• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2008-2011
4  * Graeme Russ, <graeme.russ@gmail.com>
5  *
6  * (C) Copyright 2002
7  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
8  *
9  * (C) Copyright 2002
10  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
11  * Marius Groeger <mgroeger@sysgo.de>
12  *
13  * (C) Copyright 2002
14  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
15  * Alex Zuepke <azu@sysgo.de>
16  *
17  * Part of this file is adapted from coreboot
18  * src/arch/x86/lib/cpu.c
19  */
20 
21 #include <common.h>
22 #include <cpu_func.h>
23 #include <malloc.h>
24 #include <asm/control_regs.h>
25 #include <asm/cpu.h>
26 #include <asm/mp.h>
27 #include <asm/msr.h>
28 #include <asm/mtrr.h>
29 #include <asm/processor-flags.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 /*
34  * Constructor for a conventional segment GDT (or LDT) entry
35  * This is a macro so it can be used in initialisers
36  */
37 #define GDT_ENTRY(flags, base, limit)			\
38 	((((base)  & 0xff000000ULL) << (56-24)) |	\
39 	 (((flags) & 0x0000f0ffULL) << 40) |		\
40 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
41 	 (((base)  & 0x00ffffffULL) << 16) |		\
42 	 (((limit) & 0x0000ffffULL)))
43 
44 struct gdt_ptr {
45 	u16 len;
46 	u32 ptr;
47 } __packed;
48 
49 struct cpu_device_id {
50 	unsigned vendor;
51 	unsigned device;
52 };
53 
54 struct cpuinfo_x86 {
55 	uint8_t x86;            /* CPU family */
56 	uint8_t x86_vendor;     /* CPU vendor */
57 	uint8_t x86_model;
58 	uint8_t x86_mask;
59 };
60 
61 /*
62  * List of cpu vendor strings along with their normalized
63  * id values.
64  */
65 static const struct {
66 	int vendor;
67 	const char *name;
68 } x86_vendors[] = {
69 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
70 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
71 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
72 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
73 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
74 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
75 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
76 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
77 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
78 	{ X86_VENDOR_NSC,       "Geode by NSC", },
79 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
80 };
81 
load_ds(u32 segment)82 static void load_ds(u32 segment)
83 {
84 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
85 }
86 
load_es(u32 segment)87 static void load_es(u32 segment)
88 {
89 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
90 }
91 
load_fs(u32 segment)92 static void load_fs(u32 segment)
93 {
94 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
95 }
96 
load_gs(u32 segment)97 static void load_gs(u32 segment)
98 {
99 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
100 }
101 
load_ss(u32 segment)102 static void load_ss(u32 segment)
103 {
104 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
105 }
106 
load_gdt(const u64 * boot_gdt,u16 num_entries)107 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
108 {
109 	struct gdt_ptr gdt;
110 
111 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
112 	gdt.ptr = (ulong)boot_gdt;
113 
114 	asm volatile("lgdtl %0\n" : : "m" (gdt));
115 }
116 
arch_setup_gd(gd_t * new_gd)117 void arch_setup_gd(gd_t *new_gd)
118 {
119 	u64 *gdt_addr;
120 
121 	gdt_addr = new_gd->arch.gdt;
122 
123 	/*
124 	 * CS: code, read/execute, 4 GB, base 0
125 	 *
126 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
127 	 */
128 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
129 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
130 
131 	/* DS: data, read/write, 4 GB, base 0 */
132 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
133 
134 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
135 	new_gd->arch.gd_addr = new_gd;
136 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
137 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
138 
139 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
140 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
141 
142 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
143 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
144 
145 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
146 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
147 
148 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
149 	load_ds(X86_GDT_ENTRY_32BIT_DS);
150 	load_es(X86_GDT_ENTRY_32BIT_DS);
151 	load_gs(X86_GDT_ENTRY_32BIT_DS);
152 	load_ss(X86_GDT_ENTRY_32BIT_DS);
153 	load_fs(X86_GDT_ENTRY_32BIT_FS);
154 }
155 
156 #ifdef CONFIG_HAVE_FSP
157 /*
158  * Setup FSP execution environment GDT
159  *
160  * Per Intel FSP external architecture specification, before calling any FSP
161  * APIs, we need make sure the system is in flat 32-bit mode and both the code
162  * and data selectors should have full 4GB access range. Here we reuse the one
163  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
164  */
setup_fsp_gdt(void)165 void setup_fsp_gdt(void)
166 {
167 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
168 	load_ds(X86_GDT_ENTRY_32BIT_DS);
169 	load_ss(X86_GDT_ENTRY_32BIT_DS);
170 	load_es(X86_GDT_ENTRY_32BIT_DS);
171 	load_fs(X86_GDT_ENTRY_32BIT_DS);
172 	load_gs(X86_GDT_ENTRY_32BIT_DS);
173 }
174 #endif
175 
176 /*
177  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
178  * by the fact that they preserve the flags across the division of 5/2.
179  * PII and PPro exhibit this behavior too, but they have cpuid available.
180  */
181 
182 /*
183  * Perform the Cyrix 5/2 test. A Cyrix won't change
184  * the flags, while other 486 chips will.
185  */
test_cyrix_52div(void)186 static inline int test_cyrix_52div(void)
187 {
188 	unsigned int test;
189 
190 	__asm__ __volatile__(
191 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
192 	     "div %b2\n\t"	/* divide 5 by 2 */
193 	     "lahf"		/* store flags into %ah */
194 	     : "=a" (test)
195 	     : "0" (5), "q" (2)
196 	     : "cc");
197 
198 	/* AH is 0x02 on Cyrix after the divide.. */
199 	return (unsigned char) (test >> 8) == 0x02;
200 }
201 
202 /*
203  *	Detect a NexGen CPU running without BIOS hypercode new enough
204  *	to have CPUID. (Thanks to Herbert Oppmann)
205  */
deep_magic_nexgen_probe(void)206 static int deep_magic_nexgen_probe(void)
207 {
208 	int ret;
209 
210 	__asm__ __volatile__ (
211 		"	movw	$0x5555, %%ax\n"
212 		"	xorw	%%dx,%%dx\n"
213 		"	movw	$2, %%cx\n"
214 		"	divw	%%cx\n"
215 		"	movl	$0, %%eax\n"
216 		"	jnz	1f\n"
217 		"	movl	$1, %%eax\n"
218 		"1:\n"
219 		: "=a" (ret) : : "cx", "dx");
220 	return  ret;
221 }
222 
has_cpuid(void)223 static bool has_cpuid(void)
224 {
225 	return flag_is_changeable_p(X86_EFLAGS_ID);
226 }
227 
has_mtrr(void)228 static bool has_mtrr(void)
229 {
230 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
231 }
232 
build_vendor_name(char * vendor_name)233 static int build_vendor_name(char *vendor_name)
234 {
235 	struct cpuid_result result;
236 	result = cpuid(0x00000000);
237 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
238 
239 	name_as_ints[0] = result.ebx;
240 	name_as_ints[1] = result.edx;
241 	name_as_ints[2] = result.ecx;
242 
243 	return result.eax;
244 }
245 
identify_cpu(struct cpu_device_id * cpu)246 static void identify_cpu(struct cpu_device_id *cpu)
247 {
248 	char vendor_name[16];
249 	int i;
250 
251 	vendor_name[0] = '\0'; /* Unset */
252 	cpu->device = 0; /* fix gcc 4.4.4 warning */
253 
254 	/* Find the id and vendor_name */
255 	if (!has_cpuid()) {
256 		/* Its a 486 if we can modify the AC flag */
257 		if (flag_is_changeable_p(X86_EFLAGS_AC))
258 			cpu->device = 0x00000400; /* 486 */
259 		else
260 			cpu->device = 0x00000300; /* 386 */
261 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
262 			memcpy(vendor_name, "CyrixInstead", 13);
263 			/* If we ever care we can enable cpuid here */
264 		}
265 		/* Detect NexGen with old hypercode */
266 		else if (deep_magic_nexgen_probe())
267 			memcpy(vendor_name, "NexGenDriven", 13);
268 	}
269 	if (has_cpuid()) {
270 		int  cpuid_level;
271 
272 		cpuid_level = build_vendor_name(vendor_name);
273 		vendor_name[12] = '\0';
274 
275 		/* Intel-defined flags: level 0x00000001 */
276 		if (cpuid_level >= 0x00000001) {
277 			cpu->device = cpuid_eax(0x00000001);
278 		} else {
279 			/* Have CPUID level 0 only unheard of */
280 			cpu->device = 0x00000400;
281 		}
282 	}
283 	cpu->vendor = X86_VENDOR_UNKNOWN;
284 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
285 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
286 			cpu->vendor = x86_vendors[i].vendor;
287 			break;
288 		}
289 	}
290 }
291 
get_fms(struct cpuinfo_x86 * c,uint32_t tfms)292 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
293 {
294 	c->x86 = (tfms >> 8) & 0xf;
295 	c->x86_model = (tfms >> 4) & 0xf;
296 	c->x86_mask = tfms & 0xf;
297 	if (c->x86 == 0xf)
298 		c->x86 += (tfms >> 20) & 0xff;
299 	if (c->x86 >= 0x6)
300 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
301 }
302 
cpu_get_family_model(void)303 u32 cpu_get_family_model(void)
304 {
305 	return gd->arch.x86_device & 0x0fff0ff0;
306 }
307 
cpu_get_stepping(void)308 u32 cpu_get_stepping(void)
309 {
310 	return gd->arch.x86_mask;
311 }
312 
313 /* initialise FPU, reset EM, set MP and NE */
setup_cpu_features(void)314 static void setup_cpu_features(void)
315 {
316 	const u32 em_rst = ~X86_CR0_EM;
317 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
318 
319 	asm ("fninit\n" \
320 	"movl %%cr0, %%eax\n" \
321 	"andl %0, %%eax\n" \
322 	"orl  %1, %%eax\n" \
323 	"movl %%eax, %%cr0\n" \
324 	: : "i" (em_rst), "i" (mp_ne_set) : "eax");
325 }
326 
setup_identity(void)327 static void setup_identity(void)
328 {
329 	/* identify CPU via cpuid and store the decoded info into gd->arch */
330 	if (has_cpuid()) {
331 		struct cpu_device_id cpu;
332 		struct cpuinfo_x86 c;
333 
334 		identify_cpu(&cpu);
335 		get_fms(&c, cpu.device);
336 		gd->arch.x86 = c.x86;
337 		gd->arch.x86_vendor = cpu.vendor;
338 		gd->arch.x86_model = c.x86_model;
339 		gd->arch.x86_mask = c.x86_mask;
340 		gd->arch.x86_device = cpu.device;
341 
342 		gd->arch.has_mtrr = has_mtrr();
343 	}
344 }
345 
346 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
setup_pci_ram_top(void)347 static void setup_pci_ram_top(void)
348 {
349 	gd->pci_ram_top = 0x80000000U;
350 }
351 
setup_mtrr(void)352 static void setup_mtrr(void)
353 {
354 	u64 mtrr_cap;
355 
356 	/* Configure fixed range MTRRs for some legacy regions */
357 	if (!gd->arch.has_mtrr)
358 		return;
359 
360 	mtrr_cap = native_read_msr(MTRR_CAP_MSR);
361 	if (mtrr_cap & MTRR_CAP_FIX) {
362 		/* Mark the VGA RAM area as uncacheable */
363 		native_write_msr(MTRR_FIX_16K_A0000_MSR,
364 				 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
365 				 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
366 
367 		/*
368 		 * Mark the PCI ROM area as cacheable to improve ROM
369 		 * execution performance.
370 		 */
371 		native_write_msr(MTRR_FIX_4K_C0000_MSR,
372 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
373 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
374 		native_write_msr(MTRR_FIX_4K_C8000_MSR,
375 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
376 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
377 		native_write_msr(MTRR_FIX_4K_D0000_MSR,
378 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
379 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
380 		native_write_msr(MTRR_FIX_4K_D8000_MSR,
381 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
382 				 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
383 
384 		/* Enable the fixed range MTRRs */
385 		msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
386 	}
387 }
388 
x86_cpu_init_tpl(void)389 int x86_cpu_init_tpl(void)
390 {
391 	setup_cpu_features();
392 	setup_identity();
393 
394 	return 0;
395 }
396 
x86_cpu_init_f(void)397 int x86_cpu_init_f(void)
398 {
399 	if (ll_boot_init())
400 		setup_cpu_features();
401 	setup_identity();
402 	setup_mtrr();
403 	setup_pci_ram_top();
404 
405 	/* Set up the i8254 timer if required */
406 	if (IS_ENABLED(CONFIG_I8254_TIMER))
407 		i8254_init();
408 
409 	return 0;
410 }
411 
x86_cpu_reinit_f(void)412 int x86_cpu_reinit_f(void)
413 {
414 	setup_identity();
415 	setup_pci_ram_top();
416 
417 	return 0;
418 }
419 
x86_enable_caches(void)420 void x86_enable_caches(void)
421 {
422 	unsigned long cr0;
423 
424 	cr0 = read_cr0();
425 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
426 	write_cr0(cr0);
427 	wbinvd();
428 }
429 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
430 
x86_disable_caches(void)431 void x86_disable_caches(void)
432 {
433 	unsigned long cr0;
434 
435 	cr0 = read_cr0();
436 	cr0 |= X86_CR0_NW | X86_CR0_CD;
437 	wbinvd();
438 	write_cr0(cr0);
439 	wbinvd();
440 }
441 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
442 
dcache_status(void)443 int dcache_status(void)
444 {
445 	return !(read_cr0() & X86_CR0_CD);
446 }
447 
cpu_enable_paging_pae(ulong cr3)448 void cpu_enable_paging_pae(ulong cr3)
449 {
450 	__asm__ __volatile__(
451 		/* Load the page table address */
452 		"movl	%0, %%cr3\n"
453 		/* Enable pae */
454 		"movl	%%cr4, %%eax\n"
455 		"orl	$0x00000020, %%eax\n"
456 		"movl	%%eax, %%cr4\n"
457 		/* Enable paging */
458 		"movl	%%cr0, %%eax\n"
459 		"orl	$0x80000000, %%eax\n"
460 		"movl	%%eax, %%cr0\n"
461 		:
462 		: "r" (cr3)
463 		: "eax");
464 }
465 
cpu_disable_paging_pae(void)466 void cpu_disable_paging_pae(void)
467 {
468 	/* Turn off paging */
469 	__asm__ __volatile__ (
470 		/* Disable paging */
471 		"movl	%%cr0, %%eax\n"
472 		"andl	$0x7fffffff, %%eax\n"
473 		"movl	%%eax, %%cr0\n"
474 		/* Disable pae */
475 		"movl	%%cr4, %%eax\n"
476 		"andl	$0xffffffdf, %%eax\n"
477 		"movl	%%eax, %%cr4\n"
478 		:
479 		:
480 		: "eax");
481 }
482 
can_detect_long_mode(void)483 static bool can_detect_long_mode(void)
484 {
485 	return cpuid_eax(0x80000000) > 0x80000000UL;
486 }
487 
has_long_mode(void)488 static bool has_long_mode(void)
489 {
490 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
491 }
492 
cpu_has_64bit(void)493 int cpu_has_64bit(void)
494 {
495 	return has_cpuid() && can_detect_long_mode() &&
496 		has_long_mode();
497 }
498 
499 #define PAGETABLE_BASE		0x80000
500 #define PAGETABLE_SIZE		(6 * 4096)
501 
502 /**
503  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
504  *
505  * @pgtable: Pointer to a 24iKB block of memory
506  */
build_pagetable(uint32_t * pgtable)507 static void build_pagetable(uint32_t *pgtable)
508 {
509 	uint i;
510 
511 	memset(pgtable, '\0', PAGETABLE_SIZE);
512 
513 	/* Level 4 needs a single entry */
514 	pgtable[0] = (ulong)&pgtable[1024] + 7;
515 
516 	/* Level 3 has one 64-bit entry for each GiB of memory */
517 	for (i = 0; i < 4; i++)
518 		pgtable[1024 + i * 2] = (ulong)&pgtable[2048] + 0x1000 * i + 7;
519 
520 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
521 	for (i = 0; i < 2048; i++)
522 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
523 }
524 
cpu_jump_to_64bit(ulong setup_base,ulong target)525 int cpu_jump_to_64bit(ulong setup_base, ulong target)
526 {
527 	uint32_t *pgtable;
528 
529 	pgtable = memalign(4096, PAGETABLE_SIZE);
530 	if (!pgtable)
531 		return -ENOMEM;
532 
533 	build_pagetable(pgtable);
534 	cpu_call64((ulong)pgtable, setup_base, target);
535 	free(pgtable);
536 
537 	return -EFAULT;
538 }
539 
540 /*
541  * Jump from SPL to U-Boot
542  *
543  * This function is work-in-progress with many issues to resolve.
544  *
545  * It works by setting up several regions:
546  *   ptr      - a place to put the code that jumps into 64-bit mode
547  *   gdt      - a place to put the global descriptor table
548  *   pgtable  - a place to put the page tables
549  *
550  * The cpu_call64() code is copied from ROM and then manually patched so that
551  * it has the correct GDT address in RAM. U-Boot is copied from ROM into
552  * its pre-relocation address. Then we jump to the cpu_call64() code in RAM,
553  * which changes to 64-bit mode and starts U-Boot.
554  */
cpu_jump_to_64bit_uboot(ulong target)555 int cpu_jump_to_64bit_uboot(ulong target)
556 {
557 	typedef void (*func_t)(ulong pgtable, ulong setup_base, ulong target);
558 	uint32_t *pgtable;
559 	func_t func;
560 	char *ptr;
561 
562 	pgtable = (uint32_t *)PAGETABLE_BASE;
563 
564 	build_pagetable(pgtable);
565 
566 	extern long call64_stub_size;
567 	ptr = malloc(call64_stub_size);
568 	if (!ptr) {
569 		printf("Failed to allocate the cpu_call64 stub\n");
570 		return -ENOMEM;
571 	}
572 	memcpy(ptr, cpu_call64, call64_stub_size);
573 
574 	func = (func_t)ptr;
575 
576 	/*
577 	 * Copy U-Boot from ROM
578 	 * TODO(sjg@chromium.org): Figure out a way to get the text base
579 	 * correctly here, and in the device-tree binman definition.
580 	 *
581 	 * Also consider using FIT so we get the correct image length and
582 	 * parameters.
583 	 */
584 	memcpy((char *)target, (char *)0xfff00000, 0x100000);
585 
586 	/* Jump to U-Boot */
587 	func((ulong)pgtable, 0, (ulong)target);
588 
589 	return -EFAULT;
590 }
591 
592 #ifdef CONFIG_SMP
enable_smis(struct udevice * cpu,void * unused)593 static int enable_smis(struct udevice *cpu, void *unused)
594 {
595 	return 0;
596 }
597 
598 static struct mp_flight_record mp_steps[] = {
599 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
600 	/* Wait for APs to finish initialization before proceeding */
601 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
602 };
603 
x86_mp_init(void)604 int x86_mp_init(void)
605 {
606 	struct mp_params mp_params;
607 
608 	mp_params.parallel_microcode_load = 0,
609 	mp_params.flight_plan = &mp_steps[0];
610 	mp_params.num_records = ARRAY_SIZE(mp_steps);
611 	mp_params.microcode_pointer = 0;
612 
613 	if (mp_init(&mp_params)) {
614 		printf("Warning: MP init failure\n");
615 		return -EIO;
616 	}
617 
618 	return 0;
619 }
620 #endif
621