_version flag. If --define=tf_api_version=2 flag is passed in,
1318        then bazel will build TensorFlow API version 2.0. Note that TensorFlow
1319        2.0 is under active development and has no guarantees at this point.
1320    *   Add additional compression options to TfRecordWriter.
1321    *   Performance improvements for regex full match operations.
1322    *   Replace tf.GraphKeys.VARIABLES with `tf.GraphKeys.GLOBAL_VARIABLES`.
1323    *   Remove unused dynamic learning rate support.
1324
1325## Thanks to our Contributors
1326
1327This release contains contributions from many people at Google, as well as:
1328
1329(David) Siu-Kei Muk, Ag Ramesh, Anton Dmitriev, Artem Sobolev, Avijit-Nervana,
1330Bairen Yi, Bruno Goncalves, By Shen, candy.dc, Cheng Chen, Clayne Robison,
1331coder3101, Dao Zhang, Elms, Fei Hu, feiquan, Geoffrey Irving, Guozhong Zhuang,
1332hellcom, Hoeseong Kim, imsheridan, Jason Furmanek, Jason Zaman, Jenny Sahng,
1333jiefangxuanyan, Johannes Bannhofer, Jonathan Homer, Koan-Sin Tan, kouml, Loo
1334Rong Jie, Lukas Geiger, manipopopo, Ming Li, Moritz KröGer, Naurril, Niranjan
1335Hasabnis, Pan Daoxin, Peng Yu, pengwa, rasmi, Roger Xin, Roland Fernandez, Sami
1336Kama, Samuel Matzek, Sangjung Woo, Sergei Lebedev, Sergii Khomenko, shaohua,
1337Shaohua Zhang, Shujian2015, Sunitha Kambhampati, tomguluson92, ViníCius Camargo,
1338wangsiyu, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Xin Jin, Yan
1339Facai (颜发才), Yanbo Liang, Yash Katariya, Yong Tang, 在原佐为
1340
1341# Release 1.11.0
1342
1343## Major Features and Improvements
1344
1345*   Nvidia GPU:
1346    *   Prebuilt binaries are now (as of TensorFlow 1.11) built against cuDNN
1347        7.2 and TensorRT 4. See updated install guides:
1348        [Installing TensorFlow on Ubuntu](https://www.tensorflow.org/install/install_linux#tensorflow_gpu_support)
1349*   Google Cloud TPU:
1350    *   Experimental tf.data integration for Keras on Google Cloud TPUs.
1351    *   Experimental / preview support for eager execution on Google Cloud TPUs.
1352*   DistributionStrategy:
1353    *   Add multi-GPU DistributionStrategy support in tf.keras. Users can now
1354        use `fit`, `evaluate` and `predict` to distribute their model on
1355        multiple GPUs.
1356    *   Add multi-worker DistributionStrategy and standalone client support in
1357        Estimator. See
1358        [README](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute)
1359        for more details.
1360*   Add C, C++, and Python functions for querying kernels.
1361
1362## Breaking Changes
1363
1364* Keras:
1365  * The default values for tf.keras `RandomUniform`, `RandomNormal`, and `TruncatedNormal` initializers have been changed to match those in external Keras.
1366  * Breaking change: `model.get_config()` on a Sequential model now returns a config dictionary (consistent with other Model instances) instead of a list of configs for the underlying layers.
1367
1368## Bug Fixes and Other Changes
1369
1370*   C++:
1371    *   Changed the signature of SessionFactory::NewSession so that it can
1372        return a meaningful error message on failure.
1373*   tf.data:
1374    *   Remove `num_parallel_parser_calls` argument from
1375        `tf.contrib.data.make_csv_dataset()`. [tf.data] Remove
1376        `num_parallel_parser_calls` argument from
1377        `tf.contrib.data.make_csv_dataset()`.
1378    *   `tf.data.Dataset.list_files()` raises an exception at initialization
1379        time if the argument matches no files.
1380    *   Renamed BigTable class to BigtableTable for clarity
1381    *   Document use of the Cloud Bigtable API
1382    *   Add `tf.contrib.data.reduce_dataset` which can be used to reduce a
1383        dataset to a single element.
1384    *   Generalization of `tf.contrib.data.sliding_window_batch`.
1385*   INC:
1386    *   Runtime improvements to triangular solve.
1387*   `tf.contrib`:
1388    *   Add an `implementation` argument to `tf.keras.layers.LocallyConnected2D`
1389        and `tf.keras.layers.LocallyConnected1D`. The new mode
1390        (`implementation=2`) performs forward pass as a single dense matrix
1391        multiplication, allowing dramatic speedups in certain scenarios (but
1392        worse performance in others - see docstring). The option also allows to
1393        use `padding=same`.
1394    *   Add documentation clarifying the differences between tf.fill and
1395        tf.constant.
1396    *   Add experimental IndexedDatasets.
1397    *   Add selective registration target using the lite proto runtime.
1398    *   Add simple Tensor and DataType classes to TensorFlow Lite Java
1399    *   Add support for bitcasting to/from uint32 and uint64.
1400    *   Added a subclass of Estimator that can be created from a SavedModel
1401        (SavedModelEstimator).
1402    *   Adds leaf index modes as an argument.
1403    *   Allow a different output shape from the input in
1404        tf.contrib.image.transform.
1405    *   Change the state_size order of the StackedRNNCell to be natural order.
1406        To keep the existing behavior, user can add reverse_state_order=True
1407        when constructing the StackedRNNCells.
1408    *   Deprecate self.test_session() in favor of self.session() or
1409        self.cached_session().
1410    *   Directly import tensor.proto.h (the transitive import will be removed
1411        from tensor.h soon).
1412    *   Estimator.train() now supports tf.contrib.summary.\* summaries out of
1413        the box; each call to .train() will now create a separate tfevents file
1414        rather than re-using a shared one.
1415    *   Fix FTRL L2-shrinkage behavior: the gradient from the L2 shrinkage term
1416        should not end up in the accumulator.
1417    *   Fix toco compilation/execution on Windows.
1418    *   GoogleZoneProvider class added to detect which Google Cloud Engine zone
1419        tensorflow is running in.
1420    *   It is now safe to call any of the C API's TF_Delete\* functions on
1421        nullptr.
1422    *   Log some errors on Android to logcat.
1423    *   Match FakeQuant numerics in TFLite to improve accuracy of TFLite
1424        quantized inference models.
1425    *   Optional bucket location check for the GCS Filesystem.
1426    *   Performance enhancements for StringSplitOp & StringSplitV2Op.
1427    *   Performance improvements for regex replace operations.
1428    *   TFRecordWriter now raises an error if .write() fails.
1429    *   TPU: More helpful error messages in TPUClusterResolvers.
1430    *   The legacy_init_op argument to SavedModelBuilder methods for adding
1431        MetaGraphs has been deprecated. Please use the equivalent main_op
1432        argument instead. As part of this, we now explicitly check for a single
1433        main_op or legacy_init_op at the time of SavedModel building, whereas
1434        the check on main_op was previously only done at load time.
1435    *   The protocol used for Estimator training is now configurable in
1436        RunConfig.
1437    *   Triangular solve performance improvements.
1438    *   Unify RNN cell interface between TF and Keras. Add new
1439        get_initial_state() to Keras and TF RNN cell, which will use to replace
1440        the existing zero_state() method.
1441    *   Update initialization of variables in Keras.
1442    *   Updates to "constrained_optimization" in tensorflow/contrib.
1443    *   boosted trees: adding pruning mode.
1444    *   tf.train.Checkpoint does not delete old checkpoints by default.
1445    *   tfdbg: Limit the total disk space occupied by dumped tensor data to 100
1446        GBytes. Add environment variable `TFDBG_DISK_BYTES_LIMIT` to allow
1447        adjustment of this upper limit.
1448
1449## Thanks to our Contributors
1450
1451This release contains contributions from many people at Google, as well as:
1452
1453Aapeli, adoda, Ag Ramesh, Amogh Mannekote, Andrew Gibiansky, Andy Craze, Anirudh Koul, Aurelien Geron, Avijit, Avijit-Nervana, Ben, Benjamin H. Myara, bhack, Brett Koonce, Cao Zongyan, cbockman, cheerss, Chikanaga Tomoyuki, Clayne Robison, cosine0, Cui Wei, Dan J, David, David Norman, Dmitry Klimenkov, Eliel Hojman, Florian Courtial, fo40225, formath, Geoffrey Irving, gracehoney, Grzegorz Pawelczak, Guoliang Hua, Guozhong Zhuang, Herman Zvonimir DošIlović, HuiyangFei, Jacker, Jan HüNnemeyer, Jason Taylor, Jason Zaman, Jesse, Jiang,Zhoulong, Jiawei Zhang, Jie, Joe Yearsley, Johannes Schmitz, Jon Perl, Jon Triebenbach, Jonathan, Jonathan Hseu, Jongmin Park, Justin Shenk, karl@kubx.ca, Kate Hodesdon, Kb Sriram, Keishi Hattori, Kenneth Blomqvist, Koan-Sin Tan, Li Liangbin, Li, Yiqiang, Loo Rong Jie, Madiyar, Mahmoud Abuzaina, Mark Ryan, Matt Dodge, mbhuiyan, melvinljy96, Miguel Mota, Nafis Sadat, Nathan Luehr, naurril, Nehal J Wani, Niall Moran, Niranjan Hasabnis, Nishidha Panpaliya, npow, olicht, Pei Zhang, Peng Wang (Simpeng), Peng Yu, Philipp Jund, Pradeep Banavara, Pratik Kalshetti, qwertWZ, Rakesh Chada, Randy West, Ray Kim, Rholais Lii, Robin Richtsfeld, Rodrigo Silveira, Ruizhi, Santosh Kumar, Seb Bro, Sergei Lebedev, sfujiwara, Shaba Abhiram, Shashi, SneakyFish5, Soila Kavulya, Stefan Dyulgerov, Steven Winston, Sunitha Kambhampati, Surry Shome, Taehoon Lee, Thor Johnsen, Tristan Rice, TShapinsky, tucan, tucan9389, Vicente Reyes, Vilmar-Hillow, Vitaly Lavrukhin, wangershi, weidan.kong, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Wim Glenn, XFeiF, Yan Facai (颜发才), Yanbo Liang, Yong Tang, Yoshihiro Yamazaki, Yuan (Terry) Tang, Yuan, Man, zhaoyongke, ÁRon
1454Ricardo Perez-Lopez, 张天启, 张晓飞
1455
1456
1457# Release 1.10.1
1458## Bug Fixes and Other Changes
1459
1460* `tf.keras`:
1461  * Fixing keras on Cloud TPUs. No new binaries will be built for Windows.
1462
1463
1464# Release 1.10.0
1465
1466## Major Features And Improvements
1467
1468* The `tf.lite` runtime now supports `complex64`.
1469* Initial [Google Cloud Bigtable integration](https://github.com/tensorflow/tensorflow/tree/r1.10/tensorflow/contrib/bigtable) for `tf.data`.
1470* Improved local run behavior in `tf.estimator.train_and_evaluate` which does not reload checkpoints for evaluation.
1471* `RunConfig` now sets device_filters to restrict how workers and PS can communicate. This can speed up training and ensure clean shutdowns in some situations. But if you have jobs that require communication between workers, you will have to set custom session_options in your `RunConfig`.
1472* Moved Distributions and Bijectors from `tf.contrib.distributions` to [Tensorflow Probability (TFP)](https://github.com/tensorflow/probability). `tf.contrib.distributions` is now deprecated and will be removed by the end of 2018.
1473* Adding new endpoints for existing tensorflow symbols. These endpoints are going to be the preferred endpoints going forward and may replace some of the existing endpoints in the future. See below for the complete list. New symbols have been added to the following modules: [`tf.debugging`](https://www.tensorflow.org/versions/master/api_docs/python/tf/debugging), [`tf.dtypes`](https://www.tensorflow.org/versions/master/api_docs/python/tf/dtypes), [`tf.image`](https://www.tensorflow.org/versions/master/api_docs/python/tf/image), [`tf.io`](https://www.tensorflow.org/versions/master/api_docs/python/tf/io), [`tf.linalg`](https://www.tensorflow.org/versions/master/api_docs/python/tf/linalg), [`tf.manip`](https://www.tensorflow.org/versions/master/api_docs/python/tf/manip), [`tf.math`](https://www.tensorflow.org/versions/master/api_docs/python/tf/math), [`tf.quantization`](https://www.tensorflow.org/versions/master/api_docs/python/tf/quantization), [`tf.strings`](https://www.tensorflow.org/versions/master/api_docs/python/tf/strings)
1474
1475## Breaking Changes
1476
1477* Prebuilt binaries are now (as of TensorFlow 1.10) built against NCCL 2.2 and no longer include NCCL in the binary install. TensorFlow usage with multiple GPUs and NCCL requires upgrade to [NCCL 2.2](https://developer.nvidia.com/nccl). See updated install guides: [TensorFlow GPU support](https://www.tensorflow.org/install/gpu) and [Build TensorFlow from source](https://www.tensorflow.org/install/source).
1478* Starting from TensorFlow 1.11, Windows builds will use Bazel. Therefore, we will drop official support for cmake.
1479
1480## Bug Fixes and Other Changes
1481
1482* `tf.data`:
1483  * `tf.contrib.data.group_by_reducer()` is now available via the public API.
1484  * `tf.contrib.data.choose_from_datasets()` is now available via the public API.
1485  * Adding `drop_remainder` argument to `tf.data.Dataset.batch()` and `tf.data.Dataset.padded_batch()`, deprecating `tf.contrib.data.batch_and_drop_remainder()` and `tf.contrib.data.padded_batch_and_drop_remainder()`.
1486* `tf.estimator`:
1487  * `Estimator`s now use custom savers included in `EstimatorSpec` scaffolds for saving SavedModels during export.
1488  * `EstimatorSpec` will now add a default prediction output for export if no `export_output` is provided, eliminating the need to explicitly include a `PredictOutput` object in the `model_fn` for simple use-cases.
1489  * Support sparse_combiner in canned Linear Estimators.
1490  * Added batch normalization to `DNNClassifier`, `DNNRegressor`, and `DNNEstimator`.
1491  * Adding ranking support for boosted trees.
1492  * Adding center bias option for boosted trees.
1493* Add `synchronization` and `aggregation` args to get_variable(). These args will be used for distributed variables.
1494* Add `synchronization` and `aggregation` args to the layer `add_weight()` API. These args will be used for distributed variables.
1495* `tf.losses.*` do not add to the global collection when executing eagerly (to avoid leaking memory).
1496* Support different summary and checkpoint directories in `tf.train.MonitoredTrainingSession()`.
1497* Added IndRNN, IndyGRU, and IndyLSTM cells to `tf.contrib.rnn`.
1498* Add safe static factory functions for SparseTensor and convert all CHECKs to DCHECKs. Using the constructor directly is unsafe and deprecated.
1499* Make the Bigtable client connection pool configurable & increase the default # of connections for performance.
1500* Added derivative of `tf.random_gamma` with respect to the alpha parameter.
1501* Added derivative of `tf.igamma(a, x)` and `tf.igammac(a, x)` with respect to a.
1502* Modified Bessel functions of order zero and one.
1503* Add FillTriangular Bijector to create triangular matrices.
1504* Added support for Type III DCT, and `tf.spectral.idct(type=2|3)`.
1505* Correctly handle CuDNN RNN weight loaded when nest in `TimeDistributed`.
1506* Adding per-element weight support for `WALSComputePartialLhsAndRhsOp`.
1507* ZerosLike and OnesLike ops treated as constants by Graph Transform Tool.
1508* Gamma distribution and the derived distributions (Beta, Dirichlet, Student's t, inverse Gamma) now fully reparameterized.
1509* Java: Experimental wrapper classes to make graph generation easier. Thanks @karllessard and @kbsriram
1510* Build & link in secure gRPC components (switch from the insecure grpc dependency to secure grpc dependency).
1511* Adding new endpoints for existing tensorflow symbols. These endpoints are going to be the preferred endpoints going forward and may replace some of the existing endpoints in the future. List of new endpoints:
1512  * New endpoints in `tf.image` namespace: `tf.image.extract_image_patches`
1513  * New endpoints in `tf.debugging` namespace: `tf.debugging.check_numerics`, `tf.debugging.is_finite`, `tf.debugging.is_inf`, `tf.debugging.is_nan`.
1514  * New endpoints in `tf.dtypes` namespace: `tf.dtypes.as_string`.
1515  * New endpoints in `tf.io` namespace: `tf.io.decode_base64`, `tf.io.decode_compressed`, `tf.io.decode_json_example`, `tf.io.decode_raw`, `tf.io.encode_base64`, `tf.io.matching_files`, `tf.io.parse_tensor`, `tf.io.read_file, `tf.io.write_file`.
1516  * New endpoints in tf.linalg namespace: `tf.linalg.cross`, `tf.linalg.tensor_diag` (corresponds to `tf.diag`), `tf.linalg.tensor_diag_part` (corresponds to `tf.diag_part`).
1517  * New endpoints in tf.manip namespace: `tf.manip.batch_to_space_nd`, `tf.manip.gather_nd`, `tf.manip.reshape`, `tf.manip.reverse`, `tf.manip.scatter_nd`, `tf.manip.space_to_batch_nd`, `tf.manip.tile`
1518  * New endpoints in tf.math namespace: `tf.math.acos`, `tf.math.acosh`, `tf.math.add`, `tf.math.asin`, `tf.math.asinh`, `tf.math.atan`, `tf.math.atan2`, `tf.math.atanh`, `tf.math.betainc`, `tf.math.ceil`, `tf.math.cos`, `tf.math.cosh`, `tf.math.digamma`, `tf.math.equal`, `tf.math.erfc`, `tf.math.exp`, `tf.math.expm1`, `tf.math.floor`, `tf.math.greater`, `tf.math.greater_equal`, `tf.math.igamma`, `tf.math.igammac`, `tf.math.invert_permutation`, `tf.math.less`, `tf.math.less_equal`, `tf.math.lgamma`, `tf.math.log`, `tf.math.log1p`, `tf.math.logical_and`, `tf.math.logical_not`, `tf.math.logical_or`, `tf.math.maximum`, `tf.math.minimum`, `tf.math.not_equal`, `tf.math.polygamma`, `tf.math.reciprocal`, `tf.math.rint`, `tf.math.rsqrt`, `tf.math.segment_max`, `tf.math.segment_mean`, `tf.math.segment_min`, `tf.math.segment_prod`, `tf.math.segment_sum`, `tf.math.sin`, `tf.math.sinh`, `tf.math.softplus`, `tf.math.softsign`, `tf.math.squared_difference`, `tf.math.tan`, `tf.math.unsorted_segment_max`, `tf.math.unsorted_segment_min`, `tf.math.unsorted_segment_prod`, `tf.math.unsorted_segment_sum`, `tf.math.zeta`.
1519  * New endpoints in `tf.quantization` namespace: `tf.quantization.dequantize`, `tf.quantization.fake_quant_with_min_max_args`, `tf.quantization.fake_quant_with_min_max_args_gradient`, `tf.quantization.fake_quant_with_min_max_vars`,  `tf.quantization.fake_quant_with_min_max_vars_gradient`, `tf.quantization.fake_quant_with_min_max_vars_per_channel`,  `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient`.
1520  * New endpoints in tf.strings namespace: `tf.strings.join` (corresponds to `tf.string_join`), `tf.strings.regex_replace`, `tf.strings.to_number` (corresponds to `tf.string_to_number`), `tf.strings.strip` (corresponds to `tf.string_strip`), `tf.strings.substr`, `tf.strings.to_hash_bucket` (corresponds to `tf.string_to_hash_bucket`), `tf.strings.to_hash_bucket_fast` (corresponds to `tf.string_to_hash_bucket_fast`), `tf.strings.to_hash_bucket_strong` (corresponds to `tf.string_to_hash_bucket_strong`).
1521
1522
1523## Thanks to our Contributors
1524
1525This release contains contributions from many people at Google, as well as:
1526
1527Ag Ramesh, Alex Wiltschko, Alexander Pantyukhin, Amogh Mannekote, An Jiaoyang, Andrei Nigmatulin, Andrew Ginns, BjøRn Moholt, Brett Koonce, Chengzhi Chen, Chinmay Das, Christian Ertler, Christoph Boeddeker, Clayne Robison, Courtial Florian, ctiijima, Dan Douthit, Dan J, Dan Ringwalt, EFanZh, Emanuele Ballarin, eqy, Evgeniy Zheltonozhskiy, Freedom" Koan-Sin Tan, FréDéRic Branchaud-Charron, G K, gracehoney, Guillaume Klein, Guozhong Zhuang, Hsien-Yang Li, hsm207, ImSheridan, Jayaram Bobba, Jiandong Ruan, Jie, Joel Shor, Jonas Rauber, Jongmin Baek, jsawruk, Karan Kaw, Karl Lessard, karl@kubx.ca, Kb Sriram, KinmanLam, leiiwang, Li, Yiqiang, Loo Rong Jie, Mahmoud Abuzaina, Mahmoud Aslan, ManHyuk, Martin Patz, Martin Zeitler, mktozk, Mohammad Ashraf Bhuiyan, mrTsjolder, Naman Bhalla, Nick Felt, Nicolas Lopez, Niranjan Hasabnis, Nishidha Panpaliya, Nitish, nrstott, Nutti, Parag Jain, PeterLee, Philipp Jund, Rach L, Rafal Wojdyla, Roland Zimmermann, Sergei Lebedev, SneakyFish5, Soila Kavulya, Sriram Veturi, Steven Schmatz, Taehoon Lee, Tang, Wenyi, Taras Sereda, Ted Chang, Tim Zaman, Tristan Rice, tucan, vchigrin, Vikram Tiwari, Vincent, WeberXie, William D. Irons, Yan Facai (颜发才), Yong Tang, Yu Yi, Yuxin Wu, Zé ViníCius
1528
1529# Release 1.9.0
1530
1531## Major Features And Improvements
1532* Updated docs for `tf.keras`: New Keras-based [get started](http://tensorflow.org/versions/r1.9/get_started),
1533  and [programmers guide page](http://tensorflow.org/versions/r1.9/programmers_guide/keras).
1534* Update `tf.keras` to the Keras 2.1.6 API.
1535* Added [`tf.keras.layers.CuDNNGRU`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNGRU) and [`tf.keras.layers.CuDNNLSTM`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNLSTM) layers. [Try it](https://colab.sandbox.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb?linkId=53292082).
1536* Adding support of core [feature columns](https://www.tensorflow.org/get_started/feature_columns) and [losses](https://www.tensorflow.org/api_docs/python/tf/losses) to [gradient boosted trees estimators](https://github.com/tensorflow/models/tree/master/official/r1/boosted_trees).
1537* The [python interface](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/lite)
1538  for the [TFLite Optimizing Converter](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/toco/README.md)
1539  has been expanded, and the command line interface (AKA: `toco`, `tflite_convert`) is once again
1540  included in the standard `pip` installation.
1541* Improved data-loading and text processing with:
1542    * [`tf.decode_compressed`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/decode_compressed)
1543    * [`tf.string_strip`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/string_strip)
1544    * [`tf.strings.regex_full_match`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/strings/regex_full_match)
1545* Added experimental support for new pre-made Estimators:
1546  * [`tf.contrib.estimator.BaselineEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/BaselineEstimator)
1547  * [`tf.contrib.estimator.RNNClassifier`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNEstimator)
1548  * [`tf.contrib.estimator.RNNEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNClassifier)
1549* The [distributions.Bijector](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/distributions/bijectors/Bijector)
1550  API supports broadcasting for Bijectors with new API changes.
1551
1552## Breaking Changes
1553  * If you're opening empty variable scopes; replace `variable_scope('', ...)` by
1554    `variable_scope(tf.get_variable_scope(), ...)`.
1555  * Headers used for building custom ops have been moved from site-packages/external into site-packages/tensorflow/include/external.
1556
1557## Bug Fixes and Other Changes
1558
1559*   `tfe.Network` is deprecated. Please inherit from `tf.keras.Model`.
1560*   Layered variable names have changed in the following conditions:
1561    *   Using `tf.keras.layers` with custom variable scopes.
1562    *   Using `tf.layers` in a subclassed `tf.keras.Model` class. See
1563        [here](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/layers)
1564        for more details
1565*   `tf.data`:
1566    *   `Dataset.from_generator()` now accepts an `args` list, in order to
1567        create nested generators.
1568    *   `Dataset.list_files()` now produces deterministic results when
1569        `shuffle=False` or a `seed` is passed.
1570    *   `tf.contrib.data.sample_from_datasets()` and
1571        `tf.contrib.data.choose_from_datasets()` make it easier to sample or
1572        deterministically choose elements from multiple datasets.
1573    *   `tf.contrib.data.make_csv_dataset()` now supports line breaks in quoted
1574        strings, and two infrequently used arguments removed.
1575    *   (C++) `DatasetBase::DebugString()` is now `const`.
1576    *   (C++) `DatasetBase::MakeIterator()` has been renamed to
1577        `DatasetBase::MakeIteratorInternal()`.
1578    *   (C++) `IteratorBase::Initialize()` method was added to support raising
1579        errors during iterator construction.
1580*   Eager Execution:
1581    *   Added the ability to pause recording operations for gradient computation
1582        via `tf.GradientTape.stop_recording`.
1583    *   Updated documentation, introductory notebooks.
1584*   `tf.keras`:
1585    *   Move Keras code out of _impl folder and remove API files.
1586    *   `tf.keras.Model.save_weights` now saves in TensorFlow format by default.
1587    *   Enable dataset iterators to be passed to `tf.keras.Model` training/eval
1588        methods.
1589*   TensorFlow Debugger (tfdbg) CLI: fix an issue in which the TensorBoard
1590    Debugger Plugin could not handle total source file size exceeding gRPC
1591    message size limit (4 MB).
1592*   `tf.contrib`:
1593    *   `tf.contrib.framework.zero_initializer` supports ResourceVariable.
1594    *   Adding "constrained_optimization" to tensorflow/contrib.
1595*   Other:
1596    *   Add GCS Configuration Ops.
1597    *   Changing signature of `MakeIterator` to enable propagating error status.
1598    *   KL divergence for two Dirichlet distributions.
1599    *   More consistent GcsFileSystem behavior for certain reads past EOF.
1600    *   Update benchmark for tf.scan to match ranges across eager and graph
1601        modes.
1602    *   Fixed bug in `tf.reduce_prod gradient` for complex dtypes.
1603    *   Allow the use of '.' in variables (e.g. "hparams.parse('a.b=1.0')"),
1604        which would previously raise an error. This will correspond to an
1605        attribute name with an embedded '.' symbol (e.g. 'a.b'), which can only
1606        be accessed indirectly (e.g. through getattr and setattr). To set this
1607        up the user will first need to explicitly add the variable to the hparam
1608        object (e.g. "hparams.add_hparam(name='a.b', value=0.0)").
1609    *   Benchmark for tf.scan in graph and eager modes.
1610    *   Added complex128 support to FFT, FFT2D, FFT3D, IFFT, IFFT2D, and IFFT3D.
1611    *   Making ids unique in `nn.embedding_lookup_sparse`. This helps to reduce
1612        RPC calls for looking up the embeddings when there are repeated ids in
1613        the batch.
1614    *   Support indicator column in boosted trees.
1615    *   Prevent `tf.gradients()` from backpropagating through integer tensors.
1616    *   LinearOperator[1D,2D,3D]Circulant added to `tensorflow.linalg`.
1617    *   Conv3D, Conv3DBackpropInput, Conv3DBackpropFilter now supports
1618        arbitrary.
1619    *   Added `tf.train.Checkpoint` for reading/writing object-based
1620        checkpoints.
1621    *   Added LinearOperatorKronecker, a dense-free implementation of the
1622        Kronecker Product.
1623    *   Allow LinearOperator to broadcast.
1624    *   SavedModelBuilder will now deduplicate asset names that point to files
1625        with the same basename and the same contents. Note that this may result
1626        in new asset files included in SavedModels in cases where assets with
1627        the same name but different contents were previously overwriting each
1628        other.
1629
1630## Thanks to our Contributors
1631
1632This release contains contributions from many people at Google, as well as:
1633
1634Abdullah Alrasheed, Achal Shah, Ad-530, ADiegoCAlonso, Aditya Yogi, Ag Ramesh, akindyakov, Andy Kernahan, Anya Petrova, Aurelien Geron, Ben, Ben Barsdell, Bhavani-Subramanian, braincodercn, Brett Koonce, Brian Nemsick, Brian Zier, Bryan Heden, candy.dc, cclauss, Clayne Robison, ctiijima, Dalmo Cirne, David Norman, David T.H. Kao, DosLin, ekelsen, Elson Rodriguez, Erik Smistad, Felix Abecassis, Fergal Cotter, fo40225, foo0x29a, Freedom" Koan-Sin Tan, FréDéRic Branchaud-Charron, gdh1995, Geoffrey Irving, Giuseppe, gracehoney, Guido Zuidhof, Guillaume Klein, Guozhong Zhuang, Haggai, Harald Husum, imsheridan, Ivan Zhang, Jan Zikes, Jayaram Bobba, Jesse Benson, Jesse Gumz, Jiajia Li, Jie, jinghuangintel, Jingwen, jjsjann123, Joe Yearsley, Joel Hestness, Joel Shor, josephyearsley, Junpeng Lao, Karol M. Langner, Kb Sriram, krantideep95, Krish Ravindranath, Letian Feng, Loo Rong Jie, Lukas Geiger, Maciej, Mahmoud Abuzaina, ManHyuk, Mark Ryan, mbhuiyan, Michal Turek, Mostafa Alaa, Myungsung Kwak, Nand Dalal, Nehal J Wani, Neil Tenenholtz, ngc92, Nicholas Nadeau, P.Eng., Avs, Niranjan Hasabnis, P-Hidringer, Paul Van Eck, Peng Yu, Qing Zhao, Qingying Chen, Quanlong, Rajendra Arora, Rholais Lii, rmanyari, Robin Richtsfeld, Russell Klopfer, Sagi, Sam Sendelbach, Sandeep N Gupta, Sandip Giri, Sarah Edkins, Scott Tseng, Sdalbsoo, Sergii Khomenko, Seungwoo Choi (Biggie), Seyed Majid Azimi, Shaoning Zeng, shengfuintel, Siu Kei, Muk, Smit Shilu, soonson, Stefan Schweter, Sukhwan Kim, Sunitha Kambhampati, Taehoon Lee, tamimaddari82, Tang, Wenyi, Ted Chang, u2takey, Utkarsh Upadhyay, Vadim Markovtsev, voegtlel, Wai Hon Law, wangsiyu, Wenhao Hu, wenhao.hu, William D. Irons, Yan Facai (颜发才), Yanbo Liang, Yihong Wang, Yilei (Dolee) Yang, Yong Tang, Yuan (Terry) Tang
1635
1636# Release 1.8.0
1637
1638## Major Features And Improvements
1639* Can now pass `tf.contrib.distribute.MirroredStrategy()` to `tf.estimator.RunConfig()` to run an Estimator model on multiple GPUs on one machine.
1640* Add `tf.contrib.data.prefetch_to_device()`, which supports prefetching to GPU memory.
1641* Added Gradient Boosted Trees as pre-made Estimators: BoostedTreesClassifier, BoostedTreesRegressor.
1642* Add 3rd generation pipeline config for Cloud TPUs which improves performance and usability.
1643* `tf.contrib.bayesflow` is moving out to it's own repo.
1644* Added `tf.contrib.{proto,rpc}` to allow generic proto parsing and RPC communication<sup>[1](#rpc-issue)</sup>.
1645
1646## Bug Fixes and Other Changes
1647* `tf.data`:
1648  * Add `tf.contrib.data.prefetch_to_device`, which enables prefetching dataset elements to GPU memory.
1649  * Add `tf.contrib.data.AUTOTUNE`, which allows the tf.data runtime to automatically tune the prefetch buffer sizes based on your system and environment.
1650  * Add `tf.contrib.data.make_csv_dataset` for building datasets of CSV files.
1651* Eager Execution:
1652  * With eager execution Datasets can now be used as standard python iterators (`for batch in dataset:`). Both `Dataset.__iter__()` and `Dataset.make_one_shot_iterator()` can now be used to create iterators when eager execution is enabled.
1653  * Automatic device placement has been enabled (i.e., use a GPU if available automatically, without requiring an explicit `with tf.device(“/gpu:0”)`) (Fixes #14133)
1654  * `tf.GradientTape` has moved out of contrib.
1655* `tf.keras`:
1656  * Added the fashion mnist dataset.
1657  * New data preprocessing functions: `image/random_brightness`, `sequence/TimeseriesGenerator`, and `text/hashing_trick`.
1658* Accelerated Linear Algebra (XLA):
1659  * Select and scatter in reference util and evaluator now use lexicographical order to break ties.
1660* TensorFlow Debugger (tfdbg) CLI:
1661  * During tensor-filter operations, allow exclusion of nodes by regular expressions.
1662  * Fix spurious background colors in some text terminals.
1663* `tf.contrib`:
1664  * Add meta-distribution BatchReshape which reshapes batch dimensions.
1665  * `tf.contrib.layers.recompute_grad` works for explicit gradient checkpointing on TPU.
1666  * Add `tf.contrib.framework.argsort`.
1667  * Allow `DNNBoostedTreeCombinedEstimator` to work with core versions of feature columns and losses.
1668  * Add non-linear image warping ops: `tf.contrib.image.sparse_image_warp`, `tf.contrib.image.dense_image_warp`, and `tf.contrib.image.interpolate_spline`.
1669  * Fix bug in `tf.contrib.opt.MultitaskOptimizerWrapper` where types of tensors were mismatched.
1670* Other:
1671  * Low-level graph construction now calls the TensorFlow C API. This change should be invisible to most users, but can be disabled by setting the environment variable `TF_C_API_GRAPH_CONSTRUCTION=0` in this release. Future releases will remove the ability to disable this change. Please [file a bug](https://github.com/tensorflow/tensorflow/issues/new) if you find yourself using this escape hatch.
1672  * Add description of shapes and a pointer to tutorial notebook in `tf.distributions.Distribution`.
1673  * Update scatter operations:
1674    * Add `tf.scatter_min` and `tf.scatter_max`
1675    * Extend scatter operations to work with a scalar update parameter.
1676  * Move cuDNN RNN ops to core for use in TensorFlow codebase only.
1677  * Add `float64` support for `Conv2d`, `Conv2dBackpropInput`, and `Conv2dBackpropFilter`.
1678  * Add `float64` support for `AvgPool`/`AvgPoolGrad`.
1679  * Make graph name scope thread local so that they work correctly in multi-threaded environments.
1680  * Update nsync synchronization library to avoid slow primitives on Linux.
1681  * Removed need to put nsync/public on C include path when building custom ops.
1682  * Add `tf.image.psnr`, `tf.image.ssim`, `tf.image.ssim_multiscale`, `tf.image.image_gradients`, `tf.image.sobel_edges`.
1683  * Add links to https://js.tensorflow.org.
1684  * Fix non-uniformity of orthogonal matrices.
1685  * Fix bug where multi-image Estimator eval summaries were not displayed correctly.
1686
1687<a name="rpc-issue"><sup>1</sup></a> The cancellation logic of the RPC op contains a concurrency error. A fix has been submitted to master and will be part of the next release.
1688
1689## Thanks to our Contributors
1690
1691This release contains contributions from many people at Google, as well as:
1692
16934d55397500, Aghasy, Alan Du, Alan Lee, Alan Yee, Alex Wiltschko, Animesh Karnewar, Ankit Gupta, Anton Matosov, Aris L, Ben Barsdell, Brent Yi, Brett Koonce, Carl Thomé, cbockman, Chikanaga Tomoyuki, Chris Tava, CéDric Deltheil, Dahan Gong, Dalmo Cirne, Daniel Erenrich, David Norman, DavidNorman, Edd Wilder-James, Fanjin Zeng, Felix Abecassis, fo40225, George Sterpu, Giovanni Terlingen, Gor Baghdasaryan, Guillaume Klein, Hanchen Li, Ilya Polenov, Jakub Kolodziejczyk, Jason Sadler, Jayaram Bobba, Jerry Liu, jinghuangintel, Jiongyan Zhang (张炯衍), Joel Shor, Jong Wook Kim, Julian Eisenschlos, Karl Lessard, Krish Ravindranath, Loo Rong Jie, Lukas Geiger, Luke Iwanski, Mahmoud Abuzaina, ManHyuk, Marvin Richter, Maximilian Mitchell, Mohammad Ashraf Bhuiyan, msofka, Mustafa Kasap, Nathan Burnham, Nathan Luehr, Naveen Marri, ngc92, nio1814, Oleg Zabluda, Ou Changkun, Panos Ipeirotis, Paul Van Eck, Peter Lee, Piotr Czapla, qjivy, Rholais Lii, Rodrigo Formigone, Russell Klopfer, ryantimjohn, Sang Han, SebastiáN RamíRez, shengfuintel, Siby Jose Plathottam, Silver Chan, Stanislaw Antol, Taehoon Lee, Tarang Chugh, Ted Chang, Thomas Bastiani, Xian Xu, Xiaoming (Jason) Cui, Yan Facai (颜发才), yaox12, Yashal Shakti Kanungo, Yong Tang, Yuan (Terry) Tang, Yuxin Wu, Ziyue(Louis) Lu
1694
1695# Release 1.7.0
1696
1697## Major Features And Improvements
1698* Eager mode is moving out of contrib, try `tf.enable_eager_execution()`.
1699* Graph rewrites emulating fixed-point quantization compatible with TensorFlow Lite, supported by new `tf.contrib.quantize` package.
1700* Easily customize gradient computation with `tf.custom_gradient`.
1701* [TensorBoard Debugger Plugin](https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/debugger/README.md), the graphical user interface (GUI) of TensorFlow Debugger (tfdbg), is now in alpha.
1702* Experimental support for reading a sqlite database as a `Dataset` with new `tf.contrib.data.SqlDataset`.
1703* Distributed Mutex / CriticalSection added to `tf.contrib.framework.CriticalSection`.
1704* Better text processing with `tf.regex_replace`.
1705* Easy, efficient sequence input with `tf.contrib.data.bucket_by_sequence_length`
1706* Initial support for `tf.contrib.tensorrt` that enables native TensorRT in
1707  TensorFlow.
1708
1709## Bug Fixes and Other Changes
1710* Accelerated Linear Algebra (XLA):
1711  * Add `MaxPoolGradGrad` support for XLA
1712  * CSE pass from Tensorflow is now disabled in XLA.
1713* `tf.data`:
1714  * `tf.data.Dataset`
1715    * Add support for building C++ Dataset op kernels as external libraries, using the `tf.load_op_library()` mechanism.
1716    * `Dataset.list_files()` now shuffles its output by default.
1717    * `Dataset.shuffle(..., seed=tf.constant(0, dtype=tf.int64))` now yields the same sequence of elements as `Dataset.shuffle(..., seed=0)`.
1718  * Add `num_parallel_reads` argument to `tf.data.TFRecordDataset`.
1719* `tf.contrib`:
1720  * `tf.contrib.bayesflow.halton_sequence` now supports randomization.
1721  * Add support for scalars in `tf.contrib.all_reduce`.
1722  * Add `effective_sample_size` to `tf.contrib.bayesflow.mcmc_diagnostics`.
1723  * Add `potential_scale_reduction` to `tf.contrib.bayesflow.mcmc_diagnostics`.
1724  * Add `BatchNormalization`, `Kumaraswamy` bijectors.
1725  * Deprecate `tf.contrib.learn`. Please check contrib/learn/README.md for instructions on how to convert existing code.
1726  * `tf.contrib.data`
1727    * Remove deprecated `tf.contrib.data.Dataset`, `tf.contrib.data.Iterator`, `tf.contrib.data.FixedLengthRecordDataset`, `tf.contrib.data.TextLineDataset`, and `tf.contrib.data.TFRecordDataset` classes.
1728    * Added `bucket_by_sequence_length`, `sliding_window_batch`, and `make_batched_features_dataset`
1729  * Remove unmaintained `tf.contrib.ndlstm`. You can find it externally at https://github.com/tmbarchive/tfndlstm.
1730  * Moved most of `tf.contrib.bayesflow` to its own repo: `tfp`
1731* Other:
1732  * tf.py_func now reports the full stack trace if an exception occurs.
1733  * Integrate `TPUClusterResolver` with GKE's integration for Cloud TPUs.
1734  * Add a library for statistical testing of samplers.
1735  * Add Helpers to stream data from the GCE VM to a Cloud TPU.
1736  * Integrate ClusterResolvers with TPUEstimator.
1737  * Unify metropolis_hastings interface with HMC kernel.
1738  * Move LIBXSMM convolutions to a separate --define flag so that they are disabled by default.
1739  * Fix `MomentumOptimizer` lambda.
1740  * Reduce `tfp.layers` boilerplate via programmable docstrings.
1741  * Add `auc_with_confidence_intervals`, a method for computing the AUC and confidence interval with linearithmic time complexity.
1742  * `regression_head` now accepts customized link function, to satisfy the usage that user can define their own link function if the `array_ops.identity` does not meet the requirement.
1743  * Fix `initialized_value` and `initial_value` behaviors for `ResourceVariables` created from `VariableDef` protos.
1744  * Add TensorSpec to represent the specification of Tensors.
1745  * Constant folding pass is now deterministic.
1746  * Support `float16` `dtype` in `tf.linalg.*`.
1747  * Add `tf.estimator.export.TensorServingInputReceiver` that allows `tf.estimator.Estimator.export_savedmodel` to pass raw tensors to model functions.
1748
1749## Deprecations
1750
1751* TensorFlow 1.7 may be the last time we support Cuda versions below 8.0.
1752  Starting with TensorFlow 1.8 release, 8.0 will be the minimum supported
1753  version.
1754* TensorFlow 1.7 may be the last time we support cuDNN versions below 6.0.
1755  Starting with TensorFlow 1.8 release, 6.0 will be the minimum supported
1756  version.
1757
1758## Thanks to our Contributors
1759
1760This release contains contributions from many people at Google, as well as:
1761
17624d55397500, Abe, Alistair Low, Andy Kernahan, Appledore, Ben, Ben Barsdell, Boris Pfahringer, Brad Wannow, Brett Koonce, Carl Thomé, cclauss, Chengzhi Chen, Chris Drake, Christopher Yeh, Clayne Robison, Codrut Grosu, Daniel Trebbien, Danny Goodman, David Goodwin, David Norman, Deron Eriksson, Donggeon Lim, Donny Viszneki, DosLin, DylanDmitri, Francisco Guerrero, Fred Reiss, gdh1995, Giuseppe, Glenn Weidner, gracehoney, Guozhong Zhuang, Haichen "Hc" Li, Harald Husum, harumitsu.nobuta, Henry Spivey, hsm207, Jekyll Song, Jerome, Jiongyan Zhang, jjsjann123, John Sungjin Park, Johnson145, JoshVarty, Julian Wolff, Jun Wang, June-One, Kamil Sindi, Kb Sriram, Kdavis-Mozilla, Kenji, lazypanda1, Liang-Chi Hsieh, Loo Rong Jie, Mahesh Bhosale, MandarJKulkarni, ManHyuk, Marcus Ong, Marshal Hayes, Martin Pool, matthieudelaro, mdfaijul, mholzel, Michael Zhou, Ming Li, Minmin Sun, Myungjoo Ham, MyungsungKwak, Naman Kamra, Peng Yu, Penghao Cen, Phil, Raghuraman-K, resec, Rohin Mohanadas, Sandeep N Gupta, Scott Tseng, seaotterman, Seo Sanghyeon, Sergei Lebedev, Ted Chang, terrytangyuan, Tim H, tkunic, Tod, vihanjain, Yan Facai (颜发才), Yin Li, Yong Tang, Yukun Chen, Yusuke Yamada
1763
1764
1765
1766# Release 1.6.0
1767
1768## Breaking Changes
1769* Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
1770* Prebuilt binaries will use AVX instructions. This may break TF on older CPUs.
1771
1772## Major Features And Improvements
1773* New Optimizer internal API for non-slot variables. Descendants of AdamOptimizer that access _beta[12]_power will need to be updated.
1774* `tf.estimator.{FinalExporter,LatestExporter}` now export stripped SavedModels. This improves forward compatibility of the SavedModel.
1775* FFT support added to XLA CPU/GPU.
1776
1777## Bug Fixes and Other Changes
1778* Documentation updates:
1779  * Added a second version of Getting Started, which is aimed at ML
1780newcomers.
1781  * Clarified documentation on `resize_images.align_corners` parameter.
1782  * Additional documentation for TPUs.
1783* Google Cloud Storage (GCS):
1784  * Add client-side throttle.
1785  * Add a `FlushCaches()` method to the FileSystem interface, with an implementation for GcsFileSystem.
1786* Other:
1787  * Add `tf.contrib.distributions.Kumaraswamy`.
1788  * `RetryingFileSystem::FlushCaches()` calls the base FileSystem's `FlushCaches()`.
1789  * Add `auto_correlation` to distributions.
1790  * Add `tf.contrib.distributions.Autoregressive`.
1791  * Add SeparableConv1D layer.
1792  * Add convolutional Flipout layers.
1793  * When both inputs of `tf.matmul` are bfloat16, it returns bfloat16, instead of float32.
1794  * Added `tf.contrib.image.connected_components`.
1795  * Add `tf.contrib.framework.CriticalSection` that allows atomic variable access.
1796  * Output variance over trees predictions for classifications tasks.
1797  * For `pt` and `eval` commands, allow writing tensor values to filesystem as numpy files.
1798  * gRPC: Propagate truncated errors (instead of returning gRPC internal error).
1799  * Augment `parallel_interleave` to support 2 kinds of prefetching.
1800  * Improved XLA support for C64-related ops log, pow, atan2, tanh.
1801  * Add probabilistic convolutional layers.
1802
1803## API Changes
1804* Introducing `prepare_variance` boolean with default setting to False for backward compatibility.
1805* Move `layers_dense_variational_impl.py` to `layers_dense_variational.py`.
1806
1807## Known Bugs
1808* Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
1809  `CUDA_ILLEGAL_ADDRESS` failures.
1810
1811  Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA 9
1812  and CUDA 9.1 sometimes does not properly compute the carry bit when
1813  decomposing 64-bit address calculations with large offsets (e.g. `load [x +
1814  large_constant]`) into 32-bit arithmetic in SASS.
1815
1816  As a result, these versions of `ptxas` miscompile most XLA programs which use
1817  more than 4GB of temp memory.  This results in garbage results and/or
1818  `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
1819
1820  A fix in CUDA 9.1.121 is expected in late February 2018.  We do not expect a
1821  fix for CUDA 9.0.x.  Until the fix is available, the only workaround is to
1822  [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
1823  or disable XLA:GPU.
1824
1825  TensorFlow will print a warning if you use XLA:GPU with a known-bad version of
1826  CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
1827
1828## Thanks to our Contributors
1829
1830This release contains contributions from many people at Google, as well as:
1831
18324d55397500, Ag Ramesh, Aiden Scandella, Akimasa Kimura, Alex Rothberg, Allen Goodman,
1833amilioto, Andrei Costinescu, Andrei Nigmatulin, Anjum Sayed, Anthony Platanios,
1834Anush Elangovan, Armando Fandango, Ashish Kumar Ram, Ashwini Shukla, Ben, Bhavani Subramanian,
1835Brett Koonce, Carl Thomé, cclauss, Cesc, Changming Sun, Christoph Boeddeker, Clayne Robison,
1836Clemens Schulz, Clint (Woonhyuk Baek), codrut3, Cole Gerdemann, Colin Raffel, Daniel Trebbien,
1837Daniel Ylitalo, Daniel Zhang, Daniyar, Darjan Salaj, Dave Maclachlan, David Norman, Dong--Jian,
1838dongsamb, dssgsra, Edward H, eladweiss, elilienstein, Eric Lilienstein, error.d, Eunji Jeong, fanlu,
1839Florian Courtial, fo40225, Fred, Gregg Helt, Guozhong Zhuang, Hanchen Li, hsm207, hyunyoung2,
1840ImSheridan, Ishant Mrinal Haloi, Jacky Ko, Jay Young, Jean Flaherty, Jerome, JerrikEph, Jesse
1841Kinkead, jfaath, Jian Lin, jinghuangintel, Jiongyan Zhang, Joel Hestness, Joel Shor, Johnny Chan,
1842Julian Niedermeier, Julian Wolff, JxKing, K-W-W, Karl Lessard, Kasper Marstal, Keiji Ariyama,
1843Koan-Sin Tan, Loki Der Quaeler, Loo Rong Jie, Luke Schaefer, Lynn Jackson, ManHyuk, Matt Basta,
1844Matt Smith, Matthew Schulkind, Michael, michaelkhan3, Miguel Piedrafita, Mikalai Drabovich,
1845Mike Knapp, mjwen, mktozk, Mohamed Aly, Mohammad Ashraf Bhuiyan, Myungjoo Ham, Naman Bhalla,
1846Namrata-Ibm, Nathan Luehr, nathansilberman, Netzeband, Niranjan Hasabnis, Omar Aflak, Ozge
1847Yalcinkaya, Parth P Panchal, patrickzzy, Patryk Chrabaszcz, Paul Van Eck, Paweł Kapica, Peng Yu,
1848Philip Yang, Pierre Blondeau, Po-Hsien Chu, powderluv, Puyu Wang, Rajendra Arora, Rasmus, Renat
1849Idrisov, resec, Robin Richtsfeld, Ronald Eddy Jr, Sahil Singh, Sam Matzek, Sami Kama, sandipmgiri,
1850Santiago Castro, Sayed Hadi Hashemi, Scott Tseng, Sergii Khomenko, Shahid, Shengpeng Liu, Shreyash
1851Sharma, Shrinidhi Kl, Simone Cirillo, simsicon, Stanislav Levental, starsblinking, Stephen Lumenta,
1852Steven Hickson, Su Tang, Taehoon Lee, Takuya Wakisaka, Ted Chang, Ted Ying, Tijmen Verhulsdonck,
1853Timofey Kondrashov, vade, vaibhav, Valentin Khrulkov, vchigrin, Victor Costan, Viraj Navkal,
1854Vivek Rane, wagonhelm, Yan Facai (颜发才), Yanbo Liang, Yaroslav Bulatov, yegord, Yong Tang,
1855Yoni Tsafir, yordun, Yuan (Terry) Tang, Yuxin Wu, zhengdi, Zhengsheng Wei, 田传武
1856
1857# Release 1.5.0
1858
1859## Breaking Changes
1860* Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
1861* Starting from 1.6 release, our prebuilt binaries will use AVX instructions.
1862  This may break TF on older CPUs.
1863
1864## Major Features And Improvements
1865* [Eager execution](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/contrib/eager)
1866  preview version is now available.
1867* [TensorFlow Lite](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/lite)
1868  dev preview is now available.
1869* CUDA 9.0 and cuDNN 7 support.
1870* Accelerated Linear Algebra (XLA):
1871  * Add `complex64` support to XLA compiler.
1872  * `bfloat` support is now added to XLA infrastructure.
1873  * Make `ClusterSpec` propagation work with XLA devices.
1874  * Use a deterministic executor to generate XLA graph.
1875* `tf.contrib`:
1876  * `tf.contrib.distributions`:
1877    * Add `tf.contrib.distributions.Autoregressive`.
1878    * Make `tf.contrib.distributions` QuadratureCompound classes support batch
1879    * Infer `tf.contrib.distributions.RelaxedOneHotCategorical` `dtype` from arguments.
1880    * Make `tf.contrib.distributions` quadrature family parameterized by
1881      `quadrature_grid_and_prob` vs `quadrature_degree`.
1882    * `auto_correlation` added to `tf.contrib.distributions`
1883  * Add `tf.contrib.bayesflow.layers`, a collection of probabilistic (neural) layers.
1884  * Add `tf.contrib.bayesflow.halton_sequence`.
1885  * Add `tf.contrib.data.make_saveable_from_iterator.`
1886  * Add `tf.contrib.data.shuffle_and_repeat`.
1887  * Add new custom transformation: `tf.contrib.data.scan()`.
1888  * `tf.contrib.distributions.bijectors`:
1889    * Add `tf.contrib.distributions.bijectors.MaskedAutoregressiveFlow`.
1890    * Add `tf.contrib.distributions.bijectors.Permute`.
1891    * Add `tf.contrib.distributions.bijectors.Gumbel`.
1892    * Add `tf.contrib.distributions.bijectors.Reshape`.
1893    * Support shape inference (i.e., shapes containing -1) in the Reshape bijector.
1894* Add `streaming_precision_recall_at_equal_thresholds,` a method for computing
1895  streaming precision and recall with `O(num_thresholds + size of predictions)`
1896  time and space complexity.
1897* Change `RunConfig` default behavior to not set a random seed, making random
1898  behavior independently random on distributed workers. We expect this to
1899  generally improve training performance. Models that do rely on determinism
1900  should set a random seed explicitly.
1901* Replaced the implementation of `tf.flags` with `absl.flags`.
1902* Add support for `CUBLAS_TENSOR_OP_MATH` in fp16 GEMM
1903* Add support for CUDA on NVIDIA Tegra devices
1904
1905## Bug Fixes and Other Changes
1906* Documentation updates:
1907  * Clarified that you can only install TensorFlow on 64-bit machines.
1908  * Added a short doc explaining how `Estimator`s save checkpoints.
1909  * Add documentation for ops supported by the `tf2xla` bridge.
1910  * Fix minor typos in the doc of `SpaceToDepth` and `DepthToSpace`.
1911  * Updated documentation comments in `mfcc_mel_filterbank.h` and `mfcc.h` to
1912    clarify that the input domain is squared magnitude spectra and the weighting
1913    is done on linear magnitude spectra (sqrt of inputs).
1914  * Change `tf.contrib.distributions` docstring examples to use `tfd` alias
1915    rather than `ds`, `bs`.
1916  * Fix docstring typos in `tf.distributions.bijectors.Bijector`.
1917  * `tf.assert_equal` no longer raises `ValueError.` It now raises
1918    `InvalidArgumentError,` as documented.
1919  * Update Getting Started docs and API intro.
1920* Google Cloud Storage (GCS):
1921  * Add userspace DNS caching for the GCS client.
1922  * Customize request timeouts for the GCS filesystem.
1923  * Improve GCS filesystem caching.
1924* Bug Fixes:
1925  * Fix bug where partitioned integer variables got their wrong shapes. Before
1926  * Fix correctness bug in CPU and GPU implementations of Adadelta.
1927  * Fix a bug in `import_meta_graph`'s handling of partitioned variables when
1928    importing into a scope. WARNING: This may break loading checkpoints of
1929    graphs with partitioned variables saved after using `import_meta_graph` with
1930    a non-empty `import_scope` argument.
1931  * Fix bug in offline debugger which prevented viewing events.
1932  * Added the `WorkerService.DeleteWorkerSession` method to the gRPC interface,
1933    to fix a memory leak. Ensure that your master and worker servers are running
1934    the same version of TensorFlow to avoid compatibility issues.
1935  * Fix bug in peephole implementation of BlockLSTM cell.
1936  * Fix bug by casting dtype of `log_det_jacobian` to match `log_prob` in
1937    `TransformedDistribution`.
1938  * Fix a bug in `import_meta_graph`'s handling of partitioned variables when
1939  * Ensure `tf.distributions.Multinomial` doesn't underflow in `log_prob`.
1940    Before this change, all partitions of an integer variable were initialized
1941    with the shape of the unpartitioned variable; after this change they are
1942    initialized correctly.
1943* Other:
1944  * Add necessary shape util support for bfloat16.
1945  * Add a way to run ops using a step function to MonitoredSession.
1946  * Add `DenseFlipout` probabilistic layer.
1947  * A new flag `ignore_live_threads` is available on train. If set to `True`, it
1948    will ignore threads that remain running when tearing down infrastructure
1949    after successfully completing training, instead of throwing a RuntimeError.
1950  * Restandardize `DenseVariational` as simpler template for other probabilistic
1951    layers.
1952  * `tf.data` now supports `tf.SparseTensor` components in dataset elements.
1953  * It is now possible to iterate over `Tensor`s.
1954  * Allow `SparseSegmentReduction` ops to have missing segment IDs.
1955  * Modify custom export strategy to account for multidimensional sparse float
1956    splits.
1957  * `Conv2D`, `Conv2DBackpropInput`, `Conv2DBackpropFilter` now supports arbitrary
1958    dilations with GPU and cuDNNv6 support.
1959  * `Estimator` now supports `Dataset`: `input_fn` can return a `Dataset`
1960    instead of `Tensor`s.
1961  * Add `RevBlock`, a memory-efficient implementation of reversible residual layers.
1962  * Reduce BFCAllocator internal fragmentation.
1963  * Add `cross_entropy` and `kl_divergence` to `tf.distributions.Distribution`.
1964  * Add `tf.nn.softmax_cross_entropy_with_logits_v2` which enables backprop
1965    w.r.t. the labels.
1966  * GPU back-end now uses `ptxas` to compile generated PTX.
1967  * `BufferAssignment`'s protocol buffer dump is now deterministic.
1968  * Change embedding op to use parallel version of `DynamicStitch`.
1969  * Add support for sparse multidimensional feature columns.
1970  * Speed up the case for sparse float columns that have only 1 value.
1971  * Allow sparse float splits to support multivalent feature columns.
1972  * Add `quantile` to `tf.distributions.TransformedDistribution`.
1973  * Add `NCHW_VECT_C` support for `tf.depth_to_space` on GPU.
1974  * Add `NCHW_VECT_C` support for `tf.space_to_depth` on GPU.
1975
1976## API Changes
1977* Rename `SqueezeDims` attribute to `Axis` in C++ API for Squeeze op.
1978* `Stream::BlockHostUntilDone` now returns Status rather than bool.
1979* Minor refactor: move stats files from `stochastic` to `common` and remove
1980  `stochastic`.
1981
1982## Known Bugs
1983* Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
1984  `CUDA_ILLEGAL_ADDRESS` failures.
1985
1986  Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA 9
1987  and CUDA 9.1 sometimes does not properly compute the carry bit when
1988  decomposing 64-bit address calculations with large offsets (e.g. `load [x +
1989  large_constant]`) into 32-bit arithmetic in SASS.
1990
1991  As a result, these versions of `ptxas` miscompile most XLA programs which use
1992  more than 4GB of temp memory.  This results in garbage results and/or
1993  `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
1994
1995  A fix in CUDA 9.1.121 is expected in late February 2018.  We do not expect a
1996  fix for CUDA 9.0.x.  Until the fix is available, the only workaround is to
1997  [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
1998  or disable XLA:GPU.
1999
2000  TensorFlow will print a warning if you use XLA:GPU with a known-bad version of
2001  CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
2002
2003## Thanks to our Contributors
2004
2005This release contains contributions from many people at Google, as well as:
2006
2007Adam Zahran, Ag Ramesh, Alan Lee, Alan Yee, Alex Sergeev, Alexander, Amir H. Jadidinejad,
2008Amy, Anastasios Doumoulakis, Andrei Costinescu, Andrei Nigmatulin, Anthony Platanios,
2009Anush Elangovan, arixlin, Armen Donigian, ArtëM Sobolev, Atlas7, Ben Barsdell, Bill Prin,
2010Bo Wang, Brett Koonce, Cameron Thomas, Carl Thomé, Cem Eteke, cglewis, Changming Sun,
2011Charles Shenton, Chi-Hung, Chris Donahue, Chris Filo Gorgolewski, Chris Hoyean Song,
2012Chris Tava, Christian Grail, Christoph Boeddeker, cinqS, Clayne Robison, codrut3, concerttttt,
2013CQY, Dan Becker, Dan Jarvis, Daniel Zhang, David Norman, dmaclach, Dmitry Trifonov,
2014Donggeon Lim, dongpilYu, Dr. Kashif Rasul, Edd Wilder-James, Eric Lv, fcharras, Felix Abecassis,
2015FirefoxMetzger, formath, FredZhang, Gaojin Cao, Gary Deer, Guenther Schmuelling, Hanchen Li,
2016Hanmin Qin, hannesa2, hyunyoung2, Ilya Edrenkin, Jackson Kontny, Jan, Javier Luraschi,
2017Jay Young, Jayaram Bobba, Jeff, Jeff Carpenter, Jeremy Sharpe, Jeroen BéDorf, Jimmy Jia,
2018Jinze Bai, Jiongyan Zhang, Joe Castagneri, Johan Ju, Josh Varty, Julian Niedermeier,
2019JxKing, Karl Lessard, Kb Sriram, Keven Wang, Koan-Sin Tan, Kyle Mills, lanhin, LevineHuang,
2020Loki Der Quaeler, Loo Rong Jie, Luke Iwanski, LáSzló Csomor, Mahdi Abavisani, Mahmoud Abuzaina,
2021ManHyuk, Marek ŠUppa, MathSquared, Mats Linander, Matt Wytock, Matthew Daley, Maximilian Bachl,
2022mdymczyk, melvyniandrag, Michael Case, Mike Traynor, miqlas, Namrata-Ibm, Nathan Luehr,
2023Nathan Van Doorn, Noa Ezra, Nolan Liu, Oleg Zabluda, opensourcemattress, Ouwen Huang,
2024Paul Van Eck, peisong, Peng Yu, PinkySan, pks, powderluv, Qiao Hai-Jun, Qiao Longfei,
2025Rajendra Arora, Ralph Tang, resec, Robin Richtsfeld, Rohan Varma, Ryohei Kuroki, SaintNazaire,
2026Samuel He, Sandeep Dcunha, sandipmgiri, Sang Han, scott, Scott Mudge, Se-Won Kim, Simon Perkins,
2027Simone Cirillo, Steffen Schmitz, Suvojit Manna, Sylvus, Taehoon Lee, Ted Chang, Thomas Deegan,
2028Till Hoffmann, Tim, Toni Kunic, Toon Verstraelen, Tristan Rice, Urs KöSter, Utkarsh Upadhyay,
2029Vish (Ishaya) Abrams, Winnie Tsang, Yan Chen, Yan Facai (颜发才), Yi Yang, Yong Tang,
2030Youssef Hesham, Yuan (Terry) Tang, Zhengsheng Wei, zxcqwe4906, 张志豪, 田传武
2031
2032We are also grateful to all who filed issues or helped resolve them, asked and
2033answered questions, and were part of inspiring discussions.
2034
2035# Release 1.4.1
2036
2037## Bug Fixes and Other Changes
2038* `LinearClassifier` fix.
2039
2040# Release 1.4.0
2041
2042## Major Features And Improvements
2043* `tf.keras` is now part of the core TensorFlow API.
2044* [`tf.data`](http://tensorflow.org/guide/data) is now part of
2045  the core TensorFlow API.
2046  * The API is now subject to backwards compatibility guarantees.
2047  * For a guide to migrating from the `tf.contrib.data` API, see the
2048    [README](https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/contrib/data/README.md).
2049  * Major new features include `Dataset.from_generator()` (for building an input
2050    pipeline from a Python generator), and the `Dataset.apply()` method for
2051    applying custom transformation functions.
2052  * Several custom transformation functions have been added, including
2053    `tf.contrib.data.batch_and_drop_remainder()` and
2054    `tf.contrib.data.sloppy_interleave()`.
2055* Add `train_and_evaluate` for simple distributed `Estimator` training.
2056* Add `tf.spectral.dct` for computing the DCT-II.
2057* Add Mel-Frequency Cepstral Coefficient support to `tf.contrib.signal`
2058  (with GPU and gradient support).
2059* Add a self-check on `import tensorflow` for Windows DLL issues.
2060* Add NCHW support to `tf.depth_to_space` on GPU.
2061* TensorFlow Debugger (tfdbg):
2062  * Add `eval` command to allow evaluation of arbitrary Python/numpy expressions
2063    in tfdbg command-line interface. See
2064    [Debugging TensorFlow Programs](https://www.tensorflow.org/guide/debugger)
2065    for more details.
2066  * Usability improvement: The frequently used tensor filter `has_inf_or_nan` is
2067    now added to `Session` wrappers and hooks by default. So there is no need
2068    for clients to call `.add_tensor_filter(tf_debug.has_inf_or_nan)` anymore.
2069* SinhArcsinh (scalar) distribution added to `contrib.distributions`.
2070* Make `GANEstimator` opensource.
2071* `Estimator.export_savedmodel()` now includes all valid serving signatures
2072  that can be constructed from the Serving Input Receiver and all available
2073  ExportOutputs. For instance, a classifier may provide regression- and
2074  prediction-flavored outputs, in addition to the classification-flavored one.
2075  Building signatures from these allows TF Serving to honor requests using the
2076  different APIs (Classify, Regress, and Predict). Furthermore,
2077  `serving_input_receiver_fn()` may now specify alternative subsets of nodes
2078  that may act as inputs. This allows, for instance, producing a prediction
2079  signature for a classifier that accepts raw `Tensors` instead of a serialized
2080  `tf.Example`.
2081* Add `tf.contrib.bayesflow.hmc`.
2082* Add `tf.contrib.distributions.MixtureSameFamily`.
2083* Make `Dataset.shuffle()` always reshuffles after each iteration by default.
2084* Add `tf.contrib.bayesflow.metropolis_hastings`.
2085* Add `log_rate` parameter to `tf.contrib.distributions.Poisson`.
2086* Extend `tf.contrib.distributions.bijector` API to handle some non-injective
2087  transforms.
2088* Java:
2089  * Generics (e.g., `Tensor<Integer>`) for improved type-safety
2090    (courtesy @andrewcmyers).
2091  * Support for multi-dimensional string tensors.
2092  * Support loading of custom operations (e.g. many in `tf.contrib`) on Linux
2093    and OS X
2094* All our prebuilt binaries have been built with CUDA 8 and cuDNN 6.
2095  We anticipate releasing TensorFlow 1.5 with CUDA 9 and cuDNN 7.
2096
2097## Bug Fixes and Other Changes
2098* `tf.nn.rnn_cell.DropoutWrapper` is now more careful about dropping out LSTM
2099  states.  Specifically, it no longer ever drops the `c` (memory) state of an
2100  `LSTMStateTuple`.  The new behavior leads to proper dropout behavior
2101  for LSTMs and stacked LSTMs.  This bug fix follows recommendations from
2102  published literature, but is a behavioral change.  State dropout behavior
2103  may be customized via the new `dropout_state_filter_visitor` argument.
2104* Removed `tf.contrib.training.python_input`.  The same behavior, in a more
2105  flexible and reproducible package, is available via the new
2106  `tf.contrib.data.Dataset.from_generator` method!
2107* Fix `tf.contrib.distributions.Affine` incorrectly computing log-det-jacobian.
2108* Fix `tf.random_gamma` incorrectly handling non-batch, scalar draws.
2109* Resolved a race condition in TensorForest TreePredictionsV4Op.
2110* Google Cloud Storage file system, Amazon S3 file system, and Hadoop file
2111  system support are now default build options.
2112* Custom op libraries must link against libtensorflow_framework.so
2113  (installed at `tf.sysconfig.get_lib()`).
2114* Change `RunConfig` default behavior to not set a random seed, making random
2115  behavior independently random on distributed workers. We expect this to
2116  generally improve training performance. Models that do rely on determinism
2117  should set a random seed explicitly.
2118
2119## Breaking Changes to the API
2120* The signature of the `tf.contrib.data.rejection_resample()` function has been
2121  changed. It now returns a function that can be used as an argument to
2122  `Dataset.apply()`.
2123* Remove `tf.contrib.data.Iterator.from_dataset()` method. Use
2124  `Dataset.make_initializable_iterator()` instead.
2125* Remove seldom used and unnecessary `tf.contrib.data.Iterator.dispose_op()`.
2126* Reorder some TF-GAN loss functions in a non-backwards compatible way.
2127
2128## Known Issues
2129* In Python 3, `Dataset.from_generator()` does not support Unicode strings.
2130  You must convert any strings to bytes objects before yielding them from
2131  the generator.
2132
2133## Thanks to our Contributors
2134
2135This release contains contributions from many people at Google, as well as:
2136
21374d55397500, Abdullah Alrasheed, abenmao, Adam Salvail, Aditya Dhulipala, Ag Ramesh,
2138Akimasa Kimura, Alan Du, Alan Yee, Alexander, Amit Kushwaha, Amy, Andrei Costinescu,
2139Andrei Nigmatulin, Andrew Erlichson, Andrew Myers, Andrew Stepanov, Androbin, AngryPowman,
2140Anish Shah, Anton Daitche, Artsiom Chapialiou, asdf2014, Aseem Raj Baranwal, Ash Hall,
2141Bart Kiers, Batchu Venkat Vishal, ben, Ben Barsdell, Bill Piel, Carl Thomé, Catalin Voss,
2142Changming Sun, Chengzhi Chen, Chi Zeng, Chris Antaki, Chris Donahue, Chris Oelmueller,
2143Chris Tava, Clayne Robison, Codrut, Courtial Florian, Dalmo Cirne, Dan J, Darren Garvey,
2144David Kristoffersson, David Norman, David RöThlisberger, DavidNorman, Dhruv, DimanNe,
2145Dorokhov, Duncan Mac-Vicar P, EdwardDixon, EMCP, error.d, FAIJUL, Fan Xia,
2146Francois Xavier, Fred Reiss, Freedom" Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang,
2147Guenther Schmuelling, Guo Yejun (郭叶军), Hans Gaiser, HectorSVC, Hyungsuk Yoon,
2148James Pruegsanusak, Jay Young, Jean Wanka, Jeff Carpenter, Jeremy Rutman, Jeroen BéDorf,
2149Jett Jones, Jimmy Jia, jinghuangintel, jinze1994, JKurland, Joel Hestness, joetoth,
2150John B Nelson, John Impallomeni, John Lawson, Jonas, Jonathan Dekhtiar, joshkyh, Jun Luan,
2151Jun Mei, Kai Sasaki, Karl Lessard, karl@kubx.ca, Kb Sriram, Kenichi Ueno, Kevin Slagle,
2152Kongsea, Lakshay Garg, lhlmgr, Lin Min, liu.guangcong, Loki Der Quaeler, Louie Helm,
2153lucasmoura, Luke Iwanski, Lyndon White, Mahmoud Abuzaina, Marcel Puyat, Mark Aaron Shirley,
2154Michele Colombo, MtDersvan, Namrata-Ibm, Nathan Luehr, Naurril, Nayana Thorat, Nicolas Lopez,
2155Niranjan Hasabnis, Nolan Liu, Nouce, Oliver Hennigh, osdamv, Patrik Erdes,
2156Patryk Chrabaszcz, Pavel Christof, Penghao Cen, postBG, Qingqing Cao, Qingying Chen, qjivy,
2157Raphael, Rasmi, raymondxyang, Renze Yu, resec, Roffel, Ruben Vereecken, Ryohei Kuroki,
2158sandipmgiri, Santiago Castro, Scott Kirkland, Sean Vig, Sebastian Raschka, Sebastian Weiss,
2159Sergey Kolesnikov, Sergii Khomenko, Shahid, Shivam Kotwalia, Stuart Berg, Sumit Gouthaman,
2160superzerg, Sven Mayer, tetris, Ti Zhou, Tiago Freitas Pereira, Tian Jin, Tomoaki Oiki,
2161Vaibhav Sood, vfdev, Vivek Rane, Vladimir Moskva, wangqr, Weber Xie, Will Frey,
2162Yan Facai (颜发才), yanivbl6, Yaroslav Bulatov, Yixing Lao, Yong Tang, youkaichao,
2163Yuan (Terry) Tang, Yue Zhang, Yuxin Wu, Ziming Dong, ZxYuan, 黄璞
2164
2165We are also grateful to all who filed issues or helped resolve them, asked and
2166answered questions, and were part of inspiring discussions.
2167
2168# Release 1.3.0
2169
2170See also [TensorBoard 0.1.4](https://github.com/tensorflow/tensorboard/releases/tag/0.1.4) release notes.
2171
2172## Major Features and Improvements
2173* Added canned estimators to Tensorflow library. List of added estimators:
2174  * `DNNClassifier`
2175  * `DNNRegressor`
2176  * `LinearClassifier`
2177  * `LinearRegressor`
2178  * `DNNLinearCombinedClassifier`
2179  * `DNNLinearCombinedRegressor`.
2180* All our prebuilt binaries have been built with cuDNN 6. We anticipate releasing TensorFlow 1.4 with cuDNN 7.
2181* `import tensorflow` now goes much faster.
2182* Adds a file cache to the GCS filesystem with configurable max staleness for file contents. This permits caching of file contents across close/open boundaries.
2183* Added an axis parameter to `tf.gather`.
2184* Added a `constant_values` keyword argument to `tf.pad`.
2185* Adds `Dataset.interleave` transformation.
2186* Add `ConcatenateDataset` to concatenate two datasets.
2187* Added Mobilenet support to TensorFlow for Poets training script.
2188* Adds a block cache to the GCS filesystem with configurable block size and count.
2189* SinhArcSinh bijector added.
2190* Added `Dataset.list_files` API.
2191* Introduces new operations and Python bindings for the Cloud TPU.
2192* Adding TensorFlow-iOS CocoaPod for symmetry with tensorflow-android.
2193* Introduces base implementations of ClusterResolvers.
2194* Unify memory representations of TensorShape and PartialTensorShape. As a consequence, tensors now have a maximum of 254 dimensions, not 255.
2195* Changed references to LIBXSMM to use version 1.8.1.
2196* TensorFlow Debugger (tfdbg):
2197  * Display summaries of numeric tensor values with the `-s` flag to command `print_tensor` or `pt`.
2198  * Display feed values with the `print_feed` or `pf` command and clickable links in the curses UI.
2199  * Runtime profiler at the op level and the Python source line level with the `run -p` command.
2200* Initial release of the statistical distribution library `tf.distributions`.
2201* GPU kernels and speed improvements for unary `tf.where` and `tf.nn.top_k`.
2202* Monotonic Attention wrappers added to `tf.contrib.seq2seq`.
2203* Added `tf.contrib.signal`, a library for signal processing primitives.
2204* Added `tf.contrib.resampler`, containing CPU and GPU ops for differentiable resampling of images.
2205
2206## Breaking Changes to the API
2207* `tf.RewriterConfig` was removed from the Python API after being available in 1.2 release candidates (it was never in an actual release). Graph rewriting is still available, just not as `tf.RewriterConfig`. Instead add an explicit import.
2208* Breaking change to `tf.contrib.data.Dataset` APIs that expect a nested structure. Lists are now converted to `tf.Tensor` implicitly. You may need to change uses of lists to tuples in existing code. In addition, dicts are now supported as a nested structure.
2209
2210## Changes to contrib APIs
2211* Adds tf.contrib.nn.rank_sampled_softmax_loss, a sampled-softmax variant that can improve rank loss.
2212* `tf.contrib.metrics`.{streaming_covariance,streaming_pearson_correlation} modified to return nan when they have seen less or equal to 1 unit of weight.
2213* Adds time series models to contrib. See contrib/timeseries/README.md for details.
2214* Adds FULLY_CONNECTED Op to tensorflow/lite/schema.fbs
2215
2216## Known Issues
2217* Tensorflow_gpu compilation fails with Bazel 0.5.3.
2218
2219## Bug Fixes and Other Changes
2220* Fixes `strides` and `begin` dtype mismatch when slicing using int64 Tensor index in python.
2221* Improved convolution padding documentation.
2222* Add a tag constant, gpu, to present graph with GPU support.
2223* `saved_model.utils` now support SparseTensors transparently.
2224* A more efficient implementation of non-max suppression.
2225* Add support for the shrinkage-type L2 to FtrlOptimizer in addition to the online L2 it already supports.
2226* Fix negative variance in moments calculation.
2227* Expand UniqueOp Benchmark Tests to cover more collision cases.
2228* Improves stability of GCS filesystem on Mac.
2229* Add time estimation to HloCostAnalysis.
2230* Fixed the bug in Estimator that params in constructor was not a deepcopy of the user provided one. This bugs inadvertently enabled user to mutate the params after the creation of Estimator, leading to potentially undefined behavior.
2231* Added None check for save_path in `saver.restore`.
2232* Register devices under their legacy names in device_mgr to ease the transition to clusterspec-propagated configurations.
2233* VectorExponential added to distributions.
2234* Add a bitwise module with bitwise_and, bitwise_or, bitwise_xor, and invert functions.
2235* Add fixed-grid ODE integration routines.
2236* Allow passing bounds to ScipyOptimizerInterface.
2237* Correctness fixes for fft_length parameter to `tf.spectral.rfft` & `tf.spectral.irfft`.
2238* Exported model signatures using the 'predict' method will no longer have their input and output keys silently ignored and rewritten to 'inputs' and 'outputs'. If a model was exported with different names before 1.2, and is now served with tensorflow/serving, it will accept requests using 'inputs' and 'outputs'. Starting at 1.2, such a model will accept the keys specified during export. Therefore, inference requests using 'inputs' and 'outputs' may start to fail. To fix this, either update any inference clients to send requests with the actual input and output keys used by the trainer code, or conversely, update the trainer code to name the input and output Tensors 'inputs' and 'outputs', respectively. Signatures using the 'classify' and 'regress' methods are not affected by this change; they will continue to standardize their input and output keys as before.
2239* Add in-memory caching to the Dataset API.
2240* Set default end_of_sequence variable in datasets iterators to false.
2241* [Performance] Increase performance of `tf.layers.conv2d` when setting use_bias=True by 2x by using nn.bias_add.
2242* Update iOS examples to use CocoaPods, and moved to tensorflow/examples/ios.
2243* Adds a family= attribute in `tf.summary` ops to allow controlling the tab name used in Tensorboard for organizing summaries.
2244* When GPU is configured, do not require --config=cuda, instead, automatically build for GPU if this is requested in the configure script.
2245* Fix incorrect sampling of small probabilities in CPU/GPU multinomial.
2246* Add a list_devices() API on sessions to list devices within a cluster. Additionally, this change augment the ListDevices master API to support specifying a session.
2247* Allow uses of over-parameterized separable convolution.
2248* TensorForest multi-regression bug fix.
2249* Framework now supports armv7, cocoapods.org now displays correct page.
2250* Script to create iOS framework for CocoaPods.
2251* Android releases of TensorFlow are now pushed to jcenter for easier integration into apps. See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/android/inference_interface/README.md for more details.
2252* TensorFlow Debugger (tfdbg):
2253  * Fixed a bug that prevented tfdbg from functioning with multi-GPU setups.
2254  * Fixed a bug that prevented tfdbg from working with `tf.Session.make_callable`.
2255
2256## Thanks to our Contributors
2257
2258This release contains contributions from many people at Google, as well as:
2259
22604F2E4A2E, Adriano Carmezim, Adrià Arrufat, Alan Yee, Alex Lattas, Alex Rothberg,
2261Alexandr Baranezky, Ali Siddiqui, Andreas Solleder, Andrei Costinescu, Andrew Hundt,
2262Androbin, Andy Kernahan, Anish Shah, Anthony Platanios, Arvinds-Ds, b1rd, Baptiste
2263Arnaud, Ben Mabey, Benedikt Linse, Beomsu Kim, Bo Wang, Boyuan Deng, Brett Koonce,
2264Bruno Rosa, Carl Thomé, Changming Sun, Chase Roberts, Chirag Bhatia, Chris Antaki,
2265Chris Hoyean Song, Chris Tava, Christos Nikolaou, Croath Liu, cxx, Czxck001, Daniel
2266Ylitalo, Danny Goodman, Darren Garvey, David Brailovsky, David Norman, DavidNorman,
2267davidpham87, ddurham2, Dhruv, DimanNe, Drew Hintz, Dustin Tran, Earthson Lu, ethiraj,
2268Fabian Winnen, Fei Sun, Freedom" Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang, Gautam,
2269Guenther Schmuelling, Gyu-Ho Lee, Hauke Brammer, horance, Humanity123, J Alammar,
2270Jayeol Chun, Jeroen BéDorf, Jianfei Wang, jiefangxuanyan, Jing Jun Yin, Joan Puigcerver,
2271Joel Hestness, Johannes Mayer, John Lawson, Johnson145, Jon Malmaud, Jonathan Alvarez-Gutierrez,
2272Juang, Yi-Lin, Julian Viereck, Kaarthik Sivashanmugam, Karl Lessard, karl@kubx.ca, Kevin
2273Carbone, Kevin Van Der Burgt, Kongsea, ksellesk, lanhin, Lef Ioannidis, Liangliang He,
2274Louis Tiao, Luke Iwanski, LáSzló Csomor, magixsno, Mahmoud Abuzaina, Marcel Hlopko, Mark
2275Neumann, Maxwell Paul Brickner, mdfaijul, MichaëL Defferrard, Michał JastrzęBski, Michele
2276Colombo, Mike Brodie, Mosnoi Ion, mouradmourafiq, myPrecious, Nayana Thorat,
2277Neeraj Kashyap, Nelson Liu, Niranjan Hasabnis, Olivier Moindrot, orome, Pankaj Gupta, Paul
2278Van Eck, peeyush18, Peng Yu, Pierre, preciousdp11, qjivy, Raingo, raoqiyu, ribx, Richard S.
2279Imaoka, Rishabh Patel, Robert Walecki, Rockford Wei, Ryan Kung, Sahil Dua, Sandip Giri, Sayed
2280Hadi Hashemi, sgt101, Shitian Ni, Shuolongbj, Siim PõDer, Simon Perkins, sj6077, SOLARIS,
2281Spotlight0xff, Steffen Eberbach, Stephen Fox, superryanguo, Sven Mayer, Tapan Prakash,
2282Tiago Morais Morgado, Till Hoffmann, Tj Rana, Vadim Markovtsev, vhasanov, Wei Wu,
2283windead, Yan (Asta) Li, Yan Chen, Yann Henon, Yi Wang, Yong Tang, yorkie, Yuan (Terry)
2284Tang, Yuxin Wu, zhengjiajin, zhongzyd, 黄璞
2285
2286We are also grateful to all who filed issues or helped resolve them, asked and
2287answered questions, and were part of inspiring discussions.
2288
2289# Release 1.2.1
2290
2291## Bug Fixes and Other Changes
2292* Updating markdown version required to >= 2.6.8.
2293* Support tensors as dropout rates again, by removing the min(max(..))
2294
2295# Release 1.2.0
2296
2297## Major Features and Improvements
2298* Python 3.6 support on Windows.
2299* Added `tf.layers.conv3d_transpose` layer for spatio temporal deconvolution.
2300* Added `tf.Session.make_callable()`, which provides a lower overhead means of running a similar step multiple times.
2301* Added libverbs-based RDMA support to contrib (courtesy @junshi15 from Yahoo).
2302* Bring `tf.feature_column.*` into the API. Non-deprecated functionality from `tf.contrib.layers.*` is moved to `tf.feature_column.*` with cosmetic changes.
2303* `RNNCell` objects now subclass `tf.layers.Layer`.  The strictness described
2304  in the TensorFlow 1.1 release is gone:  The first time an RNNCell is used,
2305  it caches its scope.  All future uses of the RNNCell will reuse variables from
2306  that same scope.  This is a breaking change from the behavior of RNNCells
2307  in TensorFlow versions <= 1.0.1.  TensorFlow 1.1 had checks in place to
2308  ensure old code works correctly with the new semantics; this version
2309  allows more flexible uses of RNNCell but can lead to subtle errors if
2310  using code meant for TensorFlow <= 1.0.1.  For example, writing:
2311  `MultiRNNCell([lstm] * 5)` will now build a 5-layer LSTM stack where each
2312  layer shares the **same** parameters.  To get 5 layers each with their own
2313  parameters, write: `MultiRNNCell([LSTMCell(...) for _ in range(5)])`.
2314  If at all unsure, first test your code with TF 1.1; ensure it raises no
2315  errors, and then upgrade to TF 1.2.
2316* RNNCells' variable names have been renamed for consistency with Keras layers.
2317  Specifically, the previous variable names "weights" and "biases" have
2318  been changed to "kernel" and "bias", respectively.
2319  This may cause backward incompatibility with regard to your old
2320  checkpoints containing such RNN cells, in which case you can use the tool
2321  [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
2322  to convert the variable names in your old checkpoints.
2323* Many of the RNN functions and classes that were in the `tf.nn` namespace
2324  before the 1.0 release and which were moved to `tf.contrib.rnn` have now
2325  been moved back to the core namespace.  This includes
2326  `RNNCell`, `LSTMCell`, `GRUCell`, and a number of other cells.  These
2327  now reside in `tf.nn.rnn_cell` (with aliases in `tf.contrib.rnn` for backwards
2328  compatibility).  The original `tf.nn.rnn` function is now `tf.nn.static_rnn`,
2329  and the bidirectional static and state saving static rnn functions are also
2330  now back in the `tf.nn` namespace.
2331
2332  Notable exceptions are the `EmbeddingWrapper`, `InputProjectionWrapper` and
2333  `OutputProjectionWrapper`,  which will slowly be moved to deprecation
2334  in `tf.contrib.rnn`.  These are inefficient wrappers that should often
2335  be replaced by calling `embedding_lookup` or `layers.dense` as pre- or post-
2336  processing of the rnn.  For RNN decoding, this functionality has been replaced
2337  with an alternative API in `tf.contrib.seq2seq`.
2338* Intel MKL Integration (https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture). Intel developed a number of
2339  optimized deep learning primitives: In addition to matrix multiplication and
2340  convolution, these building blocks include:
2341  Direct batched convolution
2342  Pooling: maximum, minimum, average
2343  Normalization: LRN, batch normalization
2344  Activation: rectified linear unit (ReLU)
2345  Data manipulation: multi-dimensional transposition (conversion), split,
2346  concat, sum and scale.
2347* TensorForest Estimator now supports SavedModel export for serving.
2348* Support client-provided ClusterSpec's and propagate them to all workers to enable the creation of dynamic TensorFlow clusters.
2349* TensorFlow C library now available for Windows.
2350* We released a new open-source version of TensorBoard.
2351* [`SavedModel CLI`](https://www.tensorflow.org/versions/master/guide/saved_model_cli) tool available to inspect and execute MetaGraph in SavedModel
2352* Android releases of TensorFlow are now pushed to jcenter for easier
2353  integration into apps. See
2354  https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/android/inference_interface/README.md
2355  for more details.
2356
2357## Deprecations
2358
2359* TensorFlow 1.2 may be the last time we build with cuDNN 5.1. Starting with
2360  TensorFlow 1.3, we will try to build all our prebuilt binaries with cuDNN 6.0.
2361  While we will try to keep our source code compatible with cuDNN 5.1, it will
2362  be best effort.
2363
2364## Breaking Changes to the API
2365* `org.tensorflow.contrib.android.TensorFlowInferenceInterface` now throws exceptions where possible and has simplified method signatures.
2366
2367## Changes to contrib APIs
2368* Added `tf.contrib.util.create_example`.
2369* Added bilinear interpolation to `tf.contrib.image`.
2370* Add `tf.contrib.stateless` for random ops with custom seed control.
2371* MultivariateNormalFullCovariance added to contrib/distributions/
2372* tensorflow/contrib/rnn undergoes RNN cell variable renaming for
2373  consistency with Keras layers. Specifically, the previous variable names
2374  "weights" and "biases" are changed to "kernel" and "bias", respectively.
2375  This may cause backward incompatibility with regard to your old
2376  checkpoints containing such RNN cells, in which case you can use the
2377  [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
2378  to convert the variable names in your old checkpoints.
2379* Added `tf.contrib.kernel_methods` module with Ops and estimators for primal
2380  (explicit) kernel methods in TensorFlow.
2381
2382## Bug Fixes and Other Changes
2383* In python, `Operation.get_attr` on type attributes returns the Python DType
2384  version of the type to match expected get_attr documentation rather than the
2385  protobuf enum.
2386* tensorflow/contrib/rnn undergoes RNN cell variable renaming for
2387  consistency with Keras layers. Specifically, the previous variable names
2388  "weights" and "biases" are changed to "kernel" and "bias", respectively.
2389* Changed MIN_SDK version to 8.0 when building iOS libraries.
2390* Fixed LIBXSMM integration.
2391* Make decode_jpeg/decode_png/decode_gif handle all formats, since users frequently try to decode an image as the wrong type.
2392* Improve implicit broadcasting lowering.
2393* Improving stability of GCS/BigQuery clients by a faster retrying of stale transmissions.
2394* Remove OpKernelConstruction::op_def() as part of minimizing proto dependencies.
2395* VectorLaplaceDiag distribution added.
2396* Android demo no longer requires libtensorflow_demo.so to run (libtensorflow_inference.so still required)
2397* Added `categorical_column_with_vocabulary_file`.
2398* Introduce ops for batching/unbatching tensors across Session::Run() calls.
2399* Add tf.log_sigmoid(x) = tf.log(tf.sigmoid(x)) = -tf.nn.softplus(-x).
2400* Changed hooks lists to immutable tuples, and now allow any iterable for the associated arguments.
2401* Introduce TFDecorator.
2402* Added an Mfcc op for speech feature generation.
2403* Improved DirectSession::Run() overhead and error checking. Feeding a value of the wrong type will now synchronously raise an INVALID_ARGUMENT error instead of asynchronously raising an INTERNAL error. Code that depends on the (undefined) behavior when feeding a tensor of the wrong type may need to be updated.
2404* Added unreduced NONE, and reduced MEAN options for losses. Removed "WEIGHTED_" prefix from other Reduction constants.
2405* assertAllClose now handles dicts.
2406* Added Gmock matcher for HloInstructions.
2407* Add var name to errors on variable restore.
2408* Added an AudioSpectrogram op for audio feature generation.
2409* Added `reduction` arg to losses.
2410* `tf.placeholder` can represent scalar shapes and partially known.
2411* Remove estimator_spec(mode) argument.
2412* Added an AudioSpectrogram op for audio feature generation.
2413* TensorBoard disables all runs by default if there are more than 40 runs.
2414* Removed old doc generator code.
2415* GCS file system integration now supports domain buckets, e.g gs://bucket.domain.com/path.
2416* Add `tf.summary.text` for outputting text to TensorBoard.
2417* The "run" command of tfdbg's command-line interface now supports filtering of tensors by node name, op type and tensor dtype.
2418* `tf.string_to_number` now supports int64 and float64 outputs.
2419
2420## Thanks to our Contributors
2421
2422This release contains contributions from many people at Google, as well as:
2423
24244F2E4A2E, Aaron Schumacher, Abhi Agg, admcrae, Adriano Carmezim, Adrià Arrufat,
2425agramesh1, Akimitsu Seo, Alan Mosca, Alex Egg, Alex Rothberg, Alexander Heinecke,
2426Alexander Matyasko, Alexandr Baranezky, Alexandre Caulier, Ali Siddiqui, Anand Venkat,
2427Andrew Hundt, Androbin, Anmol Sharma, Arie, Arno Leist, Arron Cao, AuréLien Geron, Bairen Yi,
2428Beomsu Kim, Carl Thomé, cfperez, Changming Sun, Corey Wharton, critiqjo, Dalei Li, Daniel
2429Rasmussen, Daniel Trebbien, DaríO Hereñú, David Eng, David Norman, David Y. Zhang, Davy Song, ddurham2,
2430Deepak Subburam, Dmytro Kyrychuk, Dominic Rossi, Dominik SchlöSser, Dustin Tran,
2431Eduardo Pinho, Egil Martinsson, Elliot Saba, Eric Bigelow, Erik Smistad, Evan Klitzke,
2432Fabrizio Milo, Falcon Dai, Fei Gao, FloopCZ, Fung Lam, Gautam, GBLin5566, Greg Peatfield,
2433Gu Wang, Guenther Schmuelling, Hans Pabst, Harun Gunaydin, Huaizheng, Ido Shamay, Ikaro
2434Silva, Ilya Edrenkin, Immexxx, James Mishra, Jamie Cooke, Jay Young, Jayaram Bobba,
2435Jianfei Wang, jinghua2, Joey Meyer, John Maidens, Jonghoon Jin, Julian Villella,
2436Jun Kim, Jun Shi, Junwei Pan, jyegerlehner, Karan Desai, Karel Van De Plassche,
2437Kb Sriram, KhabarlakKonstantin, Koan-Sin Tan, krivard, Kwotsin, Leandro Gracia Gil,
2438Li Chen, Liangliang He, Louie Helm, lspvic, Luiz Henrique Soares, LáSzló Csomor,
2439Mark Wong, Mathew Wicks, Matthew Rahtz, Maxwell Paul Brickner, Michael Hofmann, Miguel
2440Flores Ruiz De Eguino, MikeTam1021, Mortada Mehyar, Mycosynth, Namnamseo,
2441Nate Harada, Neven Miculinic, Nghia Tran, Nick Lyu, Niranjan Hasabnis, Nishidha, Oleksii
2442Kuchaiev, Oyesh Mann Singh, Panmari, Patrick, Paul Van Eck, Piyush Chaudhary, Quim Llimona,
2443Raingo, Richard Davies, Ruben Vereecken, Sahit Chintalapudi, Sam Abrahams, Santiago Castro,
2444Scott Sievert, Sean O'Keefe, Sebastian Schlecht, Shane, Shubhankar Deshpande, Spencer Schaber,
2445Sunyeop Lee, t13m, td2014, Thomas H. P. Andersen, Toby Petty, Umang Mehta,
2446Vadim Markovtsev, Valentin Iovene, Vincent Zhao, Vit Stepanovs, Vivek Rane, Vu Pham, wannabesrevenge,
2447weipingpku, wuhaixutab, wydwww, Xiang Gao, Xiaolin Lin, xiaoyaozhuzi, Yaroslav Bulatov, Yi Liu,
2448Yoshihiro Sugi, Yuan (Terry) Tang, Yuming Wang, Yuxin Wu, Zader Zheng, Zhaojun Zhang, zhengjiajin,
2449ZhipengShen, Ziming Dong, zjj2wry
2450
2451We are also grateful to all who filed issues or helped resolve them, asked and
2452answered questions, and were part of inspiring discussions.
2453
2454# Release 1.1.0
2455
2456## Major Features and Improvements
2457* Added Java API support for Windows.
2458* Added `tf.spectral` module. Moved existing FFT ops to `tf.spectral` while
2459  keeping an alias in the old location (`tf.*`).
2460* Added 1D, 2D and 3D Fourier transform ops for real signals to `tf.spectral`.
2461* Added a `tf.bincount` function.
2462* Added Keras 2 API to contrib.
2463* Added a new lightweight queue-like object - `RecordInput`.
2464* Added `tf.contrib.image.compose_transforms` function.
2465* Bring `tf.estimator.*` into the API. Non-deprecated functionality from `tf.contrib.learn.Estimator` is moved to `tf.estimator.Estimator` with cosmetic changes.
2466* Docker images: TF images on gcr.io and Docker Hub are upgraded to ubuntu:16.04.
2467* Added the following features to TensorFlow Debugger (tfdbg):
2468  * Ability to inspect Python source file against TF ops and tensors (command `print_source` / `ps`)
2469  * New navigation bar in Curses-based UI
2470  * NodeStepper (command `invoke_stepper`) now uses intermediate tensor dumps. It also uses `TensorHandles` as direct feeds during successive `cont` calls for improved performance and reduced memory consumption.
2471* Initial release of installation guides for Java, C, and Go.
2472* Added Text Dashboard to TensorBoard.
2473
2474## Deprecations
2475
2476* TensorFlow 1.1.0 will be the last time we release a binary with Mac GPU support. Going forward, we will stop testing on Mac GPU systems. We continue to welcome patches that maintain Mac GPU support, and we will try to keep the Mac GPU build working.
2477
2478## Changes to contrib APIs
2479* The behavior of RNNCells is now stricter due to the transition towards making RNNCells act more like Keras layers.
2480  * If an RNNCell is used twice in two different variable scopes, an error is raised describing how to avoid this behavior.
2481  * If an RNNCell is used in a variable scope with existing conflicting variables, an error is raised showing that the RNNCell must be constructed with argument `reuse=True`.
2482* Deprecated contrib/distributions `pmf`, `pdf`, `log_pmf`, `log_pdf`.
2483* Moved `bayesflow.special_math` to distributions.
2484* `tf.contrib.tensor_forest.python.tensor_forest.RandomForestDeviceAssigner` removed.
2485* Changed some MVN classes and parameters:
2486  * `tf.contrib.distributions.MultivariateNormalFull` replaced by `tf.contrib.distributions.MultivariateNormalTriL`.
2487  * `tf.contrib.distributions.MultivariateNormalCholesky` replaced by `tf.contrib.distributions.MultivariateNormalTriL`
2488  * `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev` replaced
2489    by `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusScale`
2490  * `tf.contrib.distributions.MultivariateNormalDiag` arguments changed from `mu`, `diag_stddev` to `log`, `scale_diag`.
2491  * `tf.contrib.distributions.MultivariateNormalDiagPlusVDVT` removed.
2492  * `tf.contrib.distributions.MultivariateNormalDiagPlusLowRank` added.
2493
2494## Bug Fixes and Other Changes
2495* Java: Support for loading models exported using the SavedModel API (courtesy @EronWright).
2496* Go: Added support for incremental graph execution.
2497* Fix a bug in the WALS solver when single-threaded.
2498* Added support for integer sparse feature values in `tf.contrib.layers.sparse_column_with_keys`.
2499* Fixed `tf.set_random_seed(0)` to be deterministic for all ops.
2500* Stability improvements for the GCS file system support.
2501* Improved TensorForest performance.
2502* Added support for multiple filename globs in `tf.matching_files`.
2503* `LogMessage` now includes a timestamp as beginning of a message.
2504* Added MultiBox person detector example standalone binary.
2505* Android demo: Makefile build functionality added to build.gradle to fully support building TensorFlow demo in Android on Windows.
2506* Android demo: read MultiBox priors from txt file rather than protobuf.
2507* Added colocation constraints to `StagingArea`.
2508* `sparse_matmul_op` reenabled for Android builds.
2509* Restrict weights rank to be the same as the broadcast target, to avoid ambiguity on broadcast rules.
2510* Upgraded libxsmm to 1.7.1 and applied other changes for performance and memory usage.
2511* Fixed bfloat16 integration of LIBXSMM sparse mat-mul.
2512* Improved performance and reduce memory usage by allowing ops to forward input buffers to output buffers and perform computations in-place.
2513* Improved the performance of CPU assignment for strings.
2514* Speed up matrix * vector multiplication and matrix * matrix with unknown shapes.
2515* C API: Graph imports now support input remapping, control dependencies, and returning imported nodes (see `TF_GraphImportGraphDefWithReturnOutputs()`)
2516* Multiple C++ API updates.
2517* Multiple TensorBoard updates including:
2518  * Users can now view image summaries at various sampled steps (instead of just the last step).
2519  * Bugs involving switching runs as well as the image dashboard are fixed.
2520  * Removed data download links from TensorBoard.
2521  * TensorBoard uses a relative data directory, for easier embedding.
2522  * TensorBoard automatically ignores outliers for domain calculation, and formats proportional values consistently.
2523* Multiple tfdbg bug fixes:
2524  * Fixed Windows compatibility issues.
2525  * Command history now persists across runs.
2526  * Bug fix in graph validation related to `tf.while_loops`.
2527* Java Maven fixes for bugs with Windows installation.
2528* Backport fixes and improvements from external keras.
2529* Keras config file handling fix.
2530
2531## Thanks to our Contributors
2532
2533This release contains contributions from many people at Google, as well as:
2534
2535A. Besir Kurtulmus, Adal Chiriliuc, @akash, Alec-Desouza, Alex Rothberg, Alex
2536Sergeev, Alexander Heinecke, Allen Guo, Andreas Madsen, Ankesh Anand, Anton
2537Loss, @Aravind, @Arie, Ashutosh Das, AuréLien Geron, Bairen Yi, @bakunyo, Ben
2538Visser, Brady Zhou, Calpa Liu, Changming Sun, Chih Cheng Liang, Christopher
2539Berner, Clark Zinzow, @Conchylicultor, Dan Ellis, Dan J, Dan Jarvis, Daniel
2540Ylitalo, Darren Garvey, David Norman, David Truong, @DavidNorman, Dimitar
2541Pavlov, Dmitry Persiyanov, @Eddie, @elirex, Erfan Noury, Eron Wright, Evgeny
2542Mazovetskiy, Fabrizio (Misto) Milo, @fanlu, Fisher Coder, Florian Courtial,
2543Franck Dernoncourt, Gagan Goel, Gao, Xiang, @Gautam, Gefu Tang, @guilherme,
2544@guschmue, Hannah Provenza, Hans Pabst, @hartb, Hsiao Yi, Huazuo Gao, Igor
2545ChorążEwicz, Ivan Smirnov, Jakub Kolodziejczyk, Jason Gavris, Jason Morton, Jay
2546Young, Jayaram Bobba, Jeremy Sawruk, Jiaming Liu, Jihun Choi, @jiqiu, Joan Thibault,
2547John C F, Jojy George Varghese, Jon Malmaud, Julian Berman, Julian Niedermeier,
2548Junpeng Lao, Kai Sasaki, @Kankroc, Karl Lessard, Kyle Bostelmann, @Lezcano, Li
2549Yi, Luo Yun, @lurker, Mahmoud-Abuzaina, Mandeep Singh, Marek Kolodziej, Mark
2550Szepieniec, Martial Hue, Medhat Omr, Memo Akten, Michael Gharbi, MichaëL Defferrard,
2551Milan Straka, @MircoT, @mlucool, Muammar Ibn Faisal, Nayana Thorat, @nghiattran,
2552Nicholas Connor, Nikolaas Steenbergen, Niraj Patel, Niranjan Hasabnis, @Panmari,
2553Pavel Bulanov, Philip Pries Henningsen, Philipp Jund, @polonez, Prayag Verma, Rahul
2554Kavi, Raphael Gontijo Lopes, @rasbt, Raven Iqqe, Reid Pryzant, Richard Shin, Rizwan
2555Asif, Russell Kaplan, Ryo Asakura, RüDiger Busche, Saisai Shao, Sam Abrahams, @sanosay,
2556Sean Papay, @seaotterman, @selay01, Shaurya Sharma, Sriram Narayanamoorthy, Stefano
2557Probst, @taknevski, @tbonza, @teldridge11, Tim Anglade, Tomas Reimers, Tomer Gafner,
2558Valentin Iovene, Vamsi Sripathi, Viktor Malyi, Vit Stepanovs, Vivek Rane, Vlad Firoiu,
2559@wangg12, @will, Xiaoyu Tao, Yaroslav Bulatov, Yi Liu, Yuan (Terry) Tang, @Yufeng,
2560Yuming Wang, Yuxin Wu, Zafar Takhirov, Ziming Dong
2561
2562We are also grateful to all who filed issues or helped resolve them, asked and
2563answered questions, and were part of inspiring discussions.
2564
2565
2566# Release 1.0.1
2567
2568## Bug Fixes and Other Changes
2569* Change GraphConstructor to not increase the version when importing, but instead take the min of all versions.
2570* Google Cloud Storage fixes.
2571* Removed `tf.core` and `tf.python` modules from the API. These were never intended to be exposed. Please use the same objects through top-level `tf` module instead.
2572
2573# Release 1.0.0
2574
2575## Major Features and Improvements
2576* XLA (experimental): initial release of [XLA](https://www.tensorflow.org/versions/master/experimental/xla/), a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
2577* TensorFlow Debugger (tfdbg): command-line interface and API.
2578* New python 3 docker images added.
2579* Made pip packages pypi compliant. TensorFlow can now be installed by `pip
2580  install tensorflow` command.
2581* Several python API calls have been changed to resemble NumPy more closely.
2582* Android: person detection + tracking demo implementing Scalable Object
2583  Detection using Deep Neural Networks.
2584* New (experimental) [Java API](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java).
2585* Add new Android image stylization demo based on "A Learned Representation For Artistic Style", and add YOLO object detector support.
2586
2587## Breaking Changes to the API
2588To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a [conversion script](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/compatibility).
2589* TensorFlow/models have been moved to a separate github repository.
2590* Division and modulus operators (/, //, %) now match Python (flooring)
2591  semantics. This applies to `tf.div` and `tf.mod` as well. To obtain forced
2592  integer truncation based behaviors you can use `tf.truncatediv`
2593  and `tf.truncatemod`.
2594* `tf.divide()` is now the recommended division function. `tf.div()` will
2595  remain, but its semantics do not respond to Python 3 or `from future`
2596  mechanisms.
2597* tf.reverse() now takes indices of axes to be reversed. E.g.
2598  `tf.reverse(a, [True, False, True])` must now be written as
2599  `tf.reverse(a, [0, 2])`. `tf.reverse_v2()` will remain until 1.0 final.
2600* `tf.mul`, `tf.sub` and `tf.neg` are deprecated in favor of `tf.multiply`,
2601  `tf.subtract` and `tf.negative`.
2602* `tf.pack` and `tf.unpack` are deprecated in favor of `tf.stack` and
2603  `tf.unstack`.
2604* `TensorArray.pack` and `TensorArray.unpack` are getting deprecated in favor of
2605  `TensorArray.stack` and `TensorArray.unstack`.
2606* The following Python functions have had their arguments changed to use `axis`
2607  when referring to specific dimensions. We have kept the old keyword arguments
2608  for compatibility currently, but we will be removing them well before the
2609  final 1.0.
2610  * `tf.argmax`: `dimension` becomes `axis`
2611  * `tf.argmin`: `dimension` becomes `axis`
2612  * `tf.count_nonzero`: `reduction_indices` becomes `axis`
2613  * `tf.expand_dims`: `dim` becomes `axis`
2614  * `tf.reduce_all`: `reduction_indices` becomes `axis`
2615  * `tf.reduce_any`: `reduction_indices` becomes `axis`
2616  * `tf.reduce_join`: `reduction_indices` becomes `axis`
2617  * `tf.reduce_logsumexp`: `reduction_indices` becomes `axis`
2618  * `tf.reduce_max`: `reduction_indices` becomes `axis`
2619  * `tf.reduce_mean`: `reduction_indices` becomes `axis`
2620  * `tf.reduce_min`: `reduction_indices` becomes `axis`
2621  * `tf.reduce_prod`: `reduction_indices` becomes `axis`
2622  * `tf.reduce_sum`: `reduction_indices` becomes `axis`
2623  * `tf.reverse_sequence`: `batch_dim` becomes `batch_axis`, `seq_dim` becomes `seq_axis`
2624  * `tf.sparse_concat`: `concat_dim` becomes `axis`
2625  * `tf.sparse_reduce_sum`: `reduction_axes` becomes `axis`
2626  * `tf.sparse_reduce_sum_sparse`: `reduction_axes` becomes `axis`
2627  * `tf.sparse_split`: `split_dim` becomes `axis`
2628* `tf.listdiff` has been renamed to `tf.setdiff1d` to match NumPy naming.
2629* `tf.inv` has been renamed to be `tf.reciprocal` (component-wise reciprocal)
2630  to avoid confusion with `np.inv` which is matrix inversion
2631* tf.round now uses banker's rounding (round to even) semantics to match NumPy.
2632* `tf.split` now takes arguments in a reversed order and with different
2633  keywords. In particular, we now match NumPy order as
2634  `tf.split(value, num_or_size_splits, axis)`.
2635* `tf.sparse_split` now takes arguments in reversed order and with different
2636  keywords. In particular we now match NumPy order as
2637  `tf.sparse_split(sp_input, num_split, axis)`. NOTE: we have temporarily
2638  made `tf.sparse_split` require keyword arguments.
2639* `tf.concat` now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as `tf.concat(values, axis, name)`.
2640* `tf.image.decode_jpeg` by default uses the faster DCT method, sacrificing
2641  a little fidelity for improved speed. One can revert to the old
2642  behavior by specifying the attribute `dct_method='INTEGER_ACCURATE'`.
2643* `tf.complex_abs` has been removed from the Python interface. `tf.abs`
2644  supports complex tensors and should be used instead.
2645* In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
2646  from the tensorflow::ops namespace to tensorflow.
2647* Template.`var_scope` property renamed to `.variable_scope`
2648* SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
2649* `tf.zeros_initializer()` and `tf.ones_initializer()` now return a callable
2650  that must be called with initializer arguments, in your code replace
2651  `tf.zeros_initializer` with `tf.zeros_initializer()`.
2652* `SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`.  Same for
2653  `SparseTensorValue.shape`.
2654* Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
2655* Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
2656* Removes RegisterShape from public API. Use C++ shape function registration
2657  instead.
2658* Deprecated `_ref` dtypes from the python API.
2659* In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
2660  from the tensorflow::ops namespace to tensorflow.
2661* Change arg order for `{softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits` to be (labels, predictions), and force use of named args.
2662* tf.nn.rnn_cell.* and most functions in tf.nn.rnn.* (with the exception of dynamic_rnn and raw_rnn) are temporarily in tf.contrib.rnn.  They will be moved back into core for TF 1.2.
2663* `tf.nn.sampled_softmax_loss` and `tf.nn.nce_loss` have both changed their API such that you need to switch the `inputs, labels` to `labels, inputs` parameters.
2664* The shape keyword argument of the `SparseTensor` constructor changes its name to `dense_shape` between Tensorflow 0.12 and Tensorflow 1.0.
2665
2666## Bug Fixes and Other Changes
2667* Numerous C++ API updates.
2668* New op: `parallel_stack`.
2669* Introducing common tf io compression options constants for
2670  RecordReader/RecordWriter.
2671* Add `sparse_column_with_vocabulary_file`, to specify a feature column that
2672  transform string features to IDs, where the mapping is defined by a vocabulary
2673  file.
2674* Added `index_to_string_table` which returns a lookup table that maps indices to
2675  strings.
2676* Add `string_to_index_table`, which returns a lookup table that matches strings
2677  to indices.
2678* Add a `ParallelForWithWorkerId` function.
2679* Add `string_to_index_table`, which returns a lookup table that matches strings
2680  to indices.
2681* Support restore session from checkpoint files in v2 in `contrib/session_bundle`.
2682* Added a tf.contrib.image.rotate function for arbitrary angles.
2683* Added `tf.contrib.framework.filter_variables` as a convenience function to
2684  filter lists of variables based on regular expressions.
2685* `make_template()` takes an optional `custom_getter_ param`.
2686* Added comment about how existing directories are handled by
2687  `recursive_create_dir`.
2688* Added an op for QR factorizations.
2689* Divides and mods in Python API now use flooring (Python) semantics.
2690* Android: pre-built libs are now built nightly.
2691* Android: cmake/gradle build for TensorFlow Inference library under
2692  `contrib/android/cmake`
2693* Android: Much more robust Session initialization code.
2694* Android: TF stats now exposed directly in demo and log when debug mode is
2695  active
2696* Android: new/better README.md documentation
2697* saved_model is available as `tf.saved_model`.
2698* Empty op is now stateful.
2699* Improve speed of scatter_update on the cpu for ASSIGN operations.
2700* Change `reduce_join` to treat `reduction_indices` in the same way as other `reduce_` ops.
2701* Move `TensorForestEstimator` to `contrib/tensor_forest`.
2702* Enable compiler optimizations by default and allow configuration in configure.
2703* `tf.divide` now honors the name field.
2704* Make metrics weight broadcasting more strict.
2705* Add new queue-like `StagingArea` and new ops: `stage` and `unstage`.
2706* Enable inplace update ops for strings on CPU. Speed up string concat.
2707
2708## Thanks to our Contributors
2709
2710This release contains contributions from many people at Google, as well as:
2711
2712Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
2713Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
2714Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
2715Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
2716@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
2717Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
2718@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @Ian, @Issac, Jacob Israel,
2719Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
2720Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
2721Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
2722Pengfei Ni, Przemyslaw Tredak, @rasbt, @Ronny, Rudolf Rosa, @RustingSword,
2723Sam Abrahams, Sam Putnam, @SeongAhJo, Shi Jiaxin, @skavulya, Steffen MüLler,
2724@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
2725Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
2726Yuan (Terry) Tang, Yuxin Wu
2727
2728We are also grateful to all who filed issues or helped resolve them, asked and
2729answered questions, and were part of inspiring discussions.
2730
2731
2732# Release 0.12.0
2733
2734## Major Features and Improvements
2735
2736* TensorFlow now builds and runs on Microsoft Windows (tested on Windows 10,
2737  Windows 7, and Windows Server 2016). Supported languages include Python (via a
2738  pip package) and C++. CUDA 8.0 and cuDNN 5.1 are supported for GPU
2739  acceleration. Known limitations include: It is not currently possible to load
2740  a custom op library. The GCS and HDFS file systems are not currently
2741  supported. The following ops are not currently implemented:
2742  Dequantize, QuantizeAndDequantize, QuantizedAvgPool,
2743  QuantizedBatchNomWithGlobalNormalization, QuantizedBiasAdd, QuantizedConcat,
2744  QuantizedConv2D, QuantizedMatmul, QuantizedMaxPool,
2745  QuantizeDownAndShrinkRange, QuantizedRelu, QuantizedRelu6, QuantizedReshape,
2746  QuantizeV2, RequantizationRange, and Requantize.
2747* Go: Experimental API in Go to create and execute graphs
2748  (https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go)
2749* New checkpoint format becomes the default in `tf.train.Saver`. Old V1
2750  checkpoints continue to be readable; controlled by the `write_version`
2751  argument, `tf.train.Saver` now by default writes out in the new V2
2752  format. It significantly reduces the peak memory required and latency
2753  incurred during restore.
2754* Added a new library for library of matrix-free (iterative) solvers for linear
2755  equations, linear least-squares, eigenvalues and singular values in
2756  tensorflow/contrib/solvers. Initial version has lanczos bidiagonalization,
2757  conjugate gradients and CGLS.
2758* Added gradients for `matrix_solve_ls` and `self_adjoint_eig`.
2759* Large cleanup to add second order gradient for ops with C++ gradients and
2760  improve existing gradients such that most ops can now be differentiated
2761  multiple times.
2762* Added a solver for ordinary differential equations,
2763  `tf.contrib.integrate.odeint`.
2764* New contrib module for tensors with named axes, `tf.contrib.labeled_tensor`.
2765* Visualization of embeddings in TensorBoard.
2766
2767## Breaking Changes to the API
2768
2769* `BusAdjacency` enum replaced with a protocol buffer `DeviceLocality`.  PCI bus
2770  indexing now starts from 1 instead of 0, and `bus_id==0` is used where
2771  previously `BUS_ANY` was used.
2772* `Env::FileExists` and `FileSystem::FileExists` now return a tensorflow::Status
2773  instead of a bool. Any callers to this function can be converted to a bool
2774  by adding .ok() to the call.
2775* The C API type `TF_SessionWithGraph` has been renamed to `TF_Session`,
2776  indicating its preferred use in language bindings for TensorFlow.
2777  What was previously `TF_Session` has been renamed to `TF_DeprecatedSession`.
2778* Renamed `TF_Port` to `TF_Output` in the C API.
2779* Removes RegisterShape from public API. Use C++ shape function registration instead.
2780  indexing now starts from 1 instead of 0, and `bus_id==0` is used where
2781  previously `BUS_ANY` was used.
2782* Most RNN cells and RNN functions now use different variable scopes to be
2783  consistent with layers (`tf.contrib.layers`).  This means old checkpoints
2784  written using this code will not load after this change without providing
2785  `Saver` a list of variable renames.  Examples of variable scope changes
2786  include `RNN` -> `rnn` in `tf.nn.rnn`, `tf.nn.dynamic_rnn` and moving from
2787  `Linear/Matrix` -> `weights` and `Linear/Bias` -> `biases` in most RNN cells.
2788* Deprecated tf.select op. tf.where should be used instead.
2789* `SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`.  Same for
2790  `SparseTensorValue.shape`.
2791* `Env::FileExists` and `FileSystem::FileExists` now return a
2792  `tensorflow::Status` instead of a bool. Any callers to this function can be
2793  converted to a bool by adding `.ok()` to the call.
2794* C API: Type `TF_SessionWithGraph` has been renamed to `TF_Session`, indicating
2795  its preferred use in language bindings for TensorFlow. What was previously
2796  `TF_Session` has been renamed to `TF_DeprecatedSession`.
2797* C API: Renamed `TF_Port` to `TF_Output`.
2798* C API: The caller retains ownership of `TF_Tensor` objects provided to
2799  `TF_Run`, `TF_SessionRun`, `TF_SetAttrTensor` etc.
2800* Renamed `tf.image.per_image_whitening()` to
2801  `tf.image.per_image_standardization()`
2802* Move Summary protobuf constructors to `tf.summary` submodule.
2803* Deprecate `histogram_summary`, `audio_summary`, `scalar_summary`,
2804  `image_summary`, `merge_summary`, and `merge_all_summaries`.
2805* Combined `batch_*` and regular version of linear algebra and FFT ops. The
2806  regular op now handles batches as well. All `batch_*` Python interfaces were
2807  removed.
2808* `tf.all_variables`, `tf.VARIABLES` and `tf.initialize_all_variables` renamed
2809  to `tf.global_variables`, `tf.GLOBAL_VARIABLES` and
2810  `tf.global_variables_initializer` respectively.
2811* `tf.zeros_initializer()` and `tf.ones_initializer()` now return a callable
2812  that must be called with initializer arguments, in your code replace
2813  `tf.zeros_initializer` with `tf.zeros_initializer()`
2814
2815## Bug Fixes and Other Changes
2816
2817* Use threadsafe version of `lgamma` function.
2818* Fix `tf.sqrt` handling of negative arguments.
2819* Fixed bug causing incorrect number of threads to be used for multi-threaded
2820  benchmarks.
2821* Performance optimizations for `batch_matmul` on multi-core CPUs.
2822* Improve trace, `matrix_set_diag`, `matrix_diag_part` and their gradients to
2823  work for rectangular matrices.
2824* Support for SVD of complex valued matrices.
2825
2826
2827## Thanks to our Contributors
2828
2829This release contains contributions from many people at Google, as well as:
2830
2831@a7744hsc, Abhi Agg, @admcrae, Adriano Carmezim, Aki Sukegawa, Alex Kendall,
2832Alexander Rosenberg Johansen, @amcrae, Amlan Kar, Andre Simpelo, Andreas Eberle,
2833Andrew Hundt, Arnaud Lenglet, @b0noI, Balachander Ramachandran, Ben Barsdell,
2834Ben Guidarelli, Benjamin Mularczyk, Burness Duan, @c0g, Changming Sun,
2835@chanis, Corey Wharton, Dan J, Daniel Trebbien, Darren Garvey, David Brailovsky,
2836David Jones, Di Zeng, @DjangoPeng, Dr. Kashif Rasul, @drag0, Fabrizio (Misto)
2837Milo, FabríCio Ceschin, @fp, @Ghedeon, @guschmue, Gökçen Eraslan, Haosdent
2838Huang, Haroen Viaene, Harold Cooper, Henrik Holst, @hoangmit, Ivan Ukhov, Javier
2839Dehesa, Jingtian Peng, Jithin Odattu, Joan Pastor, Johan Mathe, Johannes Mayer,
2840Jongwook Choi, Justus Schwabedal, Kai Wolf, Kamil Hryniewicz, Kamran Amini,
2841Karen Brems, Karl Lattimer, @kborer, Ken Shirriff, Kevin Rose, Larissa Laich,
2842Laurent Mazare, Leonard Lee, Liang-Chi Hsieh, Liangliang He, Luke Iwanski,
2843Marek Kolodziej, Moustafa Alzantot, @MrQianjinsi, @nagachika, Neil Han, Nick
2844Meehan, Niels Ole Salscheider, Nikhil Mishra, @nschuc, Ondrej Skopek, OndřEj
2845Filip, @OscarDPan, Pablo Moyano, Przemyslaw Tredak, @qitaishui, @Quarazy,
2846@raix852, Philipp Helo, Sam Abrahams, @SriramRamesh, Till Hoffmann, Tushar Soni,
2847@tvn, @tyfkda, Uwe Schmidt, Victor Villas, Vit Stepanovs, Vladislav Gubarev,
2848@wujingyue, Xuesong Yang, Yi Liu, Yilei Yang, @youyou3, Yuan (Terry) Tang,
2849Yuming Wang, Zafar Takhirov, @zhongyuk, Ziming Dong, @guotong1988
2850
2851We are also grateful to all who filed issues or helped resolve them, asked and
2852answered questions, and were part of inspiring discussions.
2853
2854# Release 0.11.0
2855
2856## Major Features and Improvements
2857
2858* CUDA 8 support.
2859* cuDNN 5 support.
2860* HDFS Support.
2861* Adds Fused LSTM support via cuDNN 5 in `tensorflow/contrib/cudnn_rnn`.
2862* Improved support for NumPy style basic slicing including non-1 strides,
2863  ellipses, newaxis, and negative indices. For example complicated expressions
2864  like `foo[1, 2:4, tf.newaxis, ..., :-3:-1, :]` are now supported. In addition
2865  we have preliminary (non-broadcasting) support for sliced assignment to
2866  variables. In particular one can write `var[1:3].assign([1,11,111])`.
2867* Deprecated `tf.op_scope` and `tf.variable_op_scope` in favor of a unified `tf.name_scope` and `tf.variable_scope`. The new argument order of `tf.variable_scope` is incompatible with previous versions.
2868* Introducing `core/util/tensor_bundle` module: a module to efficiently
2869  serialize/deserialize tensors to disk.  Will be used in TF's new checkpoint
2870  format.
2871* Added tf.svd for computing the singular value decomposition (SVD) of dense
2872  matrices or batches of matrices (CPU only).
2873* Added gradients for eigenvalues and eigenvectors computed using
2874  `self_adjoint_eig` or `self_adjoint_eigvals`.
2875* Eliminated `batch_*` methods for most linear algebra and FFT ops and promoted
2876  the non-batch version of the ops to handle batches of matrices.
2877* Tracing/timeline support for distributed runtime (no GPU profiler yet).
2878* C API gives access to inferred shapes with `TF_GraphGetTensorNumDims` and
2879  `TF_GraphGetTensorShape`.
2880* Shape functions for core ops have moved to C++ via
2881  `REGISTER_OP(...).SetShapeFn(...)`.  Python shape inference RegisterShape calls
2882  use the C++ shape functions with `common_shapes.call_cpp_shape_fn`.  A future
2883  release will remove `RegisterShape` from python.
2884
2885
2886## Bug Fixes and Other Changes
2887
2888* Documentation now includes operator overloads on Tensor and Variable.
2889* `tensorflow.__git_version__` now allows users to identify the version of the
2890  code that TensorFlow was compiled with. We also have
2891  `tensorflow.__git_compiler__` which identifies the compiler used to compile
2892  TensorFlow's core.
2893* Improved multi-threaded performance of `batch_matmul`.
2894* LSTMCell, BasicLSTMCell, and MultiRNNCell constructors now default to
2895  `state_is_tuple=True`.  For a quick fix while transitioning to the new
2896  default, simply pass the argument `state_is_tuple=False`.
2897* DeviceFactory's AddDevices and CreateDevices functions now return
2898  a Status instead of void.
2899* Int32 elements of list(type) arguments are no longer placed in host memory by
2900  default. If necessary, a list(type) argument to a kernel can be placed in host
2901  memory using a HostMemory annotation.
2902* `uniform_unit_scaling_initializer()` no longer takes a `full_shape` arg,
2903  instead relying on the partition info passed to the initializer function when
2904  it's called.
2905* The NodeDef protocol message is now defined in its own file `node_def.proto`
2906  `instead of graph.proto`.
2907* `ops.NoGradient` was renamed `ops.NotDifferentiable`. `ops.NoGradient` will
2908  be removed soon.
2909* `dot.h` / DotGraph was removed (it was an early analysis tool prior
2910  to TensorBoard, no longer that useful).  It remains in history
2911  should someone find the code useful.
2912* re2 / regexp.h was removed from being a public interface of TF.
2913  Should users need regular expressions, they should depend on the RE2
2914  library directly rather than via TensorFlow.
2915
2916## Thanks to our Contributors
2917
2918This release contains contributions from many people at Google, as well as:
2919
2920Abid K, @afshinrahimi, @AidanGG, Ajay Rao, Aki Sukegawa, Alex Rothberg,
2921Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Thomas, @Appleholic,
2922Bastiaan Quast, Ben Dilday, Bofu Chen, Brandon Amos, Bryon Gloden, Cissp®,
2923@chanis, Chenyang Liu, Corey Wharton, Daeyun Shin, Daniel Julius Lasiman, Daniel
2924Waterworth, Danijar Hafner, Darren Garvey, Denis Gorbachev, @DjangoPeng,
2925Egor-Krivov, Elia Palme, Eric Platon, Fabrizio Milo, Gaetan Semet,
2926Georg Nebehay, Gu Wang, Gustav Larsson, @haosdent, Harold Cooper, Hw-Zz,
2927@ichuang, Igor Babuschkin, Igor Macedo Quintanilha, Ilya Edrenkin, @ironhead,
2928Jakub Kolodziejczyk, Jennifer Guo, Jihun Choi, Jonas Rauber, Josh Bleecher
2929Snyder, @jpangburn, Jules Gagnon-Marchand, Karen Brems, @kborer, Kirill Bobyrev,
2930Laurent Mazare, Longqi Yang, Malith Yapa, Maniteja Nandana, Martin Englund,
2931Matthias Winkelmann, @mecab, Mu-Ik Jeon, Nand Dalal, Niels Ole Salscheider,
2932Nikhil Mishra, Park Jiin, Pieter De Rijk, @raix852, Ritwik Gupta, Sahil Sharma,
2933Sangheum Hwang, @SergejsRk, Shinichiro Hamaji, Simon Denel, @Steve, @suiyuan2009,
2934Tiago Jorge, Tijmen Tieleman, @tvn, @tyfkda, Wang Yang, Wei-Ting Kuo, Wenjian
2935Huang, Yan Chen, @YenChenLin, Yuan (Terry) Tang, Yuncheng Li, Yunfeng Wang, Zack
2936Polizzi, @zhongzyd, Ziming Dong, @perhapszzy
2937
2938We are also grateful to all who filed issues or helped resolve them, asked and
2939answered questions, and were part of inspiring discussions.
2940
2941# Release 0.10.0
2942
2943## Major Features and Improvements
2944
2945* Added support for C++ shape inference
2946* Added graph-construction C API
2947* Major revision to the graph-construction C++ API
2948* Support makefile build for iOS
2949* Added Mac GPU support
2950* Full version of TF-Slim available as `tf.contrib.slim`
2951* Added k-Means clustering and WALS matrix factorization
2952
2953## Bug Fixes and Other Changes
2954
2955* Allow gradient computation for scalar values.
2956* Performance improvements for gRPC
2957* Improved support for fp16
2958* New high-level ops in tf.contrib.{layers,metrics}
2959* New features for TensorBoard, such as shape display, exponential smoothing
2960* Faster and more stable Google Cloud Storage (GCS) filesystem support
2961* Support for zlib compression and decompression for TFRecordReader and TFRecordWriter
2962* Support for reading (animated) GIFs
2963* Improved support for SparseTensor
2964* Added support for more probability distributions (Dirichlet, Beta, Bernoulli, etc.)
2965* Added Python interfaces to reset resource containers.
2966* Many bugfixes and performance improvements
2967* Many documentation fixes
2968
2969## Thanks to our Contributors
2970
2971This release contains contributions from many people at Google, as well as:
2972
2973Alex Rothberg, Andrew Royer, Austin Marshall, @BlackCoal, Bob Adolf, Brian Diesel, Charles-Emmanuel Dias, @chemelnucfin, Chris Lesniewski, Daeyun Shin, Daniel Rodriguez, Danijar Hafner, Darcy Liu, Kristinn R. Thórisson, Daniel Castro, Dmitry Savintsev, Kashif Rasul, Dylan Paiton, Emmanuel T. Odeke, Ernest Grzybowski, Gavin Sherry, Gideon Dresdner, Gregory King, Harold Cooper, @heinzbeinz, Henry Saputra, Huarong Huo, Huazuo Gao, Igor Babuschkin, Igor Macedo Quintanilha, Ivan Ukhov, James Fysh, Jan Wilken Dörrie, Jihun Choi, Johnny Lim, Jonathan Raiman, Justin Francis, @lilac, Li Yi, Marc Khoury, Marco Marchesi, Max Melnick, Micael Carvalho, @mikowals, Mostafa Gazar, Nico Galoppo, Nishant Agrawal, Petr Janda, Yuncheng Li, @raix852, Robert Rose, @Robin-des-Bois, Rohit Girdhar, Sam Abrahams, satok16, Sergey Kishchenko, Sharkd Tu, @shotat, Siddharth Agrawal, Simon Denel, @sono-bfio, SunYeop Lee, Thijs Vogels, @tobegit3hub, @Undo1, Wang Yang, Wenjian Huang, Yaroslav Bulatov, Yuan Tang, Yunfeng Wang, Ziming Dong
2974
2975We are also grateful to all who filed issues or helped resolve them, asked and
2976answered questions, and were part of inspiring discussions.
2977
2978# Release 0.9.0
2979
2980## Major Features and Improvements
2981
2982* Python 3.5 support and binaries
2983* Added iOS support
2984* Added support for processing on GPUs on MacOS
2985* Added makefile for better cross-platform build support (C API only)
2986* fp16 support and improved complex128 support for many ops
2987* Higher level functionality in contrib.{layers,losses,metrics,learn}
2988* More features to Tensorboard
2989* Improved support for string embedding and sparse features
2990* The RNN api is finally "official" (see, e.g., `tf.nn.dynamic_rnn`,
2991  `tf.nn.rnn`, and the classes in `tf.nn.rnn_cell`).
2992* TensorBoard now has an Audio Dashboard, with associated audio summaries.
2993
2994## Bug Fixes and Other Changes
2995
2996* Turned on CuDNN Autotune.
2997* Added support for using third-party Python optimization algorithms (contrib.opt).
2998* Google Cloud Storage filesystem support.
2999* HDF5 support
3000* Add support for 3d convolutions and pooling.
3001* Update gRPC release to 0.14.
3002* Eigen version upgrade.
3003* Switch to eigen thread pool
3004* `tf.nn.moments()` now accepts a `shift` argument. Shifting by a good estimate
3005  of the mean improves numerical stability. Also changes the behavior of the
3006  `shift` argument to `tf.nn.sufficient_statistics()`.
3007* Performance improvements
3008* Many bugfixes
3009* Many documentation fixes
3010* TensorBoard fixes: graphs with only one data point, Nan values,
3011  reload button and auto-reload, tooltips in scalar charts, run
3012  filtering, stable colors
3013* Tensorboard graph visualizer now supports run metadata. Clicking on nodes
3014  while viewing a stats for a particular run will show runtime statistics, such
3015  as memory or compute usage. Unused nodes will be faded out.
3016
3017## Thanks to our Contributors
3018
3019This release contains contributions from many people at Google, as well as:
3020
3021Aaron Schumacher, Aidan Dang, Akihiko ITOH, Aki Sukegawa, Arbit Chen, Aziz Alto, Danijar Hafner, Erik Erwitt, Fabrizio Milo, Felix Maximilian Möller, Henry Saputra, Sung Kim, Igor Babuschkin, Jan Zikes, Jeremy Barnes, Jesper Steen Møller, Johannes Mayer, Justin Harris, Kashif Rasul, Kevin Robinson, Loo Rong Jie, Lucas Moura, Łukasz Bieniasz-Krzywiec, Mario Cho, Maxim Grechkin, Michael Heilman, Mostafa Rahmani, Mourad Mourafiq, @ninotoshi, Orion Reblitz-Richardson, Yuncheng Li, @raoqiyu, Robert DiPietro, Sam Abrahams, Sebastian Raschka, Siddharth Agrawal, @snakecharmer1024, Stephen Roller, Sung Kim, SunYeop Lee, Thijs Vogels, Till Hoffmann, Victor Melo, Ville Kallioniemi, Waleed Abdulla, Wenjian Huang, Yaroslav Bulatov, Yeison Rodriguez, Yuan Tang, Yuxin Wu, @zhongzyd, Ziming Dong, Zohar Jackson
3022
3023We are also grateful to all who filed issues or helped resolve them, asked and
3024answered questions, and were part of inspiring discussions.
3025
3026# Release 0.8.0
3027
3028## Major Features and Improvements
3029
3030* Added a distributed runtime using GRPC
3031* Move skflow to `contrib/learn`
3032* Better linear optimizer in `contrib/linear_optimizer`
3033* Random forest implementation in `contrib/tensor_forest`
3034* CTC loss and decoders in `contrib/ctc`
3035* Basic support for `half` data type
3036* Better support for loading user ops (see examples in `contrib/`)
3037* Allow use of (non-blocking) Eigen threadpool with `TENSORFLOW_USE_EIGEN_THREADPOOL` define
3038* Add an extension mechanism for adding network file system support
3039* TensorBoard displays metadata stats (running time, memory usage and device used) and tensor shapes
3040
3041## Bug Fixes and Other Changes
3042
3043* Utility for inspecting checkpoints
3044* Basic tracing and timeline support
3045* Allow building against cuDNN 5 (not incl. RNN/LSTM support)
3046* Added instructions and binaries for ProtoBuf library with fast serialization and without 64MB limit
3047* Added special functions
3048* `bool`-strictness: Tensors have to be explicitly compared to `None`
3049* Shape strictness: all fed values must have a shape that is compatible with the tensor they are replacing
3050* Exposed `tf.while_loop` (deprecated `control_flow_ops.While`)
3051* run() now takes RunOptions and RunMetadata, which enable timing stats
3052* Fixed lots of potential overflow problems in op kernels
3053* Various performance improvements, especially for RNNs and convolutions
3054* Many bugfixes
3055* Nightly builds, tutorial tests, many test improvements
3056* New examples: transfer learning and deepdream ipython notebook
3057* Added tutorials, many documentation fixes.
3058
3059## Thanks to our Contributors
3060
3061This release contains contributions from many people at Google, as well as:
3062
3063Abhinav Upadhyay, Aggelos Avgerinos, Alan Wu, Alexander G. de G. Matthews, Aleksandr Yahnev, @amchercashin, Andy Kitchen, Aurelien Geron, Awni Hannun, @BanditCat, Bas Veeling, Cameron Chen, @cg31, Cheng-Lung Sung, Christopher Bonnett, Dan Becker, Dan Van Boxel, Daniel Golden, Danijar Hafner, Danny Goodman, Dave Decker, David Dao, David Kretch, Dongjoon Hyun, Dustin Dorroh, @e-lin, Eurico Doirado, Erik Erwitt, Fabrizio Milo, @gaohuazuo, Iblis Lin, Igor Babuschkin, Isaac Hodes, Isaac Turner, Iván Vallés, J Yegerlehner, Jack Zhang, James Wexler, Jan Zikes, Jay Young, Jeff Hodges, @jmtatsch, Johnny Lim, Jonas Meinertz Hansen, Kanit Wongsuphasawat, Kashif Rasul, Ken Shirriff, Kenneth Mitchner, Kenta Yonekura, Konrad Magnusson, Konstantin Lopuhin, @lahwran, @lekaha, @liyongsea, Lucas Adams, @makseq, Mandeep Singh, @manipopopo, Mark Amery, Memo Akten, Michael Heilman, Michael Peteuil, Nathan Daly, Nicolas Fauchereau, @ninotoshi, Olav Nymoen, @panmari, @papelita1234, Pedro Lopes, Pranav Sailesh Mani, RJ Ryan, Rob Culliton, Robert DiPietro, @ronrest, Sam Abrahams, Sarath Shekkizhar, Scott Graham, Sebastian Raschka, Sung Kim, Surya Bhupatiraju, Syed Ahmed, Till Hoffmann, @timsl, @urimend, @vesnica, Vlad Frolov, Vlad Zagorodniy, Wei-Ting Kuo, Wenjian Huang, William Dmitri Breaden Madden, Wladimir Schmidt, Yuan Tang, Yuwen Yan, Yuxin Wu, Yuya Kusakabe, @zhongzyd, @znah.
3064
3065We are also grateful to all who filed issues or helped resolve them, asked and
3066answered questions, and were part of inspiring discussions.
3067
3068
3069# Release 0.7.1
3070
3071## Bug Fixes and Other Changes
3072
3073* Added gfile.Open and gfile.Copy, used by input_data.py.
3074* Fixed Saver bug when MakeDirs tried to create empty directory.
3075* GPU Pip wheels are built with cuda 7.5 and cudnn-v4, making them
3076  required for the binary releases. Lower versions of cuda/cudnn can
3077  be supported by installing from sources and setting the options
3078  during ./configure
3079* Fix dataset encoding example for Python3 (@danijar)
3080* Fix PIP installation by not packaging protobuf as part of wheel,
3081  require protobuf 3.0.0b2.
3082* Fix Mac pip installation of numpy by requiring pip >= 1.10.1.
3083* Improvements and fixes to Docker image.
3084
3085
3086# Release 0.7.0
3087
3088## Major Features and Improvements
3089
3090* Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support
3091  for cuDNN R4
3092* Added a `contrib/` directory for unsupported or experimental features,
3093  including higher level `layers` module
3094* Added an easy way to add and dynamically load user-defined ops
3095* Built out a good suite of tests, things should break less!
3096* Added `MetaGraphDef` which makes it easier to save graphs with metadata
3097* Added assignments for "Deep Learning with TensorFlow" udacity course
3098
3099
3100## Bug Fixes and Other Changes
3101
3102* Added a versioning framework for `GraphDef`s to ensure compatibility
3103* Enforced Python 3 compatibility
3104* Internal changes now show up as sensibly separated commits
3105* Open-sourced the doc generator
3106* Un-fork Eigen
3107* Simplified the `BUILD` files and cleaned up C++ headers
3108* TensorFlow can now be used as a submodule in another bazel build
3109* New ops (e.g., `*fft`, `*_matrix_solve`)
3110* Support for more data types in many ops
3111* Performance improvements
3112* Various bugfixes
3113* Documentation fixes and improvements
3114
3115
3116## Breaking Changes to the API
3117
3118* `AdjustContrast` kernel deprecated, new kernel `AdjustContrastv2` takes and
3119  outputs float only. `adjust_contrast` now takes all data types.
3120* `adjust_brightness`'s `delta` argument is now always assumed to be in `[0,1]`
3121  (as is the norm for images in floating point formats), independent of the
3122  data type of the input image.
3123* The image processing ops do not take `min` and `max` inputs any more, casting
3124  safety is handled by `saturate_cast`, which makes sure over- and underflows
3125  are handled before casting to data types with smaller ranges.
3126* For C++ API users: `IsLegacyScalar` and `IsLegacyVector` are now gone from
3127  `TensorShapeUtils` since TensorFlow is scalar strict within Google (for
3128  example, the shape argument to `tf.reshape` can't be a scalar anymore).  The
3129  open source release was already scalar strict, so outside Google `IsScalar`
3130  and `IsVector` are exact replacements.
3131* The following files are being removed from `tensorflow/core/public/`:
3132    * `env.h` -> `../platform/env.h`
3133    * `status.h` -> `../lib/core/status.h`
3134    * `tensor.h` -> `../framework/tensor.h`
3135    * `tensor_shape.h` -> `../framework/tensor_shape.h`
3136    * `partial_tensor_shape.h` -> `../framework/partial_tensor_shape.h`
3137    * `tensorflow_server.h` deleted
3138* For C++ API users: `TensorShape::ShortDebugString` has been renamed to
3139  `DebugString`, and the previous `DebugString` behavior is gone (it was
3140  needlessly verbose and produced a confusing empty string for scalars).
3141* `GraphOptions.skip_common_subexpression_elimination` has been removed. All
3142  graph optimizer options are now specified via
3143  `GraphOptions.OptimizerOptions`.
3144* `ASSERT_OK` / `EXPECT_OK` macros conflicted with external projects, so they
3145  were renamed `TF_ASSERT_OK`, `TF_EXPECT_OK`.  The existing macros are
3146  currently maintained for short-term compatibility but will be removed.
3147* The non-public `nn.rnn` and the various `nn.seq2seq` methods now return
3148  just the final state instead of the list of all states.
3149* `tf.scatter_update` now no longer guarantees that lexicographically largest
3150  index be used for update when duplicate entries exist.
3151* `tf.image.random_crop(image, [height, width])` is now
3152  `tf.random_crop(image, [height, width, depth])`, and `tf.random_crop` works
3153  for any rank (not just 3-D images).  The C++ `RandomCrop` op has been replaced
3154  with pure Python.
3155* Renamed `tf.test.GetTempDir` and `tf.test.IsBuiltWithCuda` to
3156  `tf.test.get_temp_dir` and `tf.test.is_built_with_cuda` for PEP-8
3157  compatibility.
3158* `parse_example`'s interface has changed, the old interface is accessible in
3159  `legacy_parse_example` (same for related functions).
3160* New `Variable`s are not added to the same collection several times even if
3161  a list with duplicates is passed to the constructor.
3162* The Python API will now properly set the `list` member of `AttrValue` in
3163  constructed `GraphDef` messages for empty lists.  The serialization of some
3164  graphs will change, but the change is both forwards and backwards compatible.
3165  It will break tests that compare a generated `GraphDef` to a golden serialized
3166  `GraphDef` (which is discouraged).
3167
3168
3169## Thanks to our Contributors
3170
3171This release contains contributions from many people at Google, as well as:
3172
3173Akiomi Kamakura, Alex Vig, Alexander Rosenberg Johansen, Andre Cruz, Arun Ahuja,
3174Bart Coppens, Bernardo Pires, Carl Vondrick, Cesar Salgado, Chen Yu,
3175Christian Jauvin, Damien Aymeric, Dan Vanderkam, Denny Britz, Dongjoon Hyun,
3176Eren Güven, Erik Erwitt, Fabrizio Milo, G. Hussain Chinoy, Jim Fleming,
3177Joao Felipe Santos, Jonas Meinertz Hansen, Joshi Rekha, Julian Viereck,
3178Keiji Ariyama, Kenton Lee, Krishna Sankar, Kristina Chodorow, Linchao Zhu,
3179Lukas Krecan, Mark Borgerding, Mark Daoust, Moussa Taifi,
3180Nathan Howell, Naveen Sundar Govindarajulu, Nick Sweeting, Niklas Riekenbrauck,
3181Olivier Grisel, Patrick Christ, Povilas Liubauskas, Rainer Wasserfuhr,
3182Romain Thouvenin, Sagan Bolliger, Sam Abrahams, Taehoon Kim, Timothy J Laurent,
3183Vlad Zavidovych, Yangqing Jia, Yi-Lin Juang, Yuxin Wu, Zachary Lipton,
3184Zero Chen, Alan Wu, @brchiu, @emmjaykay, @jalammar, @Mandar-Shinde,
3185@nsipplswezey, @ninotoshi, @panmari, @prolearner and @rizzomichaelg.
3186
3187We are also grateful to all who filed issues or helped resolve them, asked and
3188answered questions, and were part of inspiring discussions.
3189
3190
3191# Release 0.6.0
3192
3193## Major Features and Improvements
3194
3195* Python 3.3+ support via changes to python codebase and ability
3196  to specify python version via ./configure.
3197
3198* Some improvements to GPU performance and memory usage:
3199  [convnet benchmarks](https://github.com/soumith/convnet-benchmarks/issues/66)
3200  roughly equivalent with native cudnn v2 performance.  Improvements mostly due
3201  to moving to 32-bit indices, faster shuffling kernels.  More improvements to
3202  come in later releases.
3203
3204
3205## Bug Fixes
3206
3207* Lots of fixes to documentation and tutorials, many contributed
3208  by the public.
3209
3210* 271 closed issues on github issues.
3211
3212## Backwards-Incompatible Changes
3213
3214* `tf.nn.fixed_unigram_candidate_sampler` changed its default 'distortion'
3215  attribute from 0.0 to 1.0. This was a bug in the original release
3216  that is now fixed.
3217
3218# Release 0.5.0
3219
3220Initial release of TensorFlow.
3221