• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
4  */
5 
6 #include <common.h>
7 #include <ahci.h>
8 #include <cpu_func.h>
9 #include <linux/mbus.h>
10 #include <asm/io.h>
11 #include <asm/pl310.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/soc.h>
14 #include <sdhci.h>
15 
16 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
17 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
18 
19 static struct mbus_win windows[] = {
20 	/* SPI */
21 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
22 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
23 
24 	/* NOR */
25 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
26 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
27 
28 #ifdef CONFIG_ARMADA_MSYS
29 	/* DFX */
30 	{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
31 #endif
32 };
33 
lowlevel_init(void)34 void lowlevel_init(void)
35 {
36 	/*
37 	 * Dummy implementation, we only need LOWLEVEL_INIT
38 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
39 	 */
40 }
41 
reset_cpu(unsigned long ignored)42 void reset_cpu(unsigned long ignored)
43 {
44 	struct mvebu_system_registers *reg =
45 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
46 
47 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
48 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
49 	while (1)
50 		;
51 }
52 
mvebu_soc_family(void)53 int mvebu_soc_family(void)
54 {
55 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
56 
57 	switch (devid) {
58 	case SOC_MV78230_ID:
59 	case SOC_MV78260_ID:
60 	case SOC_MV78460_ID:
61 		return MVEBU_SOC_AXP;
62 
63 	case SOC_88F6720_ID:
64 		return MVEBU_SOC_A375;
65 
66 	case SOC_88F6810_ID:
67 	case SOC_88F6820_ID:
68 	case SOC_88F6828_ID:
69 		return MVEBU_SOC_A38X;
70 
71 	case SOC_98DX3236_ID:
72 	case SOC_98DX3336_ID:
73 	case SOC_98DX4251_ID:
74 		return MVEBU_SOC_MSYS;
75 	}
76 
77 	return MVEBU_SOC_UNKNOWN;
78 }
79 
80 #if defined(CONFIG_DISPLAY_CPUINFO)
81 
82 #if defined(CONFIG_ARMADA_375)
83 /* SAR frequency values for Armada 375 */
84 static const struct sar_freq_modes sar_freq_tab[] = {
85 	{  0,  0x0,  266,  133,  266 },
86 	{  1,  0x0,  333,  167,  167 },
87 	{  2,  0x0,  333,  167,  222 },
88 	{  3,  0x0,  333,  167,  333 },
89 	{  4,  0x0,  400,  200,  200 },
90 	{  5,  0x0,  400,  200,  267 },
91 	{  6,  0x0,  400,  200,  400 },
92 	{  7,  0x0,  500,  250,  250 },
93 	{  8,  0x0,  500,  250,  334 },
94 	{  9,  0x0,  500,  250,  500 },
95 	{ 10,  0x0,  533,  267,  267 },
96 	{ 11,  0x0,  533,  267,  356 },
97 	{ 12,  0x0,  533,  267,  533 },
98 	{ 13,  0x0,  600,  300,  300 },
99 	{ 14,  0x0,  600,  300,  400 },
100 	{ 15,  0x0,  600,  300,  600 },
101 	{ 16,  0x0,  666,  333,  333 },
102 	{ 17,  0x0,  666,  333,  444 },
103 	{ 18,  0x0,  666,  333,  666 },
104 	{ 19,  0x0,  800,  400,  267 },
105 	{ 20,  0x0,  800,  400,  400 },
106 	{ 21,  0x0,  800,  400,  534 },
107 	{ 22,  0x0,  900,  450,  300 },
108 	{ 23,  0x0,  900,  450,  450 },
109 	{ 24,  0x0,  900,  450,  600 },
110 	{ 25,  0x0, 1000,  500,  500 },
111 	{ 26,  0x0, 1000,  500,  667 },
112 	{ 27,  0x0, 1000,  333,  500 },
113 	{ 28,  0x0,  400,  400,  400 },
114 	{ 29,  0x0, 1100,  550,  550 },
115 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
116 };
117 #elif defined(CONFIG_ARMADA_38X)
118 /* SAR frequency values for Armada 38x */
119 static const struct sar_freq_modes sar_freq_tab[] = {
120 	{  0x0,  0x0,  666,  333, 333 },
121 	{  0x2,  0x0,  800,  400, 400 },
122 	{  0x4,  0x0, 1066,  533, 533 },
123 	{  0x6,  0x0, 1200,  600, 600 },
124 	{  0x8,  0x0, 1332,  666, 666 },
125 	{  0xc,  0x0, 1600,  800, 800 },
126 	{ 0x10,  0x0, 1866,  933, 933 },
127 	{ 0x13,  0x0, 2000, 1000, 933 },
128 	{ 0xff, 0xff,    0,    0,   0 }	/* 0xff marks end of array */
129 };
130 #elif defined(CONFIG_ARMADA_MSYS)
131 static const struct sar_freq_modes sar_freq_tab[] = {
132 	{  0x0,	0x0,  400,  400, 400 },
133 	{  0x2, 0x0,  667,  333, 667 },
134 	{  0x3, 0x0,  800,  400, 800 },
135 	{  0x5, 0x0,  800,  400, 800 },
136 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
137 };
138 #else
139 /* SAR frequency values for Armada XP */
140 static const struct sar_freq_modes sar_freq_tab[] = {
141 	{  0xa,  0x5,  800, 400, 400 },
142 	{  0x1,  0x5, 1066, 533, 533 },
143 	{  0x2,  0x5, 1200, 600, 600 },
144 	{  0x2,  0x9, 1200, 600, 400 },
145 	{  0x3,  0x5, 1333, 667, 667 },
146 	{  0x4,  0x5, 1500, 750, 750 },
147 	{  0x4,  0x9, 1500, 750, 500 },
148 	{  0xb,  0x9, 1600, 800, 533 },
149 	{  0xb,  0xa, 1600, 800, 640 },
150 	{  0xb,  0x5, 1600, 800, 800 },
151 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
152 };
153 #endif
154 
get_sar_freq(struct sar_freq_modes * sar_freq)155 void get_sar_freq(struct sar_freq_modes *sar_freq)
156 {
157 	u32 val;
158 	u32 freq;
159 	int i;
160 
161 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
162 	val = readl(CONFIG_SAR2_REG);	/* SAR - Sample At Reset */
163 #else
164 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
165 #endif
166 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
167 #if defined(SAR2_CPU_FREQ_MASK)
168 	/*
169 	 * Shift CPU0 clock frequency select bit from SAR2 register
170 	 * into correct position
171 	 */
172 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
173 		 >> SAR2_CPU_FREQ_OFFS) << 3;
174 #endif
175 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
176 		if (sar_freq_tab[i].val == freq) {
177 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
178 			*sar_freq = sar_freq_tab[i];
179 			return;
180 #else
181 			int k;
182 			u8 ffc;
183 
184 			ffc = (val & SAR_FFC_FREQ_MASK) >>
185 				SAR_FFC_FREQ_OFFS;
186 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
187 				if (sar_freq_tab[k].ffc == ffc) {
188 					*sar_freq = sar_freq_tab[k];
189 					return;
190 				}
191 			}
192 			i = k;
193 #endif
194 		}
195 	}
196 
197 	/* SAR value not found, return 0 for frequencies */
198 	*sar_freq = sar_freq_tab[i - 1];
199 }
200 
print_cpuinfo(void)201 int print_cpuinfo(void)
202 {
203 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
204 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
205 	struct sar_freq_modes sar_freq;
206 
207 	puts("SoC:   ");
208 
209 	switch (devid) {
210 	case SOC_MV78230_ID:
211 		puts("MV78230-");
212 		break;
213 	case SOC_MV78260_ID:
214 		puts("MV78260-");
215 		break;
216 	case SOC_MV78460_ID:
217 		puts("MV78460-");
218 		break;
219 	case SOC_88F6720_ID:
220 		puts("MV88F6720-");
221 		break;
222 	case SOC_88F6810_ID:
223 		puts("MV88F6810-");
224 		break;
225 	case SOC_88F6820_ID:
226 		puts("MV88F6820-");
227 		break;
228 	case SOC_88F6828_ID:
229 		puts("MV88F6828-");
230 		break;
231 	case SOC_98DX3236_ID:
232 		puts("98DX3236-");
233 		break;
234 	case SOC_98DX3336_ID:
235 		puts("98DX3336-");
236 		break;
237 	case SOC_98DX4251_ID:
238 		puts("98DX4251-");
239 		break;
240 	default:
241 		puts("Unknown-");
242 		break;
243 	}
244 
245 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
246 		switch (revid) {
247 		case 1:
248 			puts("A0");
249 			break;
250 		case 2:
251 			puts("B0");
252 			break;
253 		default:
254 			printf("?? (%x)", revid);
255 			break;
256 		}
257 	}
258 
259 	if (mvebu_soc_family() == MVEBU_SOC_A375) {
260 		switch (revid) {
261 		case MV_88F67XX_A0_ID:
262 			puts("A0");
263 			break;
264 		default:
265 			printf("?? (%x)", revid);
266 			break;
267 		}
268 	}
269 
270 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
271 		switch (revid) {
272 		case MV_88F68XX_Z1_ID:
273 			puts("Z1");
274 			break;
275 		case MV_88F68XX_A0_ID:
276 			puts("A0");
277 			break;
278 		case MV_88F68XX_B0_ID:
279 			puts("B0");
280 			break;
281 		default:
282 			printf("?? (%x)", revid);
283 			break;
284 		}
285 	}
286 
287 	if (mvebu_soc_family() == MVEBU_SOC_MSYS) {
288 		switch (revid) {
289 		case 3:
290 			puts("A0");
291 			break;
292 		case 4:
293 			puts("A1");
294 			break;
295 		default:
296 			printf("?? (%x)", revid);
297 			break;
298 		}
299 	}
300 
301 	get_sar_freq(&sar_freq);
302 	printf(" at %d MHz\n", sar_freq.p_clk);
303 
304 	return 0;
305 }
306 #endif /* CONFIG_DISPLAY_CPUINFO */
307 
308 /*
309  * This function initialize Controller DRAM Fastpath windows.
310  * It takes the CS size information from the 0x1500 scratch registers
311  * and sets the correct windows sizes and base addresses accordingly.
312  *
313  * These values are set in the scratch registers by the Marvell
314  * DDR3 training code, which is executed by the SPL before the
315  * main payload (U-Boot) is executed.
316  */
update_sdram_window_sizes(void)317 static void update_sdram_window_sizes(void)
318 {
319 	u64 base = 0;
320 	u32 size, temp;
321 	int i;
322 
323 	for (i = 0; i < SDRAM_MAX_CS; i++) {
324 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
325 		if (size != 0) {
326 			size |= ~(SDRAM_ADDR_MASK);
327 
328 			/* Set Base Address */
329 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
330 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
331 
332 			/*
333 			 * Check if out of max window size and resize
334 			 * the window
335 			 */
336 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
337 				~(SDRAM_ADDR_MASK)) | 1;
338 			temp |= (size & SDRAM_ADDR_MASK);
339 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
340 
341 			base += ((u64)size + 1);
342 		} else {
343 			/*
344 			 * Disable window if not used, otherwise this
345 			 * leads to overlapping enabled windows with
346 			 * pretty strange results
347 			 */
348 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
349 		}
350 	}
351 }
352 
mmu_disable(void)353 void mmu_disable(void)
354 {
355 	asm volatile(
356 		"mrc p15, 0, r0, c1, c0, 0\n"
357 		"bic r0, #1\n"
358 		"mcr p15, 0, r0, c1, c0, 0\n");
359 }
360 
361 #ifdef CONFIG_ARCH_CPU_INIT
set_cbar(u32 addr)362 static void set_cbar(u32 addr)
363 {
364 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
365 }
366 
367 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
368 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
369 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
370 					 (((addr) & 0xF) << 6))
371 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
372 					 (((reg) & 0xF) << 2))
373 
setup_usb_phys(void)374 static void setup_usb_phys(void)
375 {
376 	int dev;
377 
378 	/*
379 	 * USB PLL init
380 	 */
381 
382 	/* Setup PLL frequency */
383 	/* USB REF frequency = 25 MHz */
384 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
385 
386 	/* Power up PLL and PHY channel */
387 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
388 
389 	/* Assert VCOCAL_START */
390 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
391 
392 	mdelay(1);
393 
394 	/*
395 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
396 	 */
397 
398 	for (dev = 0; dev < 3; dev++) {
399 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
400 
401 		/* Assert REG_RCAL_START in channel REG 1 */
402 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
403 		udelay(40);
404 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
405 	}
406 }
407 
408 /*
409  * This function is not called from the SPL U-Boot version
410  */
arch_cpu_init(void)411 int arch_cpu_init(void)
412 {
413 	struct pl310_regs *const pl310 =
414 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
415 
416 	/*
417 	 * Only with disabled MMU its possible to switch the base
418 	 * register address on Armada 38x. Without this the SDRAM
419 	 * located at >= 0x4000.0000 is also not accessible, as its
420 	 * still locked to cache.
421 	 */
422 	mmu_disable();
423 
424 	/* Linux expects the internal registers to be at 0xf1000000 */
425 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
426 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
427 
428 	/*
429 	 * From this stage on, the SoC detection is working. As we have
430 	 * configured the internal register base to the value used
431 	 * in the macros / defines in the U-Boot header (soc.h).
432 	 */
433 
434 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
435 		/*
436 		 * To fully release / unlock this area from cache, we need
437 		 * to flush all caches and disable the L2 cache.
438 		 */
439 		icache_disable();
440 		dcache_disable();
441 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
442 	}
443 
444 	/*
445 	 * We need to call mvebu_mbus_probe() before calling
446 	 * update_sdram_window_sizes() as it disables all previously
447 	 * configured mbus windows and then configures them as
448 	 * required for U-Boot. Calling update_sdram_window_sizes()
449 	 * without this configuration will not work, as the internal
450 	 * registers can't be accessed reliably because of potenial
451 	 * double mapping.
452 	 * After updating the SDRAM access windows we need to call
453 	 * mvebu_mbus_probe() again, as this now correctly configures
454 	 * the SDRAM areas that are later used by the MVEBU drivers
455 	 * (e.g. USB, NETA).
456 	 */
457 
458 	/*
459 	 * First disable all windows
460 	 */
461 	mvebu_mbus_probe(NULL, 0);
462 
463 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
464 		/*
465 		 * Now the SDRAM access windows can be reconfigured using
466 		 * the information in the SDRAM scratch pad registers
467 		 */
468 		update_sdram_window_sizes();
469 	}
470 
471 	/*
472 	 * Finally the mbus windows can be configured with the
473 	 * updated SDRAM sizes
474 	 */
475 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
476 
477 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
478 		/* Enable GBE0, GBE1, LCD and NFC PUP */
479 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
480 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
481 				NAND_PUP_EN | SPI_PUP_EN);
482 
483 		/* Configure USB PLL and PHYs on AXP */
484 		setup_usb_phys();
485 	}
486 
487 	/* Enable NAND and NAND arbiter */
488 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
489 
490 	/* Disable MBUS error propagation */
491 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
492 
493 	return 0;
494 }
495 #endif /* CONFIG_ARCH_CPU_INIT */
496 
mvebu_get_nand_clock(void)497 u32 mvebu_get_nand_clock(void)
498 {
499 	u32 reg;
500 
501 	if (mvebu_soc_family() == MVEBU_SOC_A38X)
502 		reg = MVEBU_DFX_DIV_CLK_CTRL(1);
503 	else if (mvebu_soc_family() == MVEBU_SOC_MSYS)
504 		reg = MVEBU_DFX_DIV_CLK_CTRL(8);
505 	else
506 		reg = MVEBU_CORE_DIV_CLK_CTRL(1);
507 
508 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
509 		((readl(reg) &
510 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
511 }
512 
513 /*
514  * SOC specific misc init
515  */
516 #if defined(CONFIG_ARCH_MISC_INIT)
arch_misc_init(void)517 int arch_misc_init(void)
518 {
519 	/* Nothing yet, perhaps we need something here later */
520 	return 0;
521 }
522 #endif /* CONFIG_ARCH_MISC_INIT */
523 
524 #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
board_mmc_init(bd_t * bis)525 int board_mmc_init(bd_t *bis)
526 {
527 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
528 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
529 
530 	return 0;
531 }
532 #endif
533 
534 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
535 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
536 
537 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
538 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
539 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
540 
ahci_mvebu_mbus_config(void __iomem * base)541 static void ahci_mvebu_mbus_config(void __iomem *base)
542 {
543 	const struct mbus_dram_target_info *dram;
544 	int i;
545 
546 	/* mbus is not initialized in SPL; keep the ROM settings */
547 	if (IS_ENABLED(CONFIG_SPL_BUILD))
548 		return;
549 
550 	dram = mvebu_mbus_dram_info();
551 
552 	for (i = 0; i < 4; i++) {
553 		writel(0, base + AHCI_WINDOW_CTRL(i));
554 		writel(0, base + AHCI_WINDOW_BASE(i));
555 		writel(0, base + AHCI_WINDOW_SIZE(i));
556 	}
557 
558 	for (i = 0; i < dram->num_cs; i++) {
559 		const struct mbus_dram_window *cs = dram->cs + i;
560 
561 		writel((cs->mbus_attr << 8) |
562 		       (dram->mbus_dram_target_id << 4) | 1,
563 		       base + AHCI_WINDOW_CTRL(i));
564 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
565 		writel(((cs->size - 1) & 0xffff0000),
566 		       base + AHCI_WINDOW_SIZE(i));
567 	}
568 }
569 
ahci_mvebu_regret_option(void __iomem * base)570 static void ahci_mvebu_regret_option(void __iomem *base)
571 {
572 	/*
573 	 * Enable the regret bit to allow the SATA unit to regret a
574 	 * request that didn't receive an acknowlegde and avoid a
575 	 * deadlock
576 	 */
577 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
578 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
579 }
580 
board_ahci_enable(void)581 int board_ahci_enable(void)
582 {
583 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
584 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
585 
586 	return 0;
587 }
588 
589 #ifdef CONFIG_SCSI_AHCI_PLAT
scsi_init(void)590 void scsi_init(void)
591 {
592 	printf("MVEBU SATA INIT\n");
593 	board_ahci_enable();
594 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
595 }
596 #endif
597 
598 #ifdef CONFIG_USB_XHCI_MVEBU
599 #define USB3_MAX_WINDOWS        4
600 #define USB3_WIN_CTRL(w)        (0x0 + ((w) * 8))
601 #define USB3_WIN_BASE(w)        (0x4 + ((w) * 8))
602 
xhci_mvebu_mbus_config(void __iomem * base,const struct mbus_dram_target_info * dram)603 static void xhci_mvebu_mbus_config(void __iomem *base,
604 			const struct mbus_dram_target_info *dram)
605 {
606 	int i;
607 
608 	for (i = 0; i < USB3_MAX_WINDOWS; i++) {
609 		writel(0, base + USB3_WIN_CTRL(i));
610 		writel(0, base + USB3_WIN_BASE(i));
611 	}
612 
613 	for (i = 0; i < dram->num_cs; i++) {
614 		const struct mbus_dram_window *cs = dram->cs + i;
615 
616 		/* Write size, attributes and target id to control register */
617 		writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
618 			(dram->mbus_dram_target_id << 4) | 1,
619 			base + USB3_WIN_CTRL(i));
620 
621 		/* Write base address to base register */
622 		writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
623 	}
624 }
625 
board_xhci_enable(fdt_addr_t base)626 int board_xhci_enable(fdt_addr_t base)
627 {
628 	const struct mbus_dram_target_info *dram;
629 
630 	printf("MVEBU XHCI INIT controller @ 0x%lx\n", base);
631 
632 	dram = mvebu_mbus_dram_info();
633 	xhci_mvebu_mbus_config((void __iomem *)base, dram);
634 
635 	return 0;
636 }
637 #endif
638 
enable_caches(void)639 void enable_caches(void)
640 {
641 	/* Avoid problem with e.g. neta ethernet driver */
642 	invalidate_dcache_all();
643 
644 	/*
645 	 * Armada 375 still has some problems with d-cache enabled in the
646 	 * ethernet driver (mvpp2). So lets keep the d-cache disabled
647 	 * until this is solved.
648 	 */
649 	if (mvebu_soc_family() != MVEBU_SOC_A375) {
650 		/* Enable D-cache. I-cache is already enabled in start.S */
651 		dcache_enable();
652 	}
653 }
654 
v7_outer_cache_enable(void)655 void v7_outer_cache_enable(void)
656 {
657 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
658 		struct pl310_regs *const pl310 =
659 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
660 		u32 u;
661 
662 		/* The L2 cache is already disabled at this point */
663 
664 		/*
665 		 * For Aurora cache in no outer mode, enable via the CP15
666 		 * coprocessor broadcasting of cache commands to L2.
667 		 */
668 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
669 		u |= BIT(8);		/* Set the FW bit */
670 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
671 
672 		isb();
673 
674 		/* Enable the L2 cache */
675 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
676 	}
677 }
678 
v7_outer_cache_disable(void)679 void v7_outer_cache_disable(void)
680 {
681 	struct pl310_regs *const pl310 =
682 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
683 
684 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
685 }
686