• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Tests for Keras weights constraints."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import math
22
23import numpy as np
24
25from tensorflow.python import keras
26from tensorflow.python.framework import test_util
27from tensorflow.python.platform import test
28
29
30def get_test_values():
31  return [0.1, 0.5, 3, 8, 1e-7]
32
33
34def get_example_array():
35  np.random.seed(3537)
36  example_array = np.random.random((100, 100)) * 100. - 50.
37  example_array[0, 0] = 0.  # 0 could possibly cause trouble
38  return example_array
39
40
41def get_example_kernel(width):
42  np.random.seed(3537)
43  example_array = np.random.rand(width, width, 2, 2)
44  return example_array
45
46
47@test_util.run_all_in_graph_and_eager_modes
48class KerasConstraintsTest(test.TestCase):
49
50  def test_serialization(self):
51    all_activations = ['max_norm', 'non_neg',
52                       'unit_norm', 'min_max_norm']
53    for name in all_activations:
54      fn = keras.constraints.get(name)
55      ref_fn = getattr(keras.constraints, name)()
56      assert fn.__class__ == ref_fn.__class__
57      config = keras.constraints.serialize(fn)
58      fn = keras.constraints.deserialize(config)
59      assert fn.__class__ == ref_fn.__class__
60
61  def test_max_norm(self):
62    array = get_example_array()
63    for m in get_test_values():
64      norm_instance = keras.constraints.max_norm(m)
65      normed = norm_instance(keras.backend.variable(array))
66      assert np.all(keras.backend.eval(normed) < m)
67
68    # a more explicit example
69    norm_instance = keras.constraints.max_norm(2.0)
70    x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T
71    x_normed_target = np.array(
72        [[0, 0, 0], [1.0, 0, 0], [2.0, 0, 0],
73         [2. / np.sqrt(3), 2. / np.sqrt(3), 2. / np.sqrt(3)]]).T
74    x_normed_actual = keras.backend.eval(
75        norm_instance(keras.backend.variable(x)))
76    self.assertAllClose(x_normed_actual, x_normed_target, rtol=1e-05)
77
78  def test_non_neg(self):
79    non_neg_instance = keras.constraints.non_neg()
80    normed = non_neg_instance(keras.backend.variable(get_example_array()))
81    assert np.all(np.min(keras.backend.eval(normed), axis=1) == 0.)
82
83  def test_unit_norm(self):
84    unit_norm_instance = keras.constraints.unit_norm()
85    normalized = unit_norm_instance(keras.backend.variable(get_example_array()))
86    norm_of_normalized = np.sqrt(
87        np.sum(keras.backend.eval(normalized)**2, axis=0))
88    # In the unit norm constraint, it should be equal to 1.
89    difference = norm_of_normalized - 1.
90    largest_difference = np.max(np.abs(difference))
91    assert np.abs(largest_difference) < 10e-5
92
93  def test_min_max_norm(self):
94    array = get_example_array()
95    for m in get_test_values():
96      norm_instance = keras.constraints.min_max_norm(
97          min_value=m, max_value=m * 2)
98      normed = norm_instance(keras.backend.variable(array))
99      value = keras.backend.eval(normed)
100      l2 = np.sqrt(np.sum(np.square(value), axis=0))
101      assert not l2[l2 < m]
102      assert not l2[l2 > m * 2 + 1e-5]
103
104  def test_conv2d_radial_constraint(self):
105    for width in (3, 4, 5, 6):
106      array = get_example_kernel(width)
107      norm_instance = keras.constraints.radial_constraint()
108      normed = norm_instance(keras.backend.variable(array))
109      value = keras.backend.eval(normed)
110      assert np.all(value.shape == array.shape)
111      assert np.all(value[0:, 0, 0, 0] == value[-1:, 0, 0, 0])
112      assert len(set(value[..., 0, 0].flatten())) == math.ceil(float(width) / 2)
113
114
115if __name__ == '__main__':
116  test.main()
117