1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2008-2011
4 * Graeme Russ, <graeme.russ@gmail.com>
5 *
6 * (C) Copyright 2002
7 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
8 *
9 * (C) Copyright 2002
10 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
11 * Marius Groeger <mgroeger@sysgo.de>
12 *
13 * (C) Copyright 2002
14 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
15 * Alex Zuepke <azu@sysgo.de>
16 *
17 * Part of this file is adapted from coreboot
18 * src/arch/x86/lib/cpu.c
19 */
20
21 #include <common.h>
22 #include <cpu_func.h>
23 #include <malloc.h>
24 #include <asm/control_regs.h>
25 #include <asm/cpu.h>
26 #include <asm/mp.h>
27 #include <asm/msr.h>
28 #include <asm/mtrr.h>
29 #include <asm/processor-flags.h>
30
31 DECLARE_GLOBAL_DATA_PTR;
32
33 /*
34 * Constructor for a conventional segment GDT (or LDT) entry
35 * This is a macro so it can be used in initialisers
36 */
37 #define GDT_ENTRY(flags, base, limit) \
38 ((((base) & 0xff000000ULL) << (56-24)) | \
39 (((flags) & 0x0000f0ffULL) << 40) | \
40 (((limit) & 0x000f0000ULL) << (48-16)) | \
41 (((base) & 0x00ffffffULL) << 16) | \
42 (((limit) & 0x0000ffffULL)))
43
44 struct gdt_ptr {
45 u16 len;
46 u32 ptr;
47 } __packed;
48
49 struct cpu_device_id {
50 unsigned vendor;
51 unsigned device;
52 };
53
54 struct cpuinfo_x86 {
55 uint8_t x86; /* CPU family */
56 uint8_t x86_vendor; /* CPU vendor */
57 uint8_t x86_model;
58 uint8_t x86_mask;
59 };
60
61 /*
62 * List of cpu vendor strings along with their normalized
63 * id values.
64 */
65 static const struct {
66 int vendor;
67 const char *name;
68 } x86_vendors[] = {
69 { X86_VENDOR_INTEL, "GenuineIntel", },
70 { X86_VENDOR_CYRIX, "CyrixInstead", },
71 { X86_VENDOR_AMD, "AuthenticAMD", },
72 { X86_VENDOR_UMC, "UMC UMC UMC ", },
73 { X86_VENDOR_NEXGEN, "NexGenDriven", },
74 { X86_VENDOR_CENTAUR, "CentaurHauls", },
75 { X86_VENDOR_RISE, "RiseRiseRise", },
76 { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
77 { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
78 { X86_VENDOR_NSC, "Geode by NSC", },
79 { X86_VENDOR_SIS, "SiS SiS SiS ", },
80 };
81
load_ds(u32 segment)82 static void load_ds(u32 segment)
83 {
84 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
85 }
86
load_es(u32 segment)87 static void load_es(u32 segment)
88 {
89 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
90 }
91
load_fs(u32 segment)92 static void load_fs(u32 segment)
93 {
94 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
95 }
96
load_gs(u32 segment)97 static void load_gs(u32 segment)
98 {
99 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
100 }
101
load_ss(u32 segment)102 static void load_ss(u32 segment)
103 {
104 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
105 }
106
load_gdt(const u64 * boot_gdt,u16 num_entries)107 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
108 {
109 struct gdt_ptr gdt;
110
111 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
112 gdt.ptr = (ulong)boot_gdt;
113
114 asm volatile("lgdtl %0\n" : : "m" (gdt));
115 }
116
arch_setup_gd(gd_t * new_gd)117 void arch_setup_gd(gd_t *new_gd)
118 {
119 u64 *gdt_addr;
120
121 gdt_addr = new_gd->arch.gdt;
122
123 /*
124 * CS: code, read/execute, 4 GB, base 0
125 *
126 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
127 */
128 gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
129 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
130
131 /* DS: data, read/write, 4 GB, base 0 */
132 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
133
134 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
135 new_gd->arch.gd_addr = new_gd;
136 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
137 (ulong)&new_gd->arch.gd_addr, 0xfffff);
138
139 /* 16-bit CS: code, read/execute, 64 kB, base 0 */
140 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
141
142 /* 16-bit DS: data, read/write, 64 kB, base 0 */
143 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
144
145 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
146 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
147
148 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
149 load_ds(X86_GDT_ENTRY_32BIT_DS);
150 load_es(X86_GDT_ENTRY_32BIT_DS);
151 load_gs(X86_GDT_ENTRY_32BIT_DS);
152 load_ss(X86_GDT_ENTRY_32BIT_DS);
153 load_fs(X86_GDT_ENTRY_32BIT_FS);
154 }
155
156 #ifdef CONFIG_HAVE_FSP
157 /*
158 * Setup FSP execution environment GDT
159 *
160 * Per Intel FSP external architecture specification, before calling any FSP
161 * APIs, we need make sure the system is in flat 32-bit mode and both the code
162 * and data selectors should have full 4GB access range. Here we reuse the one
163 * we used in arch/x86/cpu/start16.S, and reload the segement registers.
164 */
setup_fsp_gdt(void)165 void setup_fsp_gdt(void)
166 {
167 load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
168 load_ds(X86_GDT_ENTRY_32BIT_DS);
169 load_ss(X86_GDT_ENTRY_32BIT_DS);
170 load_es(X86_GDT_ENTRY_32BIT_DS);
171 load_fs(X86_GDT_ENTRY_32BIT_DS);
172 load_gs(X86_GDT_ENTRY_32BIT_DS);
173 }
174 #endif
175
176 /*
177 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
178 * by the fact that they preserve the flags across the division of 5/2.
179 * PII and PPro exhibit this behavior too, but they have cpuid available.
180 */
181
182 /*
183 * Perform the Cyrix 5/2 test. A Cyrix won't change
184 * the flags, while other 486 chips will.
185 */
test_cyrix_52div(void)186 static inline int test_cyrix_52div(void)
187 {
188 unsigned int test;
189
190 __asm__ __volatile__(
191 "sahf\n\t" /* clear flags (%eax = 0x0005) */
192 "div %b2\n\t" /* divide 5 by 2 */
193 "lahf" /* store flags into %ah */
194 : "=a" (test)
195 : "0" (5), "q" (2)
196 : "cc");
197
198 /* AH is 0x02 on Cyrix after the divide.. */
199 return (unsigned char) (test >> 8) == 0x02;
200 }
201
202 /*
203 * Detect a NexGen CPU running without BIOS hypercode new enough
204 * to have CPUID. (Thanks to Herbert Oppmann)
205 */
deep_magic_nexgen_probe(void)206 static int deep_magic_nexgen_probe(void)
207 {
208 int ret;
209
210 __asm__ __volatile__ (
211 " movw $0x5555, %%ax\n"
212 " xorw %%dx,%%dx\n"
213 " movw $2, %%cx\n"
214 " divw %%cx\n"
215 " movl $0, %%eax\n"
216 " jnz 1f\n"
217 " movl $1, %%eax\n"
218 "1:\n"
219 : "=a" (ret) : : "cx", "dx");
220 return ret;
221 }
222
has_cpuid(void)223 static bool has_cpuid(void)
224 {
225 return flag_is_changeable_p(X86_EFLAGS_ID);
226 }
227
has_mtrr(void)228 static bool has_mtrr(void)
229 {
230 return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
231 }
232
build_vendor_name(char * vendor_name)233 static int build_vendor_name(char *vendor_name)
234 {
235 struct cpuid_result result;
236 result = cpuid(0x00000000);
237 unsigned int *name_as_ints = (unsigned int *)vendor_name;
238
239 name_as_ints[0] = result.ebx;
240 name_as_ints[1] = result.edx;
241 name_as_ints[2] = result.ecx;
242
243 return result.eax;
244 }
245
identify_cpu(struct cpu_device_id * cpu)246 static void identify_cpu(struct cpu_device_id *cpu)
247 {
248 char vendor_name[16];
249 int i;
250
251 vendor_name[0] = '\0'; /* Unset */
252 cpu->device = 0; /* fix gcc 4.4.4 warning */
253
254 /* Find the id and vendor_name */
255 if (!has_cpuid()) {
256 /* Its a 486 if we can modify the AC flag */
257 if (flag_is_changeable_p(X86_EFLAGS_AC))
258 cpu->device = 0x00000400; /* 486 */
259 else
260 cpu->device = 0x00000300; /* 386 */
261 if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
262 memcpy(vendor_name, "CyrixInstead", 13);
263 /* If we ever care we can enable cpuid here */
264 }
265 /* Detect NexGen with old hypercode */
266 else if (deep_magic_nexgen_probe())
267 memcpy(vendor_name, "NexGenDriven", 13);
268 }
269 if (has_cpuid()) {
270 int cpuid_level;
271
272 cpuid_level = build_vendor_name(vendor_name);
273 vendor_name[12] = '\0';
274
275 /* Intel-defined flags: level 0x00000001 */
276 if (cpuid_level >= 0x00000001) {
277 cpu->device = cpuid_eax(0x00000001);
278 } else {
279 /* Have CPUID level 0 only unheard of */
280 cpu->device = 0x00000400;
281 }
282 }
283 cpu->vendor = X86_VENDOR_UNKNOWN;
284 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
285 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
286 cpu->vendor = x86_vendors[i].vendor;
287 break;
288 }
289 }
290 }
291
get_fms(struct cpuinfo_x86 * c,uint32_t tfms)292 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
293 {
294 c->x86 = (tfms >> 8) & 0xf;
295 c->x86_model = (tfms >> 4) & 0xf;
296 c->x86_mask = tfms & 0xf;
297 if (c->x86 == 0xf)
298 c->x86 += (tfms >> 20) & 0xff;
299 if (c->x86 >= 0x6)
300 c->x86_model += ((tfms >> 16) & 0xF) << 4;
301 }
302
cpu_get_family_model(void)303 u32 cpu_get_family_model(void)
304 {
305 return gd->arch.x86_device & 0x0fff0ff0;
306 }
307
cpu_get_stepping(void)308 u32 cpu_get_stepping(void)
309 {
310 return gd->arch.x86_mask;
311 }
312
313 /* initialise FPU, reset EM, set MP and NE */
setup_cpu_features(void)314 static void setup_cpu_features(void)
315 {
316 const u32 em_rst = ~X86_CR0_EM;
317 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
318
319 asm ("fninit\n" \
320 "movl %%cr0, %%eax\n" \
321 "andl %0, %%eax\n" \
322 "orl %1, %%eax\n" \
323 "movl %%eax, %%cr0\n" \
324 : : "i" (em_rst), "i" (mp_ne_set) : "eax");
325 }
326
setup_identity(void)327 static void setup_identity(void)
328 {
329 /* identify CPU via cpuid and store the decoded info into gd->arch */
330 if (has_cpuid()) {
331 struct cpu_device_id cpu;
332 struct cpuinfo_x86 c;
333
334 identify_cpu(&cpu);
335 get_fms(&c, cpu.device);
336 gd->arch.x86 = c.x86;
337 gd->arch.x86_vendor = cpu.vendor;
338 gd->arch.x86_model = c.x86_model;
339 gd->arch.x86_mask = c.x86_mask;
340 gd->arch.x86_device = cpu.device;
341
342 gd->arch.has_mtrr = has_mtrr();
343 }
344 }
345
346 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
setup_pci_ram_top(void)347 static void setup_pci_ram_top(void)
348 {
349 gd->pci_ram_top = 0x80000000U;
350 }
351
setup_mtrr(void)352 static void setup_mtrr(void)
353 {
354 u64 mtrr_cap;
355
356 /* Configure fixed range MTRRs for some legacy regions */
357 if (!gd->arch.has_mtrr)
358 return;
359
360 mtrr_cap = native_read_msr(MTRR_CAP_MSR);
361 if (mtrr_cap & MTRR_CAP_FIX) {
362 /* Mark the VGA RAM area as uncacheable */
363 native_write_msr(MTRR_FIX_16K_A0000_MSR,
364 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
365 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
366
367 /*
368 * Mark the PCI ROM area as cacheable to improve ROM
369 * execution performance.
370 */
371 native_write_msr(MTRR_FIX_4K_C0000_MSR,
372 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
373 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
374 native_write_msr(MTRR_FIX_4K_C8000_MSR,
375 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
376 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
377 native_write_msr(MTRR_FIX_4K_D0000_MSR,
378 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
379 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
380 native_write_msr(MTRR_FIX_4K_D8000_MSR,
381 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
382 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
383
384 /* Enable the fixed range MTRRs */
385 msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
386 }
387 }
388
x86_cpu_init_tpl(void)389 int x86_cpu_init_tpl(void)
390 {
391 setup_cpu_features();
392 setup_identity();
393
394 return 0;
395 }
396
x86_cpu_init_f(void)397 int x86_cpu_init_f(void)
398 {
399 if (ll_boot_init())
400 setup_cpu_features();
401 setup_identity();
402 setup_mtrr();
403 setup_pci_ram_top();
404
405 /* Set up the i8254 timer if required */
406 if (IS_ENABLED(CONFIG_I8254_TIMER))
407 i8254_init();
408
409 return 0;
410 }
411
x86_cpu_reinit_f(void)412 int x86_cpu_reinit_f(void)
413 {
414 setup_identity();
415 setup_pci_ram_top();
416
417 return 0;
418 }
419
x86_enable_caches(void)420 void x86_enable_caches(void)
421 {
422 unsigned long cr0;
423
424 cr0 = read_cr0();
425 cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
426 write_cr0(cr0);
427 wbinvd();
428 }
429 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
430
x86_disable_caches(void)431 void x86_disable_caches(void)
432 {
433 unsigned long cr0;
434
435 cr0 = read_cr0();
436 cr0 |= X86_CR0_NW | X86_CR0_CD;
437 wbinvd();
438 write_cr0(cr0);
439 wbinvd();
440 }
441 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
442
dcache_status(void)443 int dcache_status(void)
444 {
445 return !(read_cr0() & X86_CR0_CD);
446 }
447
cpu_enable_paging_pae(ulong cr3)448 void cpu_enable_paging_pae(ulong cr3)
449 {
450 __asm__ __volatile__(
451 /* Load the page table address */
452 "movl %0, %%cr3\n"
453 /* Enable pae */
454 "movl %%cr4, %%eax\n"
455 "orl $0x00000020, %%eax\n"
456 "movl %%eax, %%cr4\n"
457 /* Enable paging */
458 "movl %%cr0, %%eax\n"
459 "orl $0x80000000, %%eax\n"
460 "movl %%eax, %%cr0\n"
461 :
462 : "r" (cr3)
463 : "eax");
464 }
465
cpu_disable_paging_pae(void)466 void cpu_disable_paging_pae(void)
467 {
468 /* Turn off paging */
469 __asm__ __volatile__ (
470 /* Disable paging */
471 "movl %%cr0, %%eax\n"
472 "andl $0x7fffffff, %%eax\n"
473 "movl %%eax, %%cr0\n"
474 /* Disable pae */
475 "movl %%cr4, %%eax\n"
476 "andl $0xffffffdf, %%eax\n"
477 "movl %%eax, %%cr4\n"
478 :
479 :
480 : "eax");
481 }
482
can_detect_long_mode(void)483 static bool can_detect_long_mode(void)
484 {
485 return cpuid_eax(0x80000000) > 0x80000000UL;
486 }
487
has_long_mode(void)488 static bool has_long_mode(void)
489 {
490 return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
491 }
492
cpu_has_64bit(void)493 int cpu_has_64bit(void)
494 {
495 return has_cpuid() && can_detect_long_mode() &&
496 has_long_mode();
497 }
498
499 #define PAGETABLE_BASE 0x80000
500 #define PAGETABLE_SIZE (6 * 4096)
501
502 /**
503 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
504 *
505 * @pgtable: Pointer to a 24iKB block of memory
506 */
build_pagetable(uint32_t * pgtable)507 static void build_pagetable(uint32_t *pgtable)
508 {
509 uint i;
510
511 memset(pgtable, '\0', PAGETABLE_SIZE);
512
513 /* Level 4 needs a single entry */
514 pgtable[0] = (ulong)&pgtable[1024] + 7;
515
516 /* Level 3 has one 64-bit entry for each GiB of memory */
517 for (i = 0; i < 4; i++)
518 pgtable[1024 + i * 2] = (ulong)&pgtable[2048] + 0x1000 * i + 7;
519
520 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
521 for (i = 0; i < 2048; i++)
522 pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
523 }
524
cpu_jump_to_64bit(ulong setup_base,ulong target)525 int cpu_jump_to_64bit(ulong setup_base, ulong target)
526 {
527 uint32_t *pgtable;
528
529 pgtable = memalign(4096, PAGETABLE_SIZE);
530 if (!pgtable)
531 return -ENOMEM;
532
533 build_pagetable(pgtable);
534 cpu_call64((ulong)pgtable, setup_base, target);
535 free(pgtable);
536
537 return -EFAULT;
538 }
539
540 /*
541 * Jump from SPL to U-Boot
542 *
543 * This function is work-in-progress with many issues to resolve.
544 *
545 * It works by setting up several regions:
546 * ptr - a place to put the code that jumps into 64-bit mode
547 * gdt - a place to put the global descriptor table
548 * pgtable - a place to put the page tables
549 *
550 * The cpu_call64() code is copied from ROM and then manually patched so that
551 * it has the correct GDT address in RAM. U-Boot is copied from ROM into
552 * its pre-relocation address. Then we jump to the cpu_call64() code in RAM,
553 * which changes to 64-bit mode and starts U-Boot.
554 */
cpu_jump_to_64bit_uboot(ulong target)555 int cpu_jump_to_64bit_uboot(ulong target)
556 {
557 typedef void (*func_t)(ulong pgtable, ulong setup_base, ulong target);
558 uint32_t *pgtable;
559 func_t func;
560 char *ptr;
561
562 pgtable = (uint32_t *)PAGETABLE_BASE;
563
564 build_pagetable(pgtable);
565
566 extern long call64_stub_size;
567 ptr = malloc(call64_stub_size);
568 if (!ptr) {
569 printf("Failed to allocate the cpu_call64 stub\n");
570 return -ENOMEM;
571 }
572 memcpy(ptr, cpu_call64, call64_stub_size);
573
574 func = (func_t)ptr;
575
576 /*
577 * Copy U-Boot from ROM
578 * TODO(sjg@chromium.org): Figure out a way to get the text base
579 * correctly here, and in the device-tree binman definition.
580 *
581 * Also consider using FIT so we get the correct image length and
582 * parameters.
583 */
584 memcpy((char *)target, (char *)0xfff00000, 0x100000);
585
586 /* Jump to U-Boot */
587 func((ulong)pgtable, 0, (ulong)target);
588
589 return -EFAULT;
590 }
591
592 #ifdef CONFIG_SMP
enable_smis(struct udevice * cpu,void * unused)593 static int enable_smis(struct udevice *cpu, void *unused)
594 {
595 return 0;
596 }
597
598 static struct mp_flight_record mp_steps[] = {
599 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
600 /* Wait for APs to finish initialization before proceeding */
601 MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
602 };
603
x86_mp_init(void)604 int x86_mp_init(void)
605 {
606 struct mp_params mp_params;
607
608 mp_params.parallel_microcode_load = 0,
609 mp_params.flight_plan = &mp_steps[0];
610 mp_params.num_records = ARRAY_SIZE(mp_steps);
611 mp_params.microcode_pointer = 0;
612
613 if (mp_init(&mp_params)) {
614 printf("Warning: MP init failure\n");
615 return -EIO;
616 }
617
618 return 0;
619 }
620 #endif
621