• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""General shape ops for frames."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.framework import ops
22from tensorflow.python.framework import tensor_util
23from tensorflow.python.ops import array_ops
24from tensorflow.python.ops import math_ops
25from tensorflow.python.ops.signal import util_ops
26from tensorflow.python.util.tf_export import tf_export
27
28
29def _infer_frame_shape(signal, frame_length, frame_step, pad_end, axis):
30  """Infers the shape of the return value of `frame`."""
31  frame_length = tensor_util.constant_value(frame_length)
32  frame_step = tensor_util.constant_value(frame_step)
33  axis = tensor_util.constant_value(axis)
34  if signal.shape.ndims is None:
35    return None
36  if axis is None:
37    return [None] * (signal.shape.ndims + 1)
38
39  signal_shape = signal.shape.as_list()
40  num_frames = None
41  frame_axis = signal_shape[axis]
42  outer_dimensions = signal_shape[:axis]
43  inner_dimensions = signal_shape[axis:][1:]
44  if signal_shape and frame_axis is not None:
45    if frame_step is not None and pad_end:
46      # Double negative is so that we round up.
47      num_frames = max(0, -(-frame_axis // frame_step))
48    elif frame_step is not None and frame_length is not None:
49      assert not pad_end
50      num_frames = max(
51          0, (frame_axis - frame_length + frame_step) // frame_step)
52  return outer_dimensions + [num_frames, frame_length] + inner_dimensions
53
54
55@tf_export("signal.frame")
56def frame(signal, frame_length, frame_step, pad_end=False, pad_value=0, axis=-1,
57          name=None):
58  """Expands `signal`'s `axis` dimension into frames of `frame_length`.
59
60  Slides a window of size `frame_length` over `signal`'s `axis` dimension
61  with a stride of `frame_step`, replacing the `axis` dimension with
62  `[frames, frame_length]` frames.
63
64  If `pad_end` is True, window positions that are past the end of the `axis`
65  dimension are padded with `pad_value` until the window moves fully past the
66  end of the dimension. Otherwise, only window positions that fully overlap the
67  `axis` dimension are produced.
68
69  For example:
70
71  ```python
72  # A batch size 3 tensor of 9152 audio samples.
73  audio = tf.random.normal([3, 9152])
74
75  # Compute overlapping frames of length 512 with a step of 180 (frames overlap
76  # by 332 samples). By default, only 50 frames are generated since the last
77  # 152 samples do not form a full frame.
78  frames = tf.signal.frame(audio, 512, 180)
79  frames.shape.assert_is_compatible_with([3, 50, 512])
80
81  # When pad_end is enabled, the final frame is kept (padded with zeros).
82  frames = tf.signal.frame(audio, 512, 180, pad_end=True)
83  frames.shape.assert_is_compatible_with([3, 51, 512])
84  ```
85
86  Args:
87    signal: A `[..., samples, ...]` `Tensor`. The rank and dimensions
88      may be unknown. Rank must be at least 1.
89    frame_length: The frame length in samples. An integer or scalar `Tensor`.
90    frame_step: The frame hop size in samples. An integer or scalar `Tensor`.
91    pad_end: Whether to pad the end of `signal` with `pad_value`.
92    pad_value: An optional scalar `Tensor` to use where the input signal
93      does not exist when `pad_end` is True.
94    axis: A scalar integer `Tensor` indicating the axis to frame. Defaults to
95      the last axis. Supports negative values for indexing from the end.
96    name: An optional name for the operation.
97
98  Returns:
99    A `Tensor` of frames with shape `[..., frames, frame_length, ...]`.
100
101  Raises:
102    ValueError: If `frame_length`, `frame_step`, `pad_value`, or `axis` are not
103      scalar.
104  """
105  with ops.name_scope(name, "frame", [signal, frame_length, frame_step,
106                                      pad_value]):
107    signal = ops.convert_to_tensor(signal, name="signal")
108    frame_length = ops.convert_to_tensor(frame_length, name="frame_length")
109    frame_step = ops.convert_to_tensor(frame_step, name="frame_step")
110    axis = ops.convert_to_tensor(axis, name="axis")
111
112    signal.shape.with_rank_at_least(1)
113    frame_length.shape.assert_has_rank(0)
114    frame_step.shape.assert_has_rank(0)
115    axis.shape.assert_has_rank(0)
116
117    result_shape = _infer_frame_shape(signal, frame_length, frame_step, pad_end,
118                                      axis)
119
120    # Axis can be negative. Convert it to positive.
121    signal_rank = array_ops.rank(signal)
122    axis = math_ops.range(signal_rank)[axis]
123
124    signal_shape = array_ops.shape(signal)
125    outer_dimensions, length_samples, inner_dimensions = array_ops.split(
126        signal_shape, [axis, 1, signal_rank - 1 - axis])
127    length_samples = array_ops.reshape(length_samples, [])
128    num_outer_dimensions = array_ops.size(outer_dimensions)
129    num_inner_dimensions = array_ops.size(inner_dimensions)
130
131    # If padding is requested, pad the input signal tensor with pad_value.
132    if pad_end:
133      pad_value = ops.convert_to_tensor(pad_value, signal.dtype)
134      pad_value.shape.assert_has_rank(0)
135
136      # Calculate number of frames, using double negatives to round up.
137      num_frames = -(-length_samples // frame_step)
138
139      # Pad the signal by up to frame_length samples based on how many samples
140      # are remaining starting from last_frame_position.
141      pad_samples = math_ops.maximum(
142          0, frame_length + frame_step * (num_frames - 1) - length_samples)
143
144      # Pad the inner dimension of signal by pad_samples.
145      paddings = array_ops.concat(
146          [array_ops.zeros([num_outer_dimensions, 2], dtype=pad_samples.dtype),
147           [[0, pad_samples]],
148           array_ops.zeros([num_inner_dimensions, 2], dtype=pad_samples.dtype)],
149          0)
150      signal = array_ops.pad(signal, paddings, constant_values=pad_value)
151
152      signal_shape = array_ops.shape(signal)
153      length_samples = signal_shape[axis]
154    else:
155      num_frames = math_ops.maximum(
156          0, 1 + (length_samples - frame_length) // frame_step)
157
158    subframe_length = util_ops.gcd(frame_length, frame_step)
159    subframes_per_frame = frame_length // subframe_length
160    subframes_per_hop = frame_step // subframe_length
161    num_subframes = length_samples // subframe_length
162
163    slice_shape = array_ops.concat([outer_dimensions,
164                                    [num_subframes * subframe_length],
165                                    inner_dimensions], 0)
166    subframe_shape = array_ops.concat([outer_dimensions,
167                                       [num_subframes, subframe_length],
168                                       inner_dimensions], 0)
169    subframes = array_ops.reshape(array_ops.strided_slice(
170        signal, array_ops.zeros_like(signal_shape),
171        slice_shape), subframe_shape)
172
173    # frame_selector is a [num_frames, subframes_per_frame] tensor
174    # that indexes into the appropriate frame in subframes. For example:
175    # [[0, 0, 0, 0], [2, 2, 2, 2], [4, 4, 4, 4]]
176    frame_selector = array_ops.reshape(
177        math_ops.range(num_frames) * subframes_per_hop, [num_frames, 1])
178
179    # subframe_selector is a [num_frames, subframes_per_frame] tensor
180    # that indexes into the appropriate subframe within a frame. For example:
181    # [[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]
182    subframe_selector = array_ops.reshape(
183        math_ops.range(subframes_per_frame), [1, subframes_per_frame])
184
185    # Adding the 2 selector tensors together produces a [num_frames,
186    # subframes_per_frame] tensor of indices to use with tf.gather to select
187    # subframes from subframes. We then reshape the inner-most
188    # subframes_per_frame dimension to stitch the subframes together into
189    # frames. For example: [[0, 1, 2, 3], [2, 3, 4, 5], [4, 5, 6, 7]].
190    selector = frame_selector + subframe_selector
191
192    frames = array_ops.reshape(
193        array_ops.gather(subframes, selector, axis=axis),
194        array_ops.concat([outer_dimensions, [num_frames, frame_length],
195                          inner_dimensions], 0))
196
197    if result_shape:
198      frames.set_shape(result_shape)
199    return frames
200