1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
4 */
5
6 #include <common.h>
7 #include <div64.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/arch/imx-regs.h>
11 #include <asm/arch/crm_regs.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/sys_proto.h>
14
15 enum pll_clocks {
16 PLL_SYS, /* System PLL */
17 PLL_BUS, /* System Bus PLL*/
18 PLL_USBOTG, /* OTG USB PLL */
19 PLL_ENET, /* ENET PLL */
20 PLL_AUDIO, /* AUDIO PLL */
21 PLL_VIDEO, /* VIDEO PLL */
22 };
23
24 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
25
26 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)27 void enable_ocotp_clk(unsigned char enable)
28 {
29 u32 reg;
30
31 reg = __raw_readl(&imx_ccm->CCGR2);
32 if (enable)
33 reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
34 else
35 reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
36 __raw_writel(reg, &imx_ccm->CCGR2);
37 }
38 #endif
39
40 #ifdef CONFIG_NAND_MXS
setup_gpmi_io_clk(u32 cfg)41 void setup_gpmi_io_clk(u32 cfg)
42 {
43 /* Disable clocks per ERR007177 from MX6 errata */
44 clrbits_le32(&imx_ccm->CCGR4,
45 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
46 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
47 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
48 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
49 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
50
51 #if defined(CONFIG_MX6SX)
52 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
53
54 clrsetbits_le32(&imx_ccm->cs2cdr,
55 MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
56 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
57 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
58 cfg);
59
60 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
61 #else
62 clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
63
64 clrsetbits_le32(&imx_ccm->cs2cdr,
65 MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
66 MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
67 MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
68 cfg);
69
70 setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
71 #endif
72 setbits_le32(&imx_ccm->CCGR4,
73 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
74 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
75 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
76 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
77 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
78 }
79 #endif
80
enable_usboh3_clk(unsigned char enable)81 void enable_usboh3_clk(unsigned char enable)
82 {
83 u32 reg;
84
85 reg = __raw_readl(&imx_ccm->CCGR6);
86 if (enable)
87 reg |= MXC_CCM_CCGR6_USBOH3_MASK;
88 else
89 reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
90 __raw_writel(reg, &imx_ccm->CCGR6);
91
92 }
93
94 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
enable_enet_clk(unsigned char enable)95 void enable_enet_clk(unsigned char enable)
96 {
97 u32 mask, *addr;
98
99 if (is_mx6ull()) {
100 mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
101 addr = &imx_ccm->CCGR0;
102 } else if (is_mx6ul()) {
103 mask = MXC_CCM_CCGR3_ENET_MASK;
104 addr = &imx_ccm->CCGR3;
105 } else {
106 mask = MXC_CCM_CCGR1_ENET_MASK;
107 addr = &imx_ccm->CCGR1;
108 }
109
110 if (enable)
111 setbits_le32(addr, mask);
112 else
113 clrbits_le32(addr, mask);
114 }
115 #endif
116
117 #ifdef CONFIG_MXC_UART
enable_uart_clk(unsigned char enable)118 void enable_uart_clk(unsigned char enable)
119 {
120 u32 mask;
121
122 if (is_mx6ul() || is_mx6ull())
123 mask = MXC_CCM_CCGR5_UART_MASK;
124 else
125 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
126
127 if (enable)
128 setbits_le32(&imx_ccm->CCGR5, mask);
129 else
130 clrbits_le32(&imx_ccm->CCGR5, mask);
131 }
132 #endif
133
134 #ifdef CONFIG_MMC
enable_usdhc_clk(unsigned char enable,unsigned bus_num)135 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
136 {
137 u32 mask;
138
139 if (bus_num > 3)
140 return -EINVAL;
141
142 mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
143 if (enable)
144 setbits_le32(&imx_ccm->CCGR6, mask);
145 else
146 clrbits_le32(&imx_ccm->CCGR6, mask);
147
148 return 0;
149 }
150 #endif
151
152 #ifdef CONFIG_SYS_I2C_MXC
153 /* i2c_num can be from 0 - 3 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)154 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
155 {
156 u32 reg;
157 u32 mask;
158 u32 *addr;
159
160 if (i2c_num > 3)
161 return -EINVAL;
162 if (i2c_num < 3) {
163 mask = MXC_CCM_CCGR_CG_MASK
164 << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
165 + (i2c_num << 1));
166 reg = __raw_readl(&imx_ccm->CCGR2);
167 if (enable)
168 reg |= mask;
169 else
170 reg &= ~mask;
171 __raw_writel(reg, &imx_ccm->CCGR2);
172 } else {
173 if (is_mx6sll())
174 return -EINVAL;
175 if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
176 mask = MXC_CCM_CCGR6_I2C4_MASK;
177 addr = &imx_ccm->CCGR6;
178 } else {
179 mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
180 addr = &imx_ccm->CCGR1;
181 }
182 reg = __raw_readl(addr);
183 if (enable)
184 reg |= mask;
185 else
186 reg &= ~mask;
187 __raw_writel(reg, addr);
188 }
189 return 0;
190 }
191 #endif
192
193 /* spi_num can be from 0 - SPI_MAX_NUM */
enable_spi_clk(unsigned char enable,unsigned spi_num)194 int enable_spi_clk(unsigned char enable, unsigned spi_num)
195 {
196 u32 reg;
197 u32 mask;
198
199 if (spi_num > SPI_MAX_NUM)
200 return -EINVAL;
201
202 mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
203 reg = __raw_readl(&imx_ccm->CCGR1);
204 if (enable)
205 reg |= mask;
206 else
207 reg &= ~mask;
208 __raw_writel(reg, &imx_ccm->CCGR1);
209 return 0;
210 }
decode_pll(enum pll_clocks pll,u32 infreq)211 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
212 {
213 u32 div, test_div, pll_num, pll_denom;
214
215 switch (pll) {
216 case PLL_SYS:
217 div = __raw_readl(&imx_ccm->analog_pll_sys);
218 div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
219
220 return (infreq * div) >> 1;
221 case PLL_BUS:
222 div = __raw_readl(&imx_ccm->analog_pll_528);
223 div &= BM_ANADIG_PLL_528_DIV_SELECT;
224
225 return infreq * (20 + (div << 1));
226 case PLL_USBOTG:
227 div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
228 div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
229
230 return infreq * (20 + (div << 1));
231 case PLL_ENET:
232 div = __raw_readl(&imx_ccm->analog_pll_enet);
233 div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
234
235 return 25000000 * (div + (div >> 1) + 1);
236 case PLL_AUDIO:
237 div = __raw_readl(&imx_ccm->analog_pll_audio);
238 if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
239 return 0;
240 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
241 if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
242 return MXC_HCLK;
243 pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
244 pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
245 test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
246 BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
247 div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
248 if (test_div == 3) {
249 debug("Error test_div\n");
250 return 0;
251 }
252 test_div = 1 << (2 - test_div);
253
254 return infreq * (div + pll_num / pll_denom) / test_div;
255 case PLL_VIDEO:
256 div = __raw_readl(&imx_ccm->analog_pll_video);
257 if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
258 return 0;
259 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
260 if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
261 return MXC_HCLK;
262 pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
263 pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
264 test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
265 BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
266 div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
267 if (test_div == 3) {
268 debug("Error test_div\n");
269 return 0;
270 }
271 test_div = 1 << (2 - test_div);
272
273 return infreq * (div + pll_num / pll_denom) / test_div;
274 default:
275 return 0;
276 }
277 /* NOTREACHED */
278 }
mxc_get_pll_pfd(enum pll_clocks pll,int pfd_num)279 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
280 {
281 u32 div;
282 u64 freq;
283
284 switch (pll) {
285 case PLL_BUS:
286 if (!is_mx6ul() && !is_mx6ull()) {
287 if (pfd_num == 3) {
288 /* No PFD3 on PLL2 */
289 return 0;
290 }
291 }
292 div = __raw_readl(&imx_ccm->analog_pfd_528);
293 freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
294 break;
295 case PLL_USBOTG:
296 div = __raw_readl(&imx_ccm->analog_pfd_480);
297 freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
298 break;
299 default:
300 /* No PFD on other PLL */
301 return 0;
302 }
303
304 return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
305 ANATOP_PFD_FRAC_SHIFT(pfd_num));
306 }
307
get_mcu_main_clk(void)308 static u32 get_mcu_main_clk(void)
309 {
310 u32 reg, freq;
311
312 reg = __raw_readl(&imx_ccm->cacrr);
313 reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
314 reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
315 freq = decode_pll(PLL_SYS, MXC_HCLK);
316
317 return freq / (reg + 1);
318 }
319
get_periph_clk(void)320 u32 get_periph_clk(void)
321 {
322 u32 reg, div = 0, freq = 0;
323
324 reg = __raw_readl(&imx_ccm->cbcdr);
325 if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
326 div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
327 MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
328 reg = __raw_readl(&imx_ccm->cbcmr);
329 reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
330 reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
331
332 switch (reg) {
333 case 0:
334 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
335 break;
336 case 1:
337 case 2:
338 freq = MXC_HCLK;
339 break;
340 default:
341 break;
342 }
343 } else {
344 reg = __raw_readl(&imx_ccm->cbcmr);
345 reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
346 reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
347
348 switch (reg) {
349 case 0:
350 freq = decode_pll(PLL_BUS, MXC_HCLK);
351 break;
352 case 1:
353 freq = mxc_get_pll_pfd(PLL_BUS, 2);
354 break;
355 case 2:
356 freq = mxc_get_pll_pfd(PLL_BUS, 0);
357 break;
358 case 3:
359 /* static / 2 divider */
360 freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
361 break;
362 default:
363 break;
364 }
365 }
366
367 return freq / (div + 1);
368 }
369
get_ipg_clk(void)370 static u32 get_ipg_clk(void)
371 {
372 u32 reg, ipg_podf;
373
374 reg = __raw_readl(&imx_ccm->cbcdr);
375 reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
376 ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
377
378 return get_ahb_clk() / (ipg_podf + 1);
379 }
380
get_ipg_per_clk(void)381 static u32 get_ipg_per_clk(void)
382 {
383 u32 reg, perclk_podf;
384
385 reg = __raw_readl(&imx_ccm->cscmr1);
386 if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
387 is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
388 if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
389 return MXC_HCLK; /* OSC 24Mhz */
390 }
391
392 perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
393
394 return get_ipg_clk() / (perclk_podf + 1);
395 }
396
get_uart_clk(void)397 static u32 get_uart_clk(void)
398 {
399 u32 reg, uart_podf;
400 u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
401 reg = __raw_readl(&imx_ccm->cscdr1);
402
403 if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
404 is_mx6sll() || is_mx6ull()) {
405 if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
406 freq = MXC_HCLK;
407 }
408
409 reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
410 uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
411
412 return freq / (uart_podf + 1);
413 }
414
get_cspi_clk(void)415 static u32 get_cspi_clk(void)
416 {
417 u32 reg, cspi_podf;
418
419 reg = __raw_readl(&imx_ccm->cscdr2);
420 cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
421 MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
422
423 if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
424 is_mx6sll() || is_mx6ull()) {
425 if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
426 return MXC_HCLK / (cspi_podf + 1);
427 }
428
429 return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
430 }
431
get_axi_clk(void)432 static u32 get_axi_clk(void)
433 {
434 u32 root_freq, axi_podf;
435 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
436
437 axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
438 axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
439
440 if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
441 if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
442 root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
443 else
444 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
445 } else
446 root_freq = get_periph_clk();
447
448 return root_freq / (axi_podf + 1);
449 }
450
get_emi_slow_clk(void)451 static u32 get_emi_slow_clk(void)
452 {
453 u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
454
455 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
456 emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
457 emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
458 emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
459 emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
460
461 switch (emi_clk_sel) {
462 case 0:
463 root_freq = get_axi_clk();
464 break;
465 case 1:
466 root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
467 break;
468 case 2:
469 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
470 break;
471 case 3:
472 root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
473 break;
474 }
475
476 return root_freq / (emi_slow_podf + 1);
477 }
478
get_mmdc_ch0_clk(void)479 static u32 get_mmdc_ch0_clk(void)
480 {
481 u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
482 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
483
484 u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
485
486 if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
487 is_mx6sll()) {
488 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
489 MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
490 if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
491 per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
492 MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
493 if (is_mx6sl()) {
494 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
495 freq = MXC_HCLK;
496 else
497 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
498 } else {
499 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
500 freq = decode_pll(PLL_BUS, MXC_HCLK);
501 else
502 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
503 }
504 } else {
505 per2_clk2_podf = 0;
506 switch ((cbcmr &
507 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
508 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
509 case 0:
510 freq = decode_pll(PLL_BUS, MXC_HCLK);
511 break;
512 case 1:
513 freq = mxc_get_pll_pfd(PLL_BUS, 2);
514 break;
515 case 2:
516 freq = mxc_get_pll_pfd(PLL_BUS, 0);
517 break;
518 case 3:
519 if (is_mx6sl()) {
520 freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
521 break;
522 }
523
524 pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
525 switch (pmu_misc2_audio_div) {
526 case 0:
527 case 2:
528 pmu_misc2_audio_div = 1;
529 break;
530 case 1:
531 pmu_misc2_audio_div = 2;
532 break;
533 case 3:
534 pmu_misc2_audio_div = 4;
535 break;
536 }
537 freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
538 pmu_misc2_audio_div;
539 break;
540 }
541 }
542 return freq / (podf + 1) / (per2_clk2_podf + 1);
543 } else {
544 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
545 MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
546 return get_periph_clk() / (podf + 1);
547 }
548 }
549
550 #if defined(CONFIG_VIDEO_MXS)
enable_pll_video(u32 pll_div,u32 pll_num,u32 pll_denom,u32 post_div)551 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
552 u32 post_div)
553 {
554 u32 reg = 0;
555 ulong start;
556
557 debug("pll5 div = %d, num = %d, denom = %d\n",
558 pll_div, pll_num, pll_denom);
559
560 /* Power up PLL5 video */
561 writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
562 BM_ANADIG_PLL_VIDEO_BYPASS |
563 BM_ANADIG_PLL_VIDEO_DIV_SELECT |
564 BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
565 &imx_ccm->analog_pll_video_clr);
566
567 /* Set div, num and denom */
568 switch (post_div) {
569 case 1:
570 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
571 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
572 &imx_ccm->analog_pll_video_set);
573 break;
574 case 2:
575 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
576 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
577 &imx_ccm->analog_pll_video_set);
578 break;
579 case 4:
580 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
581 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
582 &imx_ccm->analog_pll_video_set);
583 break;
584 default:
585 puts("Wrong test_div!\n");
586 return -EINVAL;
587 }
588
589 writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
590 &imx_ccm->analog_pll_video_num);
591 writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
592 &imx_ccm->analog_pll_video_denom);
593
594 /* Wait PLL5 lock */
595 start = get_timer(0); /* Get current timestamp */
596
597 do {
598 reg = readl(&imx_ccm->analog_pll_video);
599 if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
600 /* Enable PLL out */
601 writel(BM_ANADIG_PLL_VIDEO_ENABLE,
602 &imx_ccm->analog_pll_video_set);
603 return 0;
604 }
605 } while (get_timer(0) < (start + 10)); /* Wait 10ms */
606
607 puts("Lock PLL5 timeout\n");
608
609 return -ETIME;
610 }
611
612 /*
613 * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
614 *
615 * 'freq' using KHz as unit, see driver/video/mxsfb.c.
616 */
mxs_set_lcdclk(u32 base_addr,u32 freq)617 void mxs_set_lcdclk(u32 base_addr, u32 freq)
618 {
619 u32 reg = 0;
620 u32 hck = MXC_HCLK / 1000;
621 /* DIV_SELECT ranges from 27 to 54 */
622 u32 min = hck * 27;
623 u32 max = hck * 54;
624 u32 temp, best = 0;
625 u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
626 u32 pll_div, pll_num, pll_denom, post_div = 1;
627
628 debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
629
630 if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
631 !is_mx6sll()) {
632 debug("This chip not support lcd!\n");
633 return;
634 }
635
636 if (!is_mx6sl()) {
637 if (base_addr == LCDIF1_BASE_ADDR) {
638 reg = readl(&imx_ccm->cscdr2);
639 /* Can't change clocks when clock not from pre-mux */
640 if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
641 return;
642 }
643 }
644
645 if (is_mx6sx()) {
646 reg = readl(&imx_ccm->cscdr2);
647 /* Can't change clocks when clock not from pre-mux */
648 if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
649 return;
650 }
651
652 temp = freq * max_pred * max_postd;
653 if (temp < min) {
654 /*
655 * Register: PLL_VIDEO
656 * Bit Field: POST_DIV_SELECT
657 * 00 — Divide by 4.
658 * 01 — Divide by 2.
659 * 10 — Divide by 1.
660 * 11 — Reserved
661 * No need to check post_div(1)
662 */
663 for (post_div = 2; post_div <= 4; post_div <<= 1) {
664 if ((temp * post_div) > min) {
665 freq *= post_div;
666 break;
667 }
668 }
669
670 if (post_div > 4) {
671 printf("Fail to set rate to %dkhz", freq);
672 return;
673 }
674 }
675
676 /* Choose the best pred and postd to match freq for lcd */
677 for (i = 1; i <= max_pred; i++) {
678 for (j = 1; j <= max_postd; j++) {
679 temp = freq * i * j;
680 if (temp > max || temp < min)
681 continue;
682 if (best == 0 || temp < best) {
683 best = temp;
684 pred = i;
685 postd = j;
686 }
687 }
688 }
689
690 if (best == 0) {
691 printf("Fail to set rate to %dKHz", freq);
692 return;
693 }
694
695 debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
696
697 pll_div = best / hck;
698 pll_denom = 1000000;
699 pll_num = (best - hck * pll_div) * pll_denom / hck;
700
701 /*
702 * pll_num
703 * (24MHz * (pll_div + --------- ))
704 * pll_denom
705 *freq KHz = --------------------------------
706 * post_div * pred * postd * 1000
707 */
708
709 if (base_addr == LCDIF1_BASE_ADDR) {
710 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
711 return;
712
713 enable_lcdif_clock(base_addr, 0);
714 if (!is_mx6sl()) {
715 /* Select pre-lcd clock to PLL5 and set pre divider */
716 clrsetbits_le32(&imx_ccm->cscdr2,
717 MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
718 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
719 (0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
720 ((pred - 1) <<
721 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
722
723 /* Set the post divider */
724 clrsetbits_le32(&imx_ccm->cbcmr,
725 MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
726 ((postd - 1) <<
727 MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
728 } else {
729 /* Select pre-lcd clock to PLL5 and set pre divider */
730 clrsetbits_le32(&imx_ccm->cscdr2,
731 MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
732 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
733 (0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
734 ((pred - 1) <<
735 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
736
737 /* Set the post divider */
738 clrsetbits_le32(&imx_ccm->cscmr1,
739 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
740 (((postd - 1)^0x6) <<
741 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
742 }
743
744 enable_lcdif_clock(base_addr, 1);
745 } else if (is_mx6sx()) {
746 /* Setting LCDIF2 for i.MX6SX */
747 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
748 return;
749
750 enable_lcdif_clock(base_addr, 0);
751 /* Select pre-lcd clock to PLL5 and set pre divider */
752 clrsetbits_le32(&imx_ccm->cscdr2,
753 MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
754 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
755 (0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
756 ((pred - 1) <<
757 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
758
759 /* Set the post divider */
760 clrsetbits_le32(&imx_ccm->cscmr1,
761 MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
762 ((postd - 1) <<
763 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
764
765 enable_lcdif_clock(base_addr, 1);
766 }
767 }
768
enable_lcdif_clock(u32 base_addr,bool enable)769 int enable_lcdif_clock(u32 base_addr, bool enable)
770 {
771 u32 reg = 0;
772 u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
773
774 if (is_mx6sx()) {
775 if ((base_addr != LCDIF1_BASE_ADDR) &&
776 (base_addr != LCDIF2_BASE_ADDR)) {
777 puts("Wrong LCD interface!\n");
778 return -EINVAL;
779 }
780 /* Set to pre-mux clock at default */
781 lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
782 MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
783 MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
784 lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
785 (MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
786 MXC_CCM_CCGR3_DISP_AXI_MASK) :
787 (MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
788 MXC_CCM_CCGR3_DISP_AXI_MASK);
789 } else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
790 if (base_addr != LCDIF1_BASE_ADDR) {
791 puts("Wrong LCD interface!\n");
792 return -EINVAL;
793 }
794 /* Set to pre-mux clock at default */
795 lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
796 lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
797 } else if (is_mx6sl()) {
798 if (base_addr != LCDIF1_BASE_ADDR) {
799 puts("Wrong LCD interface!\n");
800 return -EINVAL;
801 }
802
803 reg = readl(&imx_ccm->CCGR3);
804 reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
805 MXC_CCM_CCGR3_LCDIF_PIX_MASK);
806 writel(reg, &imx_ccm->CCGR3);
807
808 if (enable) {
809 reg = readl(&imx_ccm->cscdr3);
810 reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
811 reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
812 writel(reg, &imx_ccm->cscdr3);
813
814 reg = readl(&imx_ccm->CCGR3);
815 reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
816 MXC_CCM_CCGR3_LCDIF_PIX_MASK;
817 writel(reg, &imx_ccm->CCGR3);
818 }
819
820 return 0;
821 } else {
822 return 0;
823 }
824
825 /* Gate LCDIF clock first */
826 reg = readl(&imx_ccm->CCGR3);
827 reg &= ~lcdif_ccgr3_mask;
828 writel(reg, &imx_ccm->CCGR3);
829
830 reg = readl(&imx_ccm->CCGR2);
831 reg &= ~MXC_CCM_CCGR2_LCD_MASK;
832 writel(reg, &imx_ccm->CCGR2);
833
834 if (enable) {
835 /* Select pre-mux */
836 reg = readl(&imx_ccm->cscdr2);
837 reg &= ~lcdif_clk_sel_mask;
838 writel(reg, &imx_ccm->cscdr2);
839
840 /* Enable the LCDIF pix clock */
841 reg = readl(&imx_ccm->CCGR3);
842 reg |= lcdif_ccgr3_mask;
843 writel(reg, &imx_ccm->CCGR3);
844
845 reg = readl(&imx_ccm->CCGR2);
846 reg |= MXC_CCM_CCGR2_LCD_MASK;
847 writel(reg, &imx_ccm->CCGR2);
848 }
849
850 return 0;
851 }
852 #endif
853
854 #ifdef CONFIG_FSL_QSPI
855 /* qspi_num can be from 0 - 1 */
enable_qspi_clk(int qspi_num)856 void enable_qspi_clk(int qspi_num)
857 {
858 u32 reg = 0;
859 /* Enable QuadSPI clock */
860 switch (qspi_num) {
861 case 0:
862 /* disable the clock gate */
863 clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
864
865 /* set 50M : (50 = 396 / 2 / 4) */
866 reg = readl(&imx_ccm->cscmr1);
867 reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
868 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
869 reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
870 (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
871 writel(reg, &imx_ccm->cscmr1);
872
873 /* enable the clock gate */
874 setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
875 break;
876 case 1:
877 /*
878 * disable the clock gate
879 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
880 * disable both of them.
881 */
882 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
883 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
884
885 /* set 50M : (50 = 396 / 2 / 4) */
886 reg = readl(&imx_ccm->cs2cdr);
887 reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
888 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
889 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
890 reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
891 MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
892 writel(reg, &imx_ccm->cs2cdr);
893
894 /*enable the clock gate*/
895 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
896 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
897 break;
898 default:
899 break;
900 }
901 }
902 #endif
903
904 #ifdef CONFIG_FEC_MXC
enable_fec_anatop_clock(int fec_id,enum enet_freq freq)905 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
906 {
907 u32 reg = 0;
908 s32 timeout = 100000;
909
910 struct anatop_regs __iomem *anatop =
911 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
912
913 if (freq < ENET_25MHZ || freq > ENET_125MHZ)
914 return -EINVAL;
915
916 reg = readl(&anatop->pll_enet);
917
918 if (fec_id == 0) {
919 reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
920 reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
921 } else if (fec_id == 1) {
922 /* Only i.MX6SX/UL support ENET2 */
923 if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
924 return -EINVAL;
925 reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
926 reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
927 } else {
928 return -EINVAL;
929 }
930
931 if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
932 (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
933 reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
934 writel(reg, &anatop->pll_enet);
935 while (timeout--) {
936 if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
937 break;
938 }
939 if (timeout < 0)
940 return -ETIMEDOUT;
941 }
942
943 /* Enable FEC clock */
944 if (fec_id == 0)
945 reg |= BM_ANADIG_PLL_ENET_ENABLE;
946 else
947 reg |= BM_ANADIG_PLL_ENET2_ENABLE;
948 reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
949 writel(reg, &anatop->pll_enet);
950
951 #ifdef CONFIG_MX6SX
952 /* Disable enet system clcok before switching clock parent */
953 reg = readl(&imx_ccm->CCGR3);
954 reg &= ~MXC_CCM_CCGR3_ENET_MASK;
955 writel(reg, &imx_ccm->CCGR3);
956
957 /*
958 * Set enet ahb clock to 200MHz
959 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
960 */
961 reg = readl(&imx_ccm->chsccdr);
962 reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
963 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
964 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
965 /* PLL2 PFD2 */
966 reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
967 /* Div = 2*/
968 reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
969 reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
970 writel(reg, &imx_ccm->chsccdr);
971
972 /* Enable enet system clock */
973 reg = readl(&imx_ccm->CCGR3);
974 reg |= MXC_CCM_CCGR3_ENET_MASK;
975 writel(reg, &imx_ccm->CCGR3);
976 #endif
977 return 0;
978 }
979 #endif
980
get_usdhc_clk(u32 port)981 static u32 get_usdhc_clk(u32 port)
982 {
983 u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
984 u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
985 u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
986
987 if (is_mx6ul() || is_mx6ull()) {
988 if (port > 1)
989 return 0;
990 }
991
992 if (is_mx6sll()) {
993 if (port > 2)
994 return 0;
995 }
996
997 switch (port) {
998 case 0:
999 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
1000 MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
1001 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
1002
1003 break;
1004 case 1:
1005 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
1006 MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
1007 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
1008
1009 break;
1010 case 2:
1011 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
1012 MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
1013 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
1014
1015 break;
1016 case 3:
1017 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
1018 MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
1019 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
1020
1021 break;
1022 default:
1023 break;
1024 }
1025
1026 if (clk_sel)
1027 root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
1028 else
1029 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
1030
1031 return root_freq / (usdhc_podf + 1);
1032 }
1033
imx_get_uartclk(void)1034 u32 imx_get_uartclk(void)
1035 {
1036 return get_uart_clk();
1037 }
1038
imx_get_fecclk(void)1039 u32 imx_get_fecclk(void)
1040 {
1041 return mxc_get_clock(MXC_IPG_CLK);
1042 }
1043
1044 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
enable_enet_pll(uint32_t en)1045 static int enable_enet_pll(uint32_t en)
1046 {
1047 struct mxc_ccm_reg *const imx_ccm
1048 = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
1049 s32 timeout = 100000;
1050 u32 reg = 0;
1051
1052 /* Enable PLLs */
1053 reg = readl(&imx_ccm->analog_pll_enet);
1054 reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
1055 writel(reg, &imx_ccm->analog_pll_enet);
1056 reg |= BM_ANADIG_PLL_SYS_ENABLE;
1057 while (timeout--) {
1058 if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
1059 break;
1060 }
1061 if (timeout <= 0)
1062 return -EIO;
1063 reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
1064 writel(reg, &imx_ccm->analog_pll_enet);
1065 reg |= en;
1066 writel(reg, &imx_ccm->analog_pll_enet);
1067 return 0;
1068 }
1069 #endif
1070
1071 #ifdef CONFIG_SATA
ungate_sata_clock(void)1072 static void ungate_sata_clock(void)
1073 {
1074 struct mxc_ccm_reg *const imx_ccm =
1075 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1076
1077 /* Enable SATA clock. */
1078 setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1079 }
1080
enable_sata_clock(void)1081 int enable_sata_clock(void)
1082 {
1083 ungate_sata_clock();
1084 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
1085 }
1086
disable_sata_clock(void)1087 void disable_sata_clock(void)
1088 {
1089 struct mxc_ccm_reg *const imx_ccm =
1090 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1091
1092 clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1093 }
1094 #endif
1095
1096 #ifdef CONFIG_PCIE_IMX
ungate_pcie_clock(void)1097 static void ungate_pcie_clock(void)
1098 {
1099 struct mxc_ccm_reg *const imx_ccm =
1100 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1101
1102 /* Enable PCIe clock. */
1103 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
1104 }
1105
enable_pcie_clock(void)1106 int enable_pcie_clock(void)
1107 {
1108 struct anatop_regs *anatop_regs =
1109 (struct anatop_regs *)ANATOP_BASE_ADDR;
1110 struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1111 u32 lvds1_clk_sel;
1112
1113 /*
1114 * Here be dragons!
1115 *
1116 * The register ANATOP_MISC1 is not documented in the Freescale
1117 * MX6RM. The register that is mapped in the ANATOP space and
1118 * marked as ANATOP_MISC1 is actually documented in the PMU section
1119 * of the datasheet as PMU_MISC1.
1120 *
1121 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
1122 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
1123 * for PCI express link that is clocked from the i.MX6.
1124 */
1125 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
1126 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
1127 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
1128 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
1129 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
1130
1131 if (is_mx6sx())
1132 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
1133 else
1134 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
1135
1136 clrsetbits_le32(&anatop_regs->ana_misc1,
1137 ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
1138 ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
1139 ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
1140
1141 /* PCIe reference clock sourced from AXI. */
1142 clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
1143
1144 /* Party time! Ungate the clock to the PCIe. */
1145 #ifdef CONFIG_SATA
1146 ungate_sata_clock();
1147 #endif
1148 ungate_pcie_clock();
1149
1150 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
1151 BM_ANADIG_PLL_ENET_ENABLE_PCIE);
1152 }
1153 #endif
1154
1155 #ifdef CONFIG_IMX_HAB
hab_caam_clock_enable(unsigned char enable)1156 void hab_caam_clock_enable(unsigned char enable)
1157 {
1158 u32 reg;
1159
1160 if (is_mx6ull() || is_mx6sll()) {
1161 /* CG5, DCP clock */
1162 reg = __raw_readl(&imx_ccm->CCGR0);
1163 if (enable)
1164 reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
1165 else
1166 reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
1167 __raw_writel(reg, &imx_ccm->CCGR0);
1168 } else {
1169 /* CG4 ~ CG6, CAAM clocks */
1170 reg = __raw_readl(&imx_ccm->CCGR0);
1171 if (enable)
1172 reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1173 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1174 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1175 else
1176 reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1177 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1178 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1179 __raw_writel(reg, &imx_ccm->CCGR0);
1180 }
1181
1182 /* EMI slow clk */
1183 reg = __raw_readl(&imx_ccm->CCGR6);
1184 if (enable)
1185 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1186 else
1187 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1188 __raw_writel(reg, &imx_ccm->CCGR6);
1189 }
1190 #endif
1191
enable_pll3(void)1192 static void enable_pll3(void)
1193 {
1194 struct anatop_regs __iomem *anatop =
1195 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
1196
1197 /* make sure pll3 is enabled */
1198 if ((readl(&anatop->usb1_pll_480_ctrl) &
1199 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
1200 /* enable pll's power */
1201 writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
1202 &anatop->usb1_pll_480_ctrl_set);
1203 writel(0x80, &anatop->ana_misc2_clr);
1204 /* wait for pll lock */
1205 while ((readl(&anatop->usb1_pll_480_ctrl) &
1206 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
1207 ;
1208 /* disable bypass */
1209 writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
1210 &anatop->usb1_pll_480_ctrl_clr);
1211 /* enable pll output */
1212 writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1213 &anatop->usb1_pll_480_ctrl_set);
1214 }
1215 }
1216
enable_thermal_clk(void)1217 void enable_thermal_clk(void)
1218 {
1219 enable_pll3();
1220 }
1221
1222 #ifdef CONFIG_MTD_NOR_FLASH
enable_eim_clk(unsigned char enable)1223 void enable_eim_clk(unsigned char enable)
1224 {
1225 u32 reg;
1226
1227 reg = __raw_readl(&imx_ccm->CCGR6);
1228 if (enable)
1229 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1230 else
1231 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1232 __raw_writel(reg, &imx_ccm->CCGR6);
1233 }
1234 #endif
1235
mxc_get_clock(enum mxc_clock clk)1236 unsigned int mxc_get_clock(enum mxc_clock clk)
1237 {
1238 switch (clk) {
1239 case MXC_ARM_CLK:
1240 return get_mcu_main_clk();
1241 case MXC_PER_CLK:
1242 return get_periph_clk();
1243 case MXC_AHB_CLK:
1244 return get_ahb_clk();
1245 case MXC_IPG_CLK:
1246 return get_ipg_clk();
1247 case MXC_IPG_PERCLK:
1248 case MXC_I2C_CLK:
1249 return get_ipg_per_clk();
1250 case MXC_UART_CLK:
1251 return get_uart_clk();
1252 case MXC_CSPI_CLK:
1253 return get_cspi_clk();
1254 case MXC_AXI_CLK:
1255 return get_axi_clk();
1256 case MXC_EMI_SLOW_CLK:
1257 return get_emi_slow_clk();
1258 case MXC_DDR_CLK:
1259 return get_mmdc_ch0_clk();
1260 case MXC_ESDHC_CLK:
1261 return get_usdhc_clk(0);
1262 case MXC_ESDHC2_CLK:
1263 return get_usdhc_clk(1);
1264 case MXC_ESDHC3_CLK:
1265 return get_usdhc_clk(2);
1266 case MXC_ESDHC4_CLK:
1267 return get_usdhc_clk(3);
1268 case MXC_SATA_CLK:
1269 return get_ahb_clk();
1270 default:
1271 printf("Unsupported MXC CLK: %d\n", clk);
1272 break;
1273 }
1274
1275 return 0;
1276 }
1277
1278 #ifndef CONFIG_MX6SX
enable_ipu_clock(void)1279 void enable_ipu_clock(void)
1280 {
1281 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1282
1283 setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
1284
1285 if (is_mx6dqp()) {
1286 setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1287 setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1288 }
1289 }
1290
disable_ipu_clock(void)1291 void disable_ipu_clock(void)
1292 {
1293 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1294
1295 clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
1296
1297 if (is_mx6dqp()) {
1298 clrbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1299 clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1300 }
1301 }
1302 #endif
1303
1304 #ifndef CONFIG_SPL_BUILD
1305 /*
1306 * Dump some core clockes.
1307 */
do_mx6_showclocks(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1308 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1309 {
1310 u32 freq;
1311 freq = decode_pll(PLL_SYS, MXC_HCLK);
1312 printf("PLL_SYS %8d MHz\n", freq / 1000000);
1313 freq = decode_pll(PLL_BUS, MXC_HCLK);
1314 printf("PLL_BUS %8d MHz\n", freq / 1000000);
1315 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
1316 printf("PLL_OTG %8d MHz\n", freq / 1000000);
1317 freq = decode_pll(PLL_ENET, MXC_HCLK);
1318 printf("PLL_NET %8d MHz\n", freq / 1000000);
1319
1320 printf("\n");
1321 printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
1322 printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1323 printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1324 #ifdef CONFIG_MXC_SPI
1325 printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1326 #endif
1327 printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1328 printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1329 printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1330 printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1331 printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1332 printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1333 printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
1334 printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
1335 printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
1336
1337 return 0;
1338 }
1339
1340 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
1341 defined(CONFIG_MX6S)
disable_ldb_di_clock_sources(void)1342 static void disable_ldb_di_clock_sources(void)
1343 {
1344 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1345 int reg;
1346
1347 /* Make sure PFDs are disabled at boot. */
1348 reg = readl(&mxc_ccm->analog_pfd_528);
1349 /* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
1350 if (is_mx6sdl())
1351 reg |= 0x80008080;
1352 else
1353 reg |= 0x80808080;
1354 writel(reg, &mxc_ccm->analog_pfd_528);
1355
1356 /* Disable PLL3 PFDs */
1357 reg = readl(&mxc_ccm->analog_pfd_480);
1358 reg |= 0x80808080;
1359 writel(reg, &mxc_ccm->analog_pfd_480);
1360
1361 /* Disable PLL5 */
1362 reg = readl(&mxc_ccm->analog_pll_video);
1363 reg &= ~(1 << 13);
1364 writel(reg, &mxc_ccm->analog_pll_video);
1365 }
1366
enable_ldb_di_clock_sources(void)1367 static void enable_ldb_di_clock_sources(void)
1368 {
1369 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1370 int reg;
1371
1372 reg = readl(&mxc_ccm->analog_pfd_528);
1373 if (is_mx6sdl())
1374 reg &= ~(0x80008080);
1375 else
1376 reg &= ~(0x80808080);
1377 writel(reg, &mxc_ccm->analog_pfd_528);
1378
1379 reg = readl(&mxc_ccm->analog_pfd_480);
1380 reg &= ~(0x80808080);
1381 writel(reg, &mxc_ccm->analog_pfd_480);
1382 }
1383
1384 /*
1385 * Try call this function as early in the boot process as possible since the
1386 * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
1387 */
select_ldb_di_clock_source(enum ldb_di_clock clk)1388 void select_ldb_di_clock_source(enum ldb_di_clock clk)
1389 {
1390 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1391 int reg;
1392
1393 /*
1394 * Need to follow a strict procedure when changing the LDB
1395 * clock, else we can introduce a glitch. Things to keep in
1396 * mind:
1397 * 1. The current and new parent clocks must be disabled.
1398 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
1399 * no CG bit.
1400 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
1401 * the top four options are in one mux and the PLL3 option along
1402 * with another option is in the second mux. There is third mux
1403 * used to decide between the first and second mux.
1404 * The code below switches the parent to the bottom mux first
1405 * and then manipulates the top mux. This ensures that no glitch
1406 * will enter the divider.
1407 *
1408 * Need to disable MMDC_CH1 clock manually as there is no CG bit
1409 * for this clock. The only way to disable this clock is to move
1410 * it to pll3_sw_clk and then to disable pll3_sw_clk
1411 * Make sure periph2_clk2_sel is set to pll3_sw_clk
1412 */
1413
1414 /* Disable all ldb_di clock parents */
1415 disable_ldb_di_clock_sources();
1416
1417 /* Set MMDC_CH1 mask bit */
1418 reg = readl(&mxc_ccm->ccdr);
1419 reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1420 writel(reg, &mxc_ccm->ccdr);
1421
1422 /* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
1423 reg = readl(&mxc_ccm->cbcmr);
1424 reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
1425 writel(reg, &mxc_ccm->cbcmr);
1426
1427 /*
1428 * Set the periph2_clk_sel to the top mux so that
1429 * mmdc_ch1 is from pll3_sw_clk.
1430 */
1431 reg = readl(&mxc_ccm->cbcdr);
1432 reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1433 writel(reg, &mxc_ccm->cbcdr);
1434
1435 /* Wait for the clock switch */
1436 while (readl(&mxc_ccm->cdhipr))
1437 ;
1438 /* Disable pll3_sw_clk by selecting bypass clock source */
1439 reg = readl(&mxc_ccm->ccsr);
1440 reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1441 writel(reg, &mxc_ccm->ccsr);
1442
1443 /* Set the ldb_di0_clk and ldb_di1_clk to 111b */
1444 reg = readl(&mxc_ccm->cs2cdr);
1445 reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1446 | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1447 writel(reg, &mxc_ccm->cs2cdr);
1448
1449 /* Set the ldb_di0_clk and ldb_di1_clk to 100b */
1450 reg = readl(&mxc_ccm->cs2cdr);
1451 reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1452 | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1453 reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1454 | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1455 writel(reg, &mxc_ccm->cs2cdr);
1456
1457 /* Set the ldb_di0_clk and ldb_di1_clk to desired source */
1458 reg = readl(&mxc_ccm->cs2cdr);
1459 reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1460 | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1461 reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1462 | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1463 writel(reg, &mxc_ccm->cs2cdr);
1464
1465 /* Unbypass pll3_sw_clk */
1466 reg = readl(&mxc_ccm->ccsr);
1467 reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1468 writel(reg, &mxc_ccm->ccsr);
1469
1470 /*
1471 * Set the periph2_clk_sel back to the bottom mux so that
1472 * mmdc_ch1 is from its original parent.
1473 */
1474 reg = readl(&mxc_ccm->cbcdr);
1475 reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1476 writel(reg, &mxc_ccm->cbcdr);
1477
1478 /* Wait for the clock switch */
1479 while (readl(&mxc_ccm->cdhipr))
1480 ;
1481 /* Clear MMDC_CH1 mask bit */
1482 reg = readl(&mxc_ccm->ccdr);
1483 reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1484 writel(reg, &mxc_ccm->ccdr);
1485
1486 enable_ldb_di_clock_sources();
1487 }
1488 #endif
1489
1490 /***************************************************/
1491
1492 U_BOOT_CMD(
1493 clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
1494 "display clocks",
1495 ""
1496 );
1497 #endif
1498