• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
5  */
6 
7 #include <common.h>
8 #include <config.h>
9 #include <cpu_func.h>
10 #include <env.h>
11 #include <init.h>
12 #include <irq_func.h>
13 #include <linux/printk.h>
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <asm/arcregs.h>
17 #include <fdt_support.h>
18 #include <dwmmc.h>
19 #include <malloc.h>
20 #include <usb.h>
21 
22 #include "clk-lib.h"
23 #include "env-lib.h"
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #define ALL_CPU_MASK		GENMASK(NR_CPUS - 1, 0)
28 #define MASTER_CPU_ID		0
29 #define APERTURE_SHIFT		28
30 #define NO_CCM			0x10
31 #define SLAVE_CPU_READY		0x12345678
32 #define BOOTSTAGE_1		1 /* after SP, FP setup, before HW init */
33 #define BOOTSTAGE_2		2 /* after HW init, before self halt */
34 #define BOOTSTAGE_3		3 /* after self halt */
35 #define BOOTSTAGE_4		4 /* before app launch */
36 #define BOOTSTAGE_5		5 /* after app launch, unreachable */
37 
38 #define RESET_VECTOR_ADDR	0x0
39 
40 #define CREG_BASE		(ARC_PERIPHERAL_BASE + 0x1000)
41 #define CREG_CPU_START		(CREG_BASE + 0x400)
42 #define CREG_CPU_START_MASK	0xF
43 
44 #define SDIO_BASE		(ARC_PERIPHERAL_BASE + 0xA000)
45 #define SDIO_UHS_REG_EXT	(SDIO_BASE + 0x108)
46 #define SDIO_UHS_REG_EXT_DIV_2	(2 << 30)
47 
48 /* Uncached access macros */
49 #define arc_read_uncached_32(ptr)	\
50 ({					\
51 	unsigned int __ret;		\
52 	__asm__ __volatile__(		\
53 	"	ld.di %0, [%1]	\n"	\
54 	: "=r"(__ret)			\
55 	: "r"(ptr));			\
56 	__ret;				\
57 })
58 
59 #define arc_write_uncached_32(ptr, data)\
60 ({					\
61 	__asm__ __volatile__(		\
62 	"	st.di %0, [%1]	\n"	\
63 	:				\
64 	: "r"(data), "r"(ptr));		\
65 })
66 
67 struct hsdk_env_core_ctl {
68 	u32_env entry[NR_CPUS];
69 	u32_env iccm[NR_CPUS];
70 	u32_env dccm[NR_CPUS];
71 };
72 
73 struct hsdk_env_common_ctl {
74 	bool halt_on_boot;
75 	u32_env core_mask;
76 	u32_env cpu_freq;
77 	u32_env axi_freq;
78 	u32_env tun_freq;
79 	u32_env nvlim;
80 	u32_env icache;
81 	u32_env dcache;
82 };
83 
84 /*
85  * Uncached cross-cpu structure. All CPUs must access to this structure fields
86  * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
87  * implement ld.di / st.di instructions). Simultaneous cached and uncached
88  * access to this area will lead to data loss.
89  * We flush all data caches in board_early_init_r() as we don't want to have
90  * any dirty line in L1d$ or SL$ in this area.
91  */
92 struct hsdk_cross_cpu {
93 	/* slave CPU ready flag */
94 	u32 ready_flag;
95 	/* address of the area, which can be used for stack by slave CPU */
96 	u32 stack_ptr;
97 	/* slave CPU status - bootstage number */
98 	s32 status[NR_CPUS];
99 
100 	/*
101 	 * Slave CPU data - it is copy of corresponding fields in
102 	 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
103 	 * required for slave CPUs initialization.
104 	 * This fields can be populated by copying from hsdk_env_core_ctl
105 	 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
106 	 * function.
107 	 */
108 	u32 entry[NR_CPUS];
109 	u32 iccm[NR_CPUS];
110 	u32 dccm[NR_CPUS];
111 
112 	u32 core_mask;
113 	u32 icache;
114 	u32 dcache;
115 
116 	u8 cache_padding[ARCH_DMA_MINALIGN];
117 } __aligned(ARCH_DMA_MINALIGN);
118 
119 /* Place for slave CPUs temporary stack */
120 static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
121 
122 static struct hsdk_env_common_ctl env_common = {};
123 static struct hsdk_env_core_ctl env_core = {};
124 static struct hsdk_cross_cpu cross_cpu_data;
125 
126 static const struct env_map_common env_map_common[] = {
127 	{ "core_mask",	ENV_HEX, true,	0x1, 0xF,	&env_common.core_mask },
128 	{ "non_volatile_limit", ENV_HEX, true, 0, 0xF,	&env_common.nvlim },
129 	{ "icache_ena",	ENV_HEX, true,	0, 1,		&env_common.icache },
130 	{ "dcache_ena",	ENV_HEX, true,	0, 1,		&env_common.dcache },
131 	{}
132 };
133 
134 static const struct env_map_common env_map_clock[] = {
135 	{ "cpu_freq",	ENV_DEC, false,	100, 1000,	&env_common.cpu_freq },
136 	{ "axi_freq",	ENV_DEC, false,	200, 800,	&env_common.axi_freq },
137 	{ "tun_freq",	ENV_DEC, false,	0, 150,		&env_common.tun_freq },
138 	{}
139 };
140 
141 static const struct env_map_percpu env_map_core[] = {
142 	{ "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
143 	{ "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
144 	{}
145 };
146 
147 static const struct env_map_common env_map_mask[] = {
148 	{ "core_mask",	ENV_HEX, false,	0x1, 0xF,	&env_common.core_mask },
149 	{}
150 };
151 
152 static const struct env_map_percpu env_map_go[] = {
153 	{ "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
154 	{}
155 };
156 
sync_cross_cpu_data(void)157 static void sync_cross_cpu_data(void)
158 {
159 	u32 value;
160 
161 	for (u32 i = 0; i < NR_CPUS; i++) {
162 		value = env_core.entry[i].val;
163 		arc_write_uncached_32(&cross_cpu_data.entry[i], value);
164 	}
165 
166 	for (u32 i = 0; i < NR_CPUS; i++) {
167 		value = env_core.iccm[i].val;
168 		arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
169 	}
170 
171 	for (u32 i = 0; i < NR_CPUS; i++) {
172 		value = env_core.dccm[i].val;
173 		arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
174 	}
175 
176 	value = env_common.core_mask.val;
177 	arc_write_uncached_32(&cross_cpu_data.core_mask, value);
178 
179 	value = env_common.icache.val;
180 	arc_write_uncached_32(&cross_cpu_data.icache, value);
181 
182 	value = env_common.dcache.val;
183 	arc_write_uncached_32(&cross_cpu_data.dcache, value);
184 }
185 
186 /* Can be used only on master CPU */
is_cpu_used(u32 cpu_id)187 static bool is_cpu_used(u32 cpu_id)
188 {
189 	return !!(env_common.core_mask.val & BIT(cpu_id));
190 }
191 
192 /* TODO: add ICCM BCR and DCCM BCR runtime check */
init_slave_cpu_func(u32 core)193 static void init_slave_cpu_func(u32 core)
194 {
195 	u32 val;
196 
197 	/* Remap ICCM to another memory region if it exists */
198 	val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
199 	if (val != NO_CCM)
200 		write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
201 
202 	/* Remap DCCM to another memory region if it exists */
203 	val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
204 	if (val != NO_CCM)
205 		write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
206 
207 	if (arc_read_uncached_32(&cross_cpu_data.icache))
208 		icache_enable();
209 	else
210 		icache_disable();
211 
212 	if (arc_read_uncached_32(&cross_cpu_data.dcache))
213 		dcache_enable();
214 	else
215 		dcache_disable();
216 }
217 
init_cluster_nvlim(void)218 static void init_cluster_nvlim(void)
219 {
220 	u32 val = env_common.nvlim.val << APERTURE_SHIFT;
221 
222 	flush_dcache_all();
223 	write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
224 	write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
225 	flush_n_invalidate_dcache_all();
226 }
227 
init_master_icache(void)228 static void init_master_icache(void)
229 {
230 	if (icache_status()) {
231 		/* I$ is enabled - we need to disable it */
232 		if (!env_common.icache.val)
233 			icache_disable();
234 	} else {
235 		/* I$ is disabled - we need to enable it */
236 		if (env_common.icache.val) {
237 			icache_enable();
238 
239 			/* invalidate I$ right after enable */
240 			invalidate_icache_all();
241 		}
242 	}
243 }
244 
init_master_dcache(void)245 static void init_master_dcache(void)
246 {
247 	if (dcache_status()) {
248 		/* D$ is enabled - we need to disable it */
249 		if (!env_common.dcache.val)
250 			dcache_disable();
251 	} else {
252 		/* D$ is disabled - we need to enable it */
253 		if (env_common.dcache.val)
254 			dcache_enable();
255 
256 		/* TODO: probably we need ti invalidate D$ right after enable */
257 	}
258 }
259 
cleanup_before_go(void)260 static int cleanup_before_go(void)
261 {
262 	disable_interrupts();
263 	sync_n_cleanup_cache_all();
264 
265 	return 0;
266 }
267 
slave_cpu_set_boot_addr(u32 addr)268 void slave_cpu_set_boot_addr(u32 addr)
269 {
270 	/* All cores have reset vector pointing to 0 */
271 	writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
272 
273 	/* Make sure other cores see written value in memory */
274 	sync_n_cleanup_cache_all();
275 }
276 
halt_this_cpu(void)277 static inline void halt_this_cpu(void)
278 {
279 	__builtin_arc_flag(1);
280 }
281 
smp_kick_cpu_x(u32 cpu_id)282 static void smp_kick_cpu_x(u32 cpu_id)
283 {
284 	int cmd = readl((void __iomem *)CREG_CPU_START);
285 
286 	if (cpu_id > NR_CPUS)
287 		return;
288 
289 	cmd &= ~CREG_CPU_START_MASK;
290 	cmd |= (1 << cpu_id);
291 	writel(cmd, (void __iomem *)CREG_CPU_START);
292 }
293 
prepare_cpu_ctart_reg(void)294 static u32 prepare_cpu_ctart_reg(void)
295 {
296 	int cmd = readl((void __iomem *)CREG_CPU_START);
297 
298 	cmd &= ~CREG_CPU_START_MASK;
299 
300 	return cmd | env_common.core_mask.val;
301 }
302 
303 /* slave CPU entry for configuration */
hsdk_core_init_f(void)304 __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
305 {
306 	__asm__ __volatile__(
307 		"ld.di	r8,	[%0]\n"
308 		"mov	%%sp,	r8\n"
309 		"mov	%%fp,	%%sp\n"
310 		: /* no output */
311 		: "r" (&cross_cpu_data.stack_ptr));
312 
313 	invalidate_icache_all();
314 
315 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
316 	init_slave_cpu_func(CPU_ID_GET());
317 
318 	arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
319 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
320 
321 	/* Halt the processor until the master kick us again */
322 	halt_this_cpu();
323 
324 	/*
325 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
326 	 * cores but we leave them for gebug purposes.
327 	 */
328 	__builtin_arc_nop();
329 	__builtin_arc_nop();
330 	__builtin_arc_nop();
331 
332 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
333 
334 	/* get the updated entry - invalidate i$ */
335 	invalidate_icache_all();
336 
337 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
338 
339 	/* Run our program */
340 	((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
341 
342 	/* This bootstage is unreachable as we don't return from app we launch */
343 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
344 
345 	/* Something went terribly wrong */
346 	while (true)
347 		halt_this_cpu();
348 }
349 
clear_cross_cpu_data(void)350 static void clear_cross_cpu_data(void)
351 {
352 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
353 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
354 
355 	for (u32 i = 0; i < NR_CPUS; i++)
356 		arc_write_uncached_32(&cross_cpu_data.status[i], 0);
357 }
358 
do_init_slave_cpu(u32 cpu_id)359 static noinline void do_init_slave_cpu(u32 cpu_id)
360 {
361 	/* attempts number for check clave CPU ready_flag */
362 	u32 attempts = 100;
363 	u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
364 
365 	if (cpu_id >= NR_CPUS)
366 		return;
367 
368 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
369 
370 	/* Use global unique place for each slave cpu stack */
371 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
372 
373 	debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
374 	debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
375 	slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
376 
377 	smp_kick_cpu_x(cpu_id);
378 
379 	debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
380 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
381 
382 	while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
383 		mdelay(10);
384 
385 	/* Just to be sure that slave cpu is halted after it set ready_flag */
386 	mdelay(20);
387 
388 	/*
389 	 * Only print error here if we reach timeout as there is no option to
390 	 * halt slave cpu (or check that slave cpu is halted)
391 	 */
392 	if (!attempts)
393 		pr_err("CPU %u is not responding after init!\n", cpu_id);
394 
395 	/* Check current stage of slave cpu */
396 	if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
397 		pr_err("CPU %u status is unexpected: %d\n", cpu_id,
398 		       arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
399 
400 	debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
401 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
402 	debug("CPU %u: status: %d [after timeout]\n", cpu_id,
403 	      arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
404 }
405 
do_init_slave_cpus(void)406 static void do_init_slave_cpus(void)
407 {
408 	clear_cross_cpu_data();
409 	sync_cross_cpu_data();
410 
411 	debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
412 
413 	for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
414 		if (is_cpu_used(i))
415 			do_init_slave_cpu(i);
416 }
417 
do_init_master_cpu(void)418 static void do_init_master_cpu(void)
419 {
420 	/*
421 	 * Setup master caches even if master isn't used as we want to use
422 	 * same cache configuration on all running CPUs
423 	 */
424 	init_master_icache();
425 	init_master_dcache();
426 }
427 
428 enum hsdk_axi_masters {
429 	M_HS_CORE = 0,
430 	M_HS_RTT,
431 	M_AXI_TUN,
432 	M_HDMI_VIDEO,
433 	M_HDMI_AUDIO,
434 	M_USB_HOST,
435 	M_ETHERNET,
436 	M_SDIO,
437 	M_GPU,
438 	M_DMAC_0,
439 	M_DMAC_1,
440 	M_DVFS
441 };
442 
443 #define UPDATE_VAL	1
444 
445 /*
446  * m	master		AXI_M_m_SLV0	AXI_M_m_SLV1	AXI_M_m_OFFSET0	AXI_M_m_OFFSET1
447  * 0	HS (CBU)	0x11111111	0x63111111	0xFEDCBA98	0x0E543210
448  * 1	HS (RTT)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
449  * 2	AXI Tunnel	0x88888888	0x88888888	0xFEDCBA98	0x76543210
450  * 3	HDMI-VIDEO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
451  * 4	HDMI-ADUIO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
452  * 5	USB-HOST	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
453  * 6	ETHERNET	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
454  * 7	SDIO		0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
455  * 8	GPU		0x77777777	0x77777777	0xFEDCBA98	0x76543210
456  * 9	DMAC (port #1)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
457  * 10	DMAC (port #2)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
458  * 11	DVFS		0x00000000	0x60000000	0x00000000	0x00000000
459  *
460  * Please read ARC HS Development IC Specification, section 17.2 for more
461  * information about apertures configuration.
462  * NOTE: we intentionally modify default settings in U-boot. Default settings
463  * are specified in "Table 111 CREG Address Decoder register reset values".
464  */
465 
466 #define CREG_AXI_M_SLV0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m)))
467 #define CREG_AXI_M_SLV1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
468 #define CREG_AXI_M_OFT0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
469 #define CREG_AXI_M_OFT1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
470 #define CREG_AXI_M_UPDT(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
471 
472 #define CREG_AXI_M_HS_CORE_BOOT	((void __iomem *)(CREG_BASE + 0x010))
473 
474 #define CREG_PAE	((void __iomem *)(CREG_BASE + 0x180))
475 #define CREG_PAE_UPDT	((void __iomem *)(CREG_BASE + 0x194))
476 
init_memory_bridge(void)477 void init_memory_bridge(void)
478 {
479 	u32 reg;
480 
481 	/*
482 	 * M_HS_CORE has one unic register - BOOT.
483 	 * We need to clean boot mirror (BOOT[1:0]) bits in them.
484 	 */
485 	reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
486 	writel(reg, CREG_AXI_M_HS_CORE_BOOT);
487 	writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
488 	writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
489 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
490 	writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
491 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
492 
493 	writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
494 	writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
495 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
496 	writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
497 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
498 
499 	writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
500 	writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
501 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
502 	writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
503 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
504 
505 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
506 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
507 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
508 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
509 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
510 
511 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
512 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
513 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
514 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
515 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
516 
517 	writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
518 	writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
519 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
520 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
521 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
522 
523 	writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
524 	writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
525 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
526 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
527 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
528 
529 	writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
530 	writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
531 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
532 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
533 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
534 
535 	writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
536 	writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
537 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
538 	writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
539 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
540 
541 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
542 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
543 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
544 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
545 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
546 
547 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
548 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
549 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
550 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
551 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
552 
553 	writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
554 	writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
555 	writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
556 	writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
557 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
558 
559 	writel(0x00000000, CREG_PAE);
560 	writel(UPDATE_VAL, CREG_PAE_UPDT);
561 }
562 
setup_clocks(void)563 static void setup_clocks(void)
564 {
565 	ulong rate;
566 
567 	/* Setup CPU clock */
568 	if (env_common.cpu_freq.set) {
569 		rate = env_common.cpu_freq.val;
570 		soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
571 	}
572 
573 	/* Setup TUN clock */
574 	if (env_common.tun_freq.set) {
575 		rate = env_common.tun_freq.val;
576 		if (rate)
577 			soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
578 		else
579 			soc_clk_ctl("tun-clk", NULL, CLK_OFF);
580 	}
581 
582 	if (env_common.axi_freq.set) {
583 		rate = env_common.axi_freq.val;
584 		soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
585 	}
586 }
587 
do_init_cluster(void)588 static void do_init_cluster(void)
589 {
590 	/*
591 	 * A multi-core ARC HS configuration always includes only one
592 	 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
593 	 * cores.
594 	 */
595 	init_cluster_nvlim();
596 }
597 
check_master_cpu_id(void)598 static int check_master_cpu_id(void)
599 {
600 	if (CPU_ID_GET() == MASTER_CPU_ID)
601 		return 0;
602 
603 	pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
604 
605 	return -ENOENT;
606 }
607 
prepare_cpus(void)608 static noinline int prepare_cpus(void)
609 {
610 	int ret;
611 
612 	ret = check_master_cpu_id();
613 	if (ret)
614 		return ret;
615 
616 	ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
617 	if (ret)
618 		return ret;
619 
620 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
621 
622 	do_init_slave_cpus();
623 	do_init_master_cpu();
624 	do_init_cluster();
625 
626 	return 0;
627 }
628 
hsdk_go_run(u32 cpu_start_reg)629 static int hsdk_go_run(u32 cpu_start_reg)
630 {
631 	/* Cleanup caches, disable interrupts */
632 	cleanup_before_go();
633 
634 	if (env_common.halt_on_boot)
635 		halt_this_cpu();
636 
637 	/*
638 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
639 	 * cores but we leave them for gebug purposes.
640 	 */
641 	__builtin_arc_nop();
642 	__builtin_arc_nop();
643 	__builtin_arc_nop();
644 
645 	/* Kick chosen slave CPUs */
646 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
647 
648 	if (is_cpu_used(MASTER_CPU_ID))
649 		((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
650 	else
651 		halt_this_cpu();
652 
653 	pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
654 
655 	/*
656 	 * We will never return after executing our program if master cpu used
657 	 * otherwise halt master cpu manually.
658 	 */
659 	while (true)
660 		halt_this_cpu();
661 
662 	return 0;
663 }
664 
board_prep_linux(bootm_headers_t * images)665 int board_prep_linux(bootm_headers_t *images)
666 {
667 	int ret, ofst;
668 	char mask[15];
669 
670 	ret = envs_read_validate_common(env_map_mask);
671 	if (ret)
672 		return ret;
673 
674 	/* Rollback to default values */
675 	if (!env_common.core_mask.set) {
676 		env_common.core_mask.val = ALL_CPU_MASK;
677 		env_common.core_mask.set = true;
678 	}
679 
680 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
681 
682 	if (!is_cpu_used(MASTER_CPU_ID))
683 		pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
684 
685 	/*
686 	 * If we want to launch linux on all CPUs we don't need to patch
687 	 * linux DTB as it is default configuration
688 	 */
689 	if (env_common.core_mask.val == ALL_CPU_MASK)
690 		return 0;
691 
692 	if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
693 		pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
694 		return 0;
695 	}
696 
697 	/* patch '/possible-cpus' property according to cpu mask */
698 	ofst = fdt_path_offset(images->ft_addr, "/");
699 	sprintf(mask, "%s%s%s%s",
700 		is_cpu_used(0) ? "0," : "",
701 		is_cpu_used(1) ? "1," : "",
702 		is_cpu_used(2) ? "2," : "",
703 		is_cpu_used(3) ? "3," : "");
704 	ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
705 	/*
706 	 * If we failed to patch '/possible-cpus' property we don't need break
707 	 * linux loading process: kernel will handle it but linux will print
708 	 * warning like "Timeout: CPU1 FAILED to comeup !!!".
709 	 * So warn here about error, but return 0 like no error had occurred.
710 	 */
711 	if (ret)
712 		pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
713 		       ret);
714 
715 	return 0;
716 }
717 
board_jump_and_run(ulong entry,int zero,int arch,uint params)718 void board_jump_and_run(ulong entry, int zero, int arch, uint params)
719 {
720 	void (*kernel_entry)(int zero, int arch, uint params);
721 	u32 cpu_start_reg;
722 
723 	kernel_entry = (void (*)(int, int, uint))entry;
724 
725 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
726 	cpu_start_reg = prepare_cpu_ctart_reg();
727 
728 	/* In case of run without hsdk_init */
729 	slave_cpu_set_boot_addr(entry);
730 
731 	/* In case of run with hsdk_init */
732 	for (u32 i = 0; i < NR_CPUS; i++) {
733 		env_core.entry[i].val = entry;
734 		env_core.entry[i].set = true;
735 	}
736 	/* sync cross_cpu struct as we updated core-entry variables */
737 	sync_cross_cpu_data();
738 
739 	/* Kick chosen slave CPUs */
740 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
741 
742 	if (is_cpu_used(0))
743 		kernel_entry(zero, arch, params);
744 }
745 
hsdk_go_prepare_and_run(void)746 static int hsdk_go_prepare_and_run(void)
747 {
748 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
749 	u32 reg = prepare_cpu_ctart_reg();
750 
751 	if (env_common.halt_on_boot)
752 		printf("CPU will halt before application start, start application with debugger.\n");
753 
754 	return hsdk_go_run(reg);
755 }
756 
do_hsdk_go(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])757 static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
758 {
759 	int ret;
760 
761 	/*
762 	 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
763 	 * starting the application; can be used for debug.
764 	 */
765 	if (argc > 1) {
766 		env_common.halt_on_boot = !strcmp(argv[1], "halt");
767 		if (!env_common.halt_on_boot) {
768 			pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
769 			return CMD_RET_FAILURE;
770 		}
771 	}
772 
773 	ret = check_master_cpu_id();
774 	if (ret)
775 		return ret;
776 
777 	ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
778 	if (ret)
779 		return ret;
780 
781 	/* sync cross_cpu struct as we updated core-entry variables */
782 	sync_cross_cpu_data();
783 
784 	ret = hsdk_go_prepare_and_run();
785 
786 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
787 }
788 
789 U_BOOT_CMD(
790 	hsdk_go, 3, 0, do_hsdk_go,
791 	"Synopsys HSDK specific command",
792 	"     - Boot stand-alone application on HSDK\n"
793 	"hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
794 );
795 
do_hsdk_init(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])796 static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
797 {
798 	static bool done = false;
799 	int ret;
800 
801 	/* hsdk_init can be run only once */
802 	if (done) {
803 		printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
804 		return CMD_RET_FAILURE;
805 	}
806 
807 	ret = prepare_cpus();
808 	if (!ret)
809 		done = true;
810 
811 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
812 }
813 
814 U_BOOT_CMD(
815 	hsdk_init, 1, 0, do_hsdk_init,
816 	"Synopsys HSDK specific command",
817 	"- Init HSDK HW\n"
818 );
819 
do_hsdk_clock_set(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])820 static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc,
821 			     char *const argv[])
822 {
823 	int ret = 0;
824 
825 	/* Strip off leading subcommand argument */
826 	argc--;
827 	argv++;
828 
829 	envs_cleanup_common(env_map_clock);
830 
831 	if (!argc) {
832 		printf("Set clocks to values specified in environment\n");
833 		ret = envs_read_common(env_map_clock);
834 	} else {
835 		printf("Set clocks to values specified in args\n");
836 		ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
837 	}
838 
839 	if (ret)
840 		return CMD_RET_FAILURE;
841 
842 	ret = envs_validate_common(env_map_clock);
843 	if (ret)
844 		return CMD_RET_FAILURE;
845 
846 	/* Setup clock tree HW */
847 	setup_clocks();
848 
849 	return CMD_RET_SUCCESS;
850 }
851 
do_hsdk_clock_get(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])852 static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc,
853 			     char *const argv[])
854 {
855 	ulong rate;
856 
857 	if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
858 		return CMD_RET_FAILURE;
859 
860 	if (env_set_ulong("cpu_freq", rate))
861 		return CMD_RET_FAILURE;
862 
863 	if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
864 		return CMD_RET_FAILURE;
865 
866 	if (env_set_ulong("tun_freq", rate))
867 		return CMD_RET_FAILURE;
868 
869 	if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
870 		return CMD_RET_FAILURE;
871 
872 	if (env_set_ulong("axi_freq", rate))
873 		return CMD_RET_FAILURE;
874 
875 	printf("Clock values are saved to environment\n");
876 
877 	return CMD_RET_SUCCESS;
878 }
879 
do_hsdk_clock_print(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])880 static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc,
881 			       char *const argv[])
882 {
883 	/* Main clocks */
884 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
885 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
886 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
887 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
888 
889 	return CMD_RET_SUCCESS;
890 }
891 
do_hsdk_clock_print_all(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])892 static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc,
893 				   char *const argv[])
894 {
895 	/*
896 	 * NOTE: as of today we don't use some peripherals like HDMI / EBI
897 	 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
898 	 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
899 	 * functional and we can print their clocks if it is required
900 	 */
901 
902 	/* CPU clock domain */
903 	soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
904 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
905 	printf("\n");
906 
907 	/* SYS clock domain */
908 	soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
909 	soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
910 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
911 	soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
912 	soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
913 	soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
914 /*	soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */
915 	soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
916 	soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
917 	soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
918 	soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
919 	soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
920 	soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
921 	soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
922 	soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
923 /*	soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
924 	soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
925 	printf("\n");
926 
927 	/* DDR clock domain */
928 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
929 	printf("\n");
930 
931 	/* HDMI clock domain */
932 /*	soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */
933 /*	soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */
934 /*	printf("\n"); */
935 
936 	/* TUN clock domain */
937 	soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
938 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
939 	soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
940 	soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
941 	printf("\n");
942 
943 	return CMD_RET_SUCCESS;
944 }
945 
946 cmd_tbl_t cmd_hsdk_clock[] = {
947 	U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
948 	U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
949 	U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
950 	U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
951 };
952 
do_hsdk_clock(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])953 static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
954 {
955 	cmd_tbl_t *c;
956 
957 	if (argc < 2)
958 		return CMD_RET_USAGE;
959 
960 	/* Strip off leading 'hsdk_clock' command argument */
961 	argc--;
962 	argv++;
963 
964 	c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
965 	if (!c)
966 		return CMD_RET_USAGE;
967 
968 	return c->cmd(cmdtp, flag, argc, argv);
969 }
970 
971 U_BOOT_CMD(
972 	hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
973 	"Synopsys HSDK specific clock command",
974 	"set   - Set clock to values specified in environment / command line arguments\n"
975 	"hsdk_clock get   - Save clock values to environment\n"
976 	"hsdk_clock print - Print main clock values to console\n"
977 	"hsdk_clock print_all - Print all clock values to console\n"
978 );
979 
980 /* init calls */
board_early_init_f(void)981 int board_early_init_f(void)
982 {
983 	/*
984 	 * Setup AXI apertures unconditionally as we want to have DDR
985 	 * in 0x00000000 region when we are kicking slave cpus.
986 	 */
987 	init_memory_bridge();
988 
989 	/*
990 	 * Switch SDIO external ciu clock divider from default div-by-8 to
991 	 * minimum possible div-by-2.
992 	 */
993 	writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
994 
995 	return 0;
996 }
997 
board_early_init_r(void)998 int board_early_init_r(void)
999 {
1000 	/*
1001 	 * TODO: Init USB here to be able read environment from USB MSD.
1002 	 * It can be done with usb_init() call. We can't do it right now
1003 	 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1004 	 * linux kernel (if we init USB here we will break USB in linux)
1005 	 */
1006 
1007 	/*
1008 	 * Flush all d$ as we want to use uncached area with st.di / ld.di
1009 	 * instructions and we don't want to have any dirty line in L1d$ or SL$
1010 	 * in this area. It is enough to flush all d$ once here as we access to
1011 	 * uncached area with regular st (non .di) instruction only when we copy
1012 	 * data during u-boot relocation.
1013 	 */
1014 	flush_dcache_all();
1015 
1016 	printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1017 
1018 	return 0;
1019 }
1020 
board_late_init(void)1021 int board_late_init(void)
1022 {
1023 	/*
1024 	 * Populate environment with clock frequency values -
1025 	 * run hsdk_clock get callback without uboot command run.
1026 	 */
1027 	do_hsdk_clock_get(NULL, 0, 0, NULL);
1028 
1029 	return 0;
1030 }
1031 
checkboard(void)1032 int checkboard(void)
1033 {
1034 	puts("Board: Synopsys ARC HS Development Kit\n");
1035 	return 0;
1036 };
1037