• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5 
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <dm/device-internal.h>
12 #include <dm/lists.h>
13 #include <dm/uclass.h>
14 #include <errno.h>
15 #include <thermal.h>
16 #include <asm/arch/sci/sci.h>
17 #include <asm/arch/sys_proto.h>
18 #include <asm/arch-imx/cpu.h>
19 #include <asm/armv8/cpu.h>
20 #include <asm/armv8/mmu.h>
21 #include <asm/mach-imx/boot_mode.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 #define BT_PASSOVER_TAG	0x504F
get_pass_over_info(void)26 struct pass_over_info_t *get_pass_over_info(void)
27 {
28 	struct pass_over_info_t *p =
29 		(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
30 
31 	if (p->barker != BT_PASSOVER_TAG ||
32 	    p->len != sizeof(struct pass_over_info_t))
33 		return NULL;
34 
35 	return p;
36 }
37 
arch_cpu_init(void)38 int arch_cpu_init(void)
39 {
40 #ifdef CONFIG_SPL_BUILD
41 	struct pass_over_info_t *pass_over;
42 
43 	if (is_soc_rev(CHIP_REV_A)) {
44 		pass_over = get_pass_over_info();
45 		if (pass_over && pass_over->g_ap_mu == 0) {
46 			/*
47 			 * When ap_mu is 0, means the U-Boot booted
48 			 * from first container
49 			 */
50 			sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
51 		}
52 	}
53 #endif
54 
55 	return 0;
56 }
57 
arch_cpu_init_dm(void)58 int arch_cpu_init_dm(void)
59 {
60 	struct udevice *devp;
61 	int node, ret;
62 
63 	node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
64 
65 	ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
66 	if (ret) {
67 		printf("could not get scu %d\n", ret);
68 		return ret;
69 	}
70 
71 	if (is_imx8qm()) {
72 		ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
73 						    SC_PM_PW_MODE_ON);
74 		if (ret)
75 			return ret;
76 	}
77 
78 	return 0;
79 }
80 
print_bootinfo(void)81 int print_bootinfo(void)
82 {
83 	enum boot_device bt_dev = get_boot_device();
84 
85 	puts("Boot:  ");
86 	switch (bt_dev) {
87 	case SD1_BOOT:
88 		puts("SD0\n");
89 		break;
90 	case SD2_BOOT:
91 		puts("SD1\n");
92 		break;
93 	case SD3_BOOT:
94 		puts("SD2\n");
95 		break;
96 	case MMC1_BOOT:
97 		puts("MMC0\n");
98 		break;
99 	case MMC2_BOOT:
100 		puts("MMC1\n");
101 		break;
102 	case MMC3_BOOT:
103 		puts("MMC2\n");
104 		break;
105 	case FLEXSPI_BOOT:
106 		puts("FLEXSPI\n");
107 		break;
108 	case SATA_BOOT:
109 		puts("SATA\n");
110 		break;
111 	case NAND_BOOT:
112 		puts("NAND\n");
113 		break;
114 	case USB_BOOT:
115 		puts("USB\n");
116 		break;
117 	default:
118 		printf("Unknown device %u\n", bt_dev);
119 		break;
120 	}
121 
122 	return 0;
123 }
124 
get_boot_device(void)125 enum boot_device get_boot_device(void)
126 {
127 	enum boot_device boot_dev = SD1_BOOT;
128 
129 	sc_rsrc_t dev_rsrc;
130 
131 	sc_misc_get_boot_dev(-1, &dev_rsrc);
132 
133 	switch (dev_rsrc) {
134 	case SC_R_SDHC_0:
135 		boot_dev = MMC1_BOOT;
136 		break;
137 	case SC_R_SDHC_1:
138 		boot_dev = SD2_BOOT;
139 		break;
140 	case SC_R_SDHC_2:
141 		boot_dev = SD3_BOOT;
142 		break;
143 	case SC_R_NAND:
144 		boot_dev = NAND_BOOT;
145 		break;
146 	case SC_R_FSPI_0:
147 		boot_dev = FLEXSPI_BOOT;
148 		break;
149 	case SC_R_SATA_0:
150 		boot_dev = SATA_BOOT;
151 		break;
152 	case SC_R_USB_0:
153 	case SC_R_USB_1:
154 	case SC_R_USB_2:
155 		boot_dev = USB_BOOT;
156 		break;
157 	default:
158 		break;
159 	}
160 
161 	return boot_dev;
162 }
163 
164 #ifdef CONFIG_ENV_IS_IN_MMC
board_mmc_get_env_dev(int devno)165 __weak int board_mmc_get_env_dev(int devno)
166 {
167 	return CONFIG_SYS_MMC_ENV_DEV;
168 }
169 
mmc_get_env_dev(void)170 int mmc_get_env_dev(void)
171 {
172 	sc_rsrc_t dev_rsrc;
173 	int devno;
174 
175 	sc_misc_get_boot_dev(-1, &dev_rsrc);
176 
177 	switch (dev_rsrc) {
178 	case SC_R_SDHC_0:
179 		devno = 0;
180 		break;
181 	case SC_R_SDHC_1:
182 		devno = 1;
183 		break;
184 	case SC_R_SDHC_2:
185 		devno = 2;
186 		break;
187 	default:
188 		/* If not boot from sd/mmc, use default value */
189 		return CONFIG_SYS_MMC_ENV_DEV;
190 	}
191 
192 	return board_mmc_get_env_dev(devno);
193 }
194 #endif
195 
196 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
197 
get_owned_memreg(sc_rm_mr_t mr,sc_faddr_t * addr_start,sc_faddr_t * addr_end)198 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
199 			    sc_faddr_t *addr_end)
200 {
201 	sc_faddr_t start, end;
202 	int ret;
203 	bool owned;
204 
205 	owned = sc_rm_is_memreg_owned(-1, mr);
206 	if (owned) {
207 		ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
208 		if (ret) {
209 			printf("Memreg get info failed, %d\n", ret);
210 			return -EINVAL;
211 		}
212 		debug("0x%llx -- 0x%llx\n", start, end);
213 		*addr_start = start;
214 		*addr_end = end;
215 
216 		return 0;
217 	}
218 
219 	return -EINVAL;
220 }
221 
get_effective_memsize(void)222 phys_size_t get_effective_memsize(void)
223 {
224 	sc_rm_mr_t mr;
225 	sc_faddr_t start, end, end1;
226 	int err;
227 
228 	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
229 
230 	for (mr = 0; mr < 64; mr++) {
231 		err = get_owned_memreg(mr, &start, &end);
232 		if (!err) {
233 			start = roundup(start, MEMSTART_ALIGNMENT);
234 			/* Too small memory region, not use it */
235 			if (start > end)
236 				continue;
237 
238 			/* Find the memory region runs the U-Boot */
239 			if (start >= PHYS_SDRAM_1 && start <= end1 &&
240 			    (start <= CONFIG_SYS_TEXT_BASE &&
241 			    end >= CONFIG_SYS_TEXT_BASE)) {
242 				if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
243 				    PHYS_SDRAM_1_SIZE))
244 					return (end - PHYS_SDRAM_1 + 1);
245 				else
246 					return PHYS_SDRAM_1_SIZE;
247 			}
248 		}
249 	}
250 
251 	return PHYS_SDRAM_1_SIZE;
252 }
253 
dram_init(void)254 int dram_init(void)
255 {
256 	sc_rm_mr_t mr;
257 	sc_faddr_t start, end, end1, end2;
258 	int err;
259 
260 	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
261 	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
262 	for (mr = 0; mr < 64; mr++) {
263 		err = get_owned_memreg(mr, &start, &end);
264 		if (!err) {
265 			start = roundup(start, MEMSTART_ALIGNMENT);
266 			/* Too small memory region, not use it */
267 			if (start > end)
268 				continue;
269 
270 			if (start >= PHYS_SDRAM_1 && start <= end1) {
271 				if ((end + 1) <= end1)
272 					gd->ram_size += end - start + 1;
273 				else
274 					gd->ram_size += end1 - start;
275 			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
276 				if ((end + 1) <= end2)
277 					gd->ram_size += end - start + 1;
278 				else
279 					gd->ram_size += end2 - start;
280 			}
281 		}
282 	}
283 
284 	/* If error, set to the default value */
285 	if (!gd->ram_size) {
286 		gd->ram_size = PHYS_SDRAM_1_SIZE;
287 		gd->ram_size += PHYS_SDRAM_2_SIZE;
288 	}
289 	return 0;
290 }
291 
dram_bank_sort(int current_bank)292 static void dram_bank_sort(int current_bank)
293 {
294 	phys_addr_t start;
295 	phys_size_t size;
296 
297 	while (current_bank > 0) {
298 		if (gd->bd->bi_dram[current_bank - 1].start >
299 		    gd->bd->bi_dram[current_bank].start) {
300 			start = gd->bd->bi_dram[current_bank - 1].start;
301 			size = gd->bd->bi_dram[current_bank - 1].size;
302 
303 			gd->bd->bi_dram[current_bank - 1].start =
304 				gd->bd->bi_dram[current_bank].start;
305 			gd->bd->bi_dram[current_bank - 1].size =
306 				gd->bd->bi_dram[current_bank].size;
307 
308 			gd->bd->bi_dram[current_bank].start = start;
309 			gd->bd->bi_dram[current_bank].size = size;
310 		}
311 		current_bank--;
312 	}
313 }
314 
dram_init_banksize(void)315 int dram_init_banksize(void)
316 {
317 	sc_rm_mr_t mr;
318 	sc_faddr_t start, end, end1, end2;
319 	int i = 0;
320 	int err;
321 
322 	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
323 	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
324 
325 	for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
326 		err = get_owned_memreg(mr, &start, &end);
327 		if (!err) {
328 			start = roundup(start, MEMSTART_ALIGNMENT);
329 			if (start > end) /* Small memory region, no use it */
330 				continue;
331 
332 			if (start >= PHYS_SDRAM_1 && start <= end1) {
333 				gd->bd->bi_dram[i].start = start;
334 
335 				if ((end + 1) <= end1)
336 					gd->bd->bi_dram[i].size =
337 						end - start + 1;
338 				else
339 					gd->bd->bi_dram[i].size = end1 - start;
340 
341 				dram_bank_sort(i);
342 				i++;
343 			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
344 				gd->bd->bi_dram[i].start = start;
345 
346 				if ((end + 1) <= end2)
347 					gd->bd->bi_dram[i].size =
348 						end - start + 1;
349 				else
350 					gd->bd->bi_dram[i].size = end2 - start;
351 
352 				dram_bank_sort(i);
353 				i++;
354 			}
355 		}
356 	}
357 
358 	/* If error, set to the default value */
359 	if (!i) {
360 		gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
361 		gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
362 		gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
363 		gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
364 	}
365 
366 	return 0;
367 }
368 
get_block_attrs(sc_faddr_t addr_start)369 static u64 get_block_attrs(sc_faddr_t addr_start)
370 {
371 	u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
372 		PTE_BLOCK_PXN | PTE_BLOCK_UXN;
373 
374 	if ((addr_start >= PHYS_SDRAM_1 &&
375 	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
376 	    (addr_start >= PHYS_SDRAM_2 &&
377 	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
378 		return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
379 
380 	return attr;
381 }
382 
get_block_size(sc_faddr_t addr_start,sc_faddr_t addr_end)383 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
384 {
385 	sc_faddr_t end1, end2;
386 
387 	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
388 	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
389 
390 	if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
391 		if ((addr_end + 1) > end1)
392 			return end1 - addr_start;
393 	} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
394 		if ((addr_end + 1) > end2)
395 			return end2 - addr_start;
396 	}
397 
398 	return (addr_end - addr_start + 1);
399 }
400 
401 #define MAX_PTE_ENTRIES 512
402 #define MAX_MEM_MAP_REGIONS 16
403 
404 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
405 struct mm_region *mem_map = imx8_mem_map;
406 
enable_caches(void)407 void enable_caches(void)
408 {
409 	sc_rm_mr_t mr;
410 	sc_faddr_t start, end;
411 	int err, i;
412 
413 	/* Create map for registers access from 0x1c000000 to 0x80000000*/
414 	imx8_mem_map[0].virt = 0x1c000000UL;
415 	imx8_mem_map[0].phys = 0x1c000000UL;
416 	imx8_mem_map[0].size = 0x64000000UL;
417 	imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
418 			 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
419 
420 	i = 1;
421 	for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
422 		err = get_owned_memreg(mr, &start, &end);
423 		if (!err) {
424 			imx8_mem_map[i].virt = start;
425 			imx8_mem_map[i].phys = start;
426 			imx8_mem_map[i].size = get_block_size(start, end);
427 			imx8_mem_map[i].attrs = get_block_attrs(start);
428 			i++;
429 		}
430 	}
431 
432 	if (i < MAX_MEM_MAP_REGIONS) {
433 		imx8_mem_map[i].size = 0;
434 		imx8_mem_map[i].attrs = 0;
435 	} else {
436 		puts("Error, need more MEM MAP REGIONS reserved\n");
437 		icache_enable();
438 		return;
439 	}
440 
441 	for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
442 		debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
443 		      i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
444 		      imx8_mem_map[i].size, imx8_mem_map[i].attrs);
445 	}
446 
447 	icache_enable();
448 	dcache_enable();
449 }
450 
451 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
get_page_table_size(void)452 u64 get_page_table_size(void)
453 {
454 	u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
455 	u64 size = 0;
456 
457 	/*
458 	 * For each memory region, the max table size:
459 	 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
460 	 */
461 	size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
462 
463 	/*
464 	 * We need to duplicate our page table once to have an emergency pt to
465 	 * resort to when splitting page tables later on
466 	 */
467 	size *= 2;
468 
469 	/*
470 	 * We may need to split page tables later on if dcache settings change,
471 	 * so reserve up to 4 (random pick) page tables for that.
472 	 */
473 	size += one_pt * 4;
474 
475 	return size;
476 }
477 #endif
478 
479 #if defined(CONFIG_IMX8QM)
480 #define FUSE_MAC0_WORD0 452
481 #define FUSE_MAC0_WORD1 453
482 #define FUSE_MAC1_WORD0 454
483 #define FUSE_MAC1_WORD1 455
484 #elif defined(CONFIG_IMX8QXP)
485 #define FUSE_MAC0_WORD0 708
486 #define FUSE_MAC0_WORD1 709
487 #define FUSE_MAC1_WORD0 710
488 #define FUSE_MAC1_WORD1 711
489 #endif
490 
imx_get_mac_from_fuse(int dev_id,unsigned char * mac)491 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
492 {
493 	u32 word[2], val[2] = {};
494 	int i, ret;
495 
496 	if (dev_id == 0) {
497 		word[0] = FUSE_MAC0_WORD0;
498 		word[1] = FUSE_MAC0_WORD1;
499 	} else {
500 		word[0] = FUSE_MAC1_WORD0;
501 		word[1] = FUSE_MAC1_WORD1;
502 	}
503 
504 	for (i = 0; i < 2; i++) {
505 		ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
506 		if (ret < 0)
507 			goto err;
508 	}
509 
510 	mac[0] = val[0];
511 	mac[1] = val[0] >> 8;
512 	mac[2] = val[0] >> 16;
513 	mac[3] = val[0] >> 24;
514 	mac[4] = val[1];
515 	mac[5] = val[1] >> 8;
516 
517 	debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
518 	      __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
519 	return;
520 err:
521 	printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
522 }
523 
get_cpu_rev(void)524 u32 get_cpu_rev(void)
525 {
526 	u32 id = 0, rev = 0;
527 	int ret;
528 
529 	ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
530 	if (ret)
531 		return 0;
532 
533 	rev = (id >> 5)  & 0xf;
534 	id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
535 
536 	return (id << 12) | rev;
537 }
538 
539