1# Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15 16"""Gradients for operators defined in data_flow_ops.py.""" 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21from six.moves import xrange # pylint: disable=redefined-builtin 22 23from tensorflow.python.framework import dtypes 24from tensorflow.python.framework import ops 25from tensorflow.python.ops import array_ops 26from tensorflow.python.ops import data_flow_ops 27from tensorflow.python.ops import math_ops 28 29 30@ops.RegisterGradient("DynamicPartition") 31def _DynamicPartitionGrads(op, *grads): 32 """Gradients for DynamicPartition.""" 33 data = op.inputs[0] 34 indices = op.inputs[1] 35 num_partitions = op.get_attr("num_partitions") 36 37 prefix_shape = array_ops.shape(indices) 38 original_indices = array_ops.reshape( 39 math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) 40 partitioned_indices = data_flow_ops.dynamic_partition( 41 original_indices, indices, num_partitions) 42 reconstructed = data_flow_ops.parallel_dynamic_stitch(partitioned_indices, 43 grads) 44 reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) 45 return [reconstructed, None] 46 47 48@ops.RegisterGradient("DynamicStitch") 49@ops.RegisterGradient("ParallelDynamicStitch") 50def _DynamicStitchGrads(op, grad): 51 """Gradients for DynamicStitch and ParallelDynamicStitch.""" 52 53 num_values = len(op.inputs) // 2 54 indices_grad = [None] * num_values 55 56 def AsInt32(x): 57 return (x if op.inputs[0].dtype == dtypes.int32 else 58 math_ops.cast(x, dtypes.int32)) 59 inputs = [AsInt32(op.inputs[i]) for i in xrange(num_values)] 60 if isinstance(grad, ops.IndexedSlices): 61 output_shape = array_ops.shape(op.outputs[0]) 62 output_rows = output_shape[0] 63 grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows) 64 values_grad = [array_ops.gather(grad, inp) for inp in inputs] 65 return indices_grad + values_grad 66 67 68ops.NotDifferentiable("Queue") 69ops.NotDifferentiable("QueueEnqueue") 70ops.NotDifferentiable("QueueEnqueueMany") 71ops.NotDifferentiable("QueueDequeue") 72ops.NotDifferentiable("QueueDequeueMany") 73ops.NotDifferentiable("QueueDequeueUpTo") 74ops.NotDifferentiable("QueueClose") 75ops.NotDifferentiable("QueueSize") 76 77ops.NotDifferentiable("Stack") 78ops.NotDifferentiable("StackPush") 79ops.NotDifferentiable("StackPop") 80ops.NotDifferentiable("StackClose") 81 82ops.NotDifferentiable("GetSessionHandle") 83ops.NotDifferentiable("GetSessionHandleV2") 84ops.NotDifferentiable("GetSessionTensor") 85ops.NotDifferentiable("DeleteSessionTensor") 86