1 /*
2 * generic mmc spi driver
3 *
4 * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
5 * Copyright 2019 Bhargav Shah <bhargavshah1988@gmail.com>
6 *
7 * Licensed under the GPL-2 or later.
8 */
9 #include <common.h>
10 #include <errno.h>
11 #include <malloc.h>
12 #include <part.h>
13 #include <mmc.h>
14 #include <stdlib.h>
15 #include <u-boot/crc.h>
16 #include <linux/crc7.h>
17 #include <asm/byteorder.h>
18 #include <dm.h>
19 #include <spi.h>
20
21 /* MMC/SD in SPI mode reports R1 status always */
22 #define R1_SPI_IDLE BIT(0)
23 #define R1_SPI_ERASE_RESET BIT(1)
24 #define R1_SPI_ILLEGAL_COMMAND BIT(2)
25 #define R1_SPI_COM_CRC BIT(3)
26 #define R1_SPI_ERASE_SEQ BIT(4)
27 #define R1_SPI_ADDRESS BIT(5)
28 #define R1_SPI_PARAMETER BIT(6)
29 /* R1 bit 7 is always zero, reuse this bit for error */
30 #define R1_SPI_ERROR BIT(7)
31
32 /* Response tokens used to ack each block written: */
33 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
34 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
35 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
36 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
37
38 /* Read and write blocks start with these tokens and end with crc;
39 * on error, read tokens act like a subset of R2_SPI_* values.
40 */
41 /* single block write multiblock read */
42 #define SPI_TOKEN_SINGLE 0xfe
43 /* multiblock write */
44 #define SPI_TOKEN_MULTI_WRITE 0xfc
45 /* terminate multiblock write */
46 #define SPI_TOKEN_STOP_TRAN 0xfd
47
48 /* MMC SPI commands start with a start bit "0" and a transmit bit "1" */
49 #define MMC_SPI_CMD(x) (0x40 | (x))
50
51 /* bus capability */
52 #define MMC_SPI_VOLTAGE (MMC_VDD_32_33 | MMC_VDD_33_34)
53 #define MMC_SPI_MIN_CLOCK 400000 /* 400KHz to meet MMC spec */
54 #define MMC_SPI_MAX_CLOCK 25000000 /* SD/MMC legacy speed */
55
56 /* timeout value */
57 #define CMD_TIMEOUT 8
58 #define READ_TIMEOUT 3000000 /* 1 sec */
59 #define WRITE_TIMEOUT 3000000 /* 1 sec */
60
61 struct mmc_spi_plat {
62 struct mmc_config cfg;
63 struct mmc mmc;
64 };
65
66 struct mmc_spi_priv {
67 struct spi_slave *spi;
68 };
69
mmc_spi_sendcmd(struct udevice * dev,ushort cmdidx,u32 cmdarg,u32 resp_type,u8 * resp,u32 resp_size,bool resp_match,u8 resp_match_value)70 static int mmc_spi_sendcmd(struct udevice *dev,
71 ushort cmdidx, u32 cmdarg, u32 resp_type,
72 u8 *resp, u32 resp_size,
73 bool resp_match, u8 resp_match_value)
74 {
75 int i, rpos = 0, ret = 0;
76 u8 cmdo[7], r;
77
78 debug("%s: cmd%d cmdarg=0x%x resp_type=0x%x "
79 "resp_size=%d resp_match=%d resp_match_value=0x%x\n",
80 __func__, cmdidx, cmdarg, resp_type,
81 resp_size, resp_match, resp_match_value);
82
83 cmdo[0] = 0xff;
84 cmdo[1] = MMC_SPI_CMD(cmdidx);
85 cmdo[2] = cmdarg >> 24;
86 cmdo[3] = cmdarg >> 16;
87 cmdo[4] = cmdarg >> 8;
88 cmdo[5] = cmdarg;
89 cmdo[6] = (crc7(0, &cmdo[1], 5) << 1) | 0x01;
90 ret = dm_spi_xfer(dev, sizeof(cmdo) * 8, cmdo, NULL, SPI_XFER_BEGIN);
91 if (ret)
92 return ret;
93
94 ret = dm_spi_xfer(dev, 1 * 8, NULL, &r, 0);
95 if (ret)
96 return ret;
97
98 if (!resp || !resp_size)
99 return 0;
100
101 debug("%s: cmd%d", __func__, cmdidx);
102
103 if (resp_match) {
104 r = ~resp_match_value;
105 i = CMD_TIMEOUT;
106 while (i--) {
107 ret = dm_spi_xfer(dev, 1 * 8, NULL, &r, 0);
108 if (ret)
109 return ret;
110 debug(" resp%d=0x%x", rpos, r);
111 rpos++;
112 if (r == resp_match_value)
113 break;
114 }
115 if (!i && (r != resp_match_value))
116 return -ETIMEDOUT;
117 }
118
119 for (i = 0; i < resp_size; i++) {
120 if (i == 0 && resp_match) {
121 resp[i] = resp_match_value;
122 continue;
123 }
124 ret = dm_spi_xfer(dev, 1 * 8, NULL, &r, 0);
125 if (ret)
126 return ret;
127 debug(" resp%d=0x%x", rpos, r);
128 rpos++;
129 resp[i] = r;
130 }
131
132 debug("\n");
133
134 return 0;
135 }
136
mmc_spi_readdata(struct udevice * dev,void * xbuf,u32 bcnt,u32 bsize)137 static int mmc_spi_readdata(struct udevice *dev,
138 void *xbuf, u32 bcnt, u32 bsize)
139 {
140 u16 crc;
141 u8 *buf = xbuf, r1;
142 int i, ret = 0;
143
144 while (bcnt--) {
145 for (i = 0; i < READ_TIMEOUT; i++) {
146 ret = dm_spi_xfer(dev, 1 * 8, NULL, &r1, 0);
147 if (ret)
148 return ret;
149 if (r1 == SPI_TOKEN_SINGLE)
150 break;
151 }
152 debug("%s: data tok%d 0x%x\n", __func__, i, r1);
153 if (r1 == SPI_TOKEN_SINGLE) {
154 ret = dm_spi_xfer(dev, bsize * 8, NULL, buf, 0);
155 if (ret)
156 return ret;
157 ret = dm_spi_xfer(dev, 2 * 8, NULL, &crc, 0);
158 if (ret)
159 return ret;
160 #ifdef CONFIG_MMC_SPI_CRC_ON
161 if (be16_to_cpu(crc16_ccitt(0, buf, bsize)) != crc) {
162 debug("%s: data crc error\n", __func__);
163 r1 = R1_SPI_COM_CRC;
164 break;
165 }
166 #endif
167 r1 = 0;
168 } else {
169 r1 = R1_SPI_ERROR;
170 break;
171 }
172 buf += bsize;
173 }
174
175 if (r1 & R1_SPI_COM_CRC)
176 ret = -ECOMM;
177 else if (r1) /* other errors */
178 ret = -ETIMEDOUT;
179
180 return ret;
181 }
182
mmc_spi_writedata(struct udevice * dev,const void * xbuf,u32 bcnt,u32 bsize,int multi)183 static int mmc_spi_writedata(struct udevice *dev, const void *xbuf,
184 u32 bcnt, u32 bsize, int multi)
185 {
186 const u8 *buf = xbuf;
187 u8 r1, tok[2];
188 u16 crc;
189 int i, ret = 0;
190
191 tok[0] = 0xff;
192 tok[1] = multi ? SPI_TOKEN_MULTI_WRITE : SPI_TOKEN_SINGLE;
193
194 while (bcnt--) {
195 #ifdef CONFIG_MMC_SPI_CRC_ON
196 crc = cpu_to_be16(crc16_ccitt(0, (u8 *)buf, bsize));
197 #endif
198 dm_spi_xfer(dev, 2 * 8, tok, NULL, 0);
199 dm_spi_xfer(dev, bsize * 8, buf, NULL, 0);
200 dm_spi_xfer(dev, 2 * 8, &crc, NULL, 0);
201 for (i = 0; i < CMD_TIMEOUT; i++) {
202 dm_spi_xfer(dev, 1 * 8, NULL, &r1, 0);
203 if ((r1 & 0x10) == 0) /* response token */
204 break;
205 }
206 debug("%s: data tok%d 0x%x\n", __func__, i, r1);
207 if (SPI_MMC_RESPONSE_CODE(r1) == SPI_RESPONSE_ACCEPTED) {
208 debug("%s: data accepted\n", __func__);
209 for (i = 0; i < WRITE_TIMEOUT; i++) { /* wait busy */
210 dm_spi_xfer(dev, 1 * 8, NULL, &r1, 0);
211 if (i && r1 == 0xff) {
212 r1 = 0;
213 break;
214 }
215 }
216 if (i == WRITE_TIMEOUT) {
217 debug("%s: data write timeout 0x%x\n",
218 __func__, r1);
219 r1 = R1_SPI_ERROR;
220 break;
221 }
222 } else {
223 debug("%s: data error 0x%x\n", __func__, r1);
224 r1 = R1_SPI_COM_CRC;
225 break;
226 }
227 buf += bsize;
228 }
229 if (multi && bcnt == -1) { /* stop multi write */
230 tok[1] = SPI_TOKEN_STOP_TRAN;
231 dm_spi_xfer(dev, 2 * 8, tok, NULL, 0);
232 for (i = 0; i < WRITE_TIMEOUT; i++) { /* wait busy */
233 dm_spi_xfer(dev, 1 * 8, NULL, &r1, 0);
234 if (i && r1 == 0xff) {
235 r1 = 0;
236 break;
237 }
238 }
239 if (i == WRITE_TIMEOUT) {
240 debug("%s: data write timeout 0x%x\n", __func__, r1);
241 r1 = R1_SPI_ERROR;
242 }
243 }
244
245 if (r1 & R1_SPI_COM_CRC)
246 ret = -ECOMM;
247 else if (r1) /* other errors */
248 ret = -ETIMEDOUT;
249
250 return ret;
251 }
252
dm_mmc_spi_set_ios(struct udevice * dev)253 static int dm_mmc_spi_set_ios(struct udevice *dev)
254 {
255 return 0;
256 }
257
dm_mmc_spi_request(struct udevice * dev,struct mmc_cmd * cmd,struct mmc_data * data)258 static int dm_mmc_spi_request(struct udevice *dev, struct mmc_cmd *cmd,
259 struct mmc_data *data)
260 {
261 int i, multi, ret = 0;
262 u8 *resp = NULL;
263 u32 resp_size = 0;
264 bool resp_match = false;
265 u8 resp8 = 0, resp40[5] = { 0 }, resp_match_value = 0;
266
267 dm_spi_claim_bus(dev);
268
269 for (i = 0; i < 4; i++)
270 cmd->response[i] = 0;
271
272 switch (cmd->cmdidx) {
273 case SD_CMD_APP_SEND_OP_COND:
274 case MMC_CMD_SEND_OP_COND:
275 resp = &resp8;
276 resp_size = sizeof(resp8);
277 cmd->cmdarg = 0x40000000;
278 break;
279 case SD_CMD_SEND_IF_COND:
280 resp = (u8 *)&resp40[0];
281 resp_size = sizeof(resp40);
282 resp_match = true;
283 resp_match_value = R1_SPI_IDLE;
284 break;
285 case MMC_CMD_SPI_READ_OCR:
286 resp = (u8 *)&resp40[0];
287 resp_size = sizeof(resp40);
288 break;
289 case MMC_CMD_SEND_STATUS:
290 case MMC_CMD_SET_BLOCKLEN:
291 case MMC_CMD_SPI_CRC_ON_OFF:
292 case MMC_CMD_STOP_TRANSMISSION:
293 resp = &resp8;
294 resp_size = sizeof(resp8);
295 resp_match = true;
296 resp_match_value = 0x0;
297 break;
298 case MMC_CMD_SEND_CSD:
299 case MMC_CMD_SEND_CID:
300 case MMC_CMD_READ_SINGLE_BLOCK:
301 case MMC_CMD_READ_MULTIPLE_BLOCK:
302 case MMC_CMD_WRITE_SINGLE_BLOCK:
303 case MMC_CMD_WRITE_MULTIPLE_BLOCK:
304 break;
305 default:
306 resp = &resp8;
307 resp_size = sizeof(resp8);
308 resp_match = true;
309 resp_match_value = R1_SPI_IDLE;
310 break;
311 };
312
313 ret = mmc_spi_sendcmd(dev, cmd->cmdidx, cmd->cmdarg, cmd->resp_type,
314 resp, resp_size, resp_match, resp_match_value);
315 if (ret)
316 goto done;
317
318 switch (cmd->cmdidx) {
319 case SD_CMD_APP_SEND_OP_COND:
320 case MMC_CMD_SEND_OP_COND:
321 cmd->response[0] = (resp8 & R1_SPI_IDLE) ? 0 : OCR_BUSY;
322 break;
323 case SD_CMD_SEND_IF_COND:
324 case MMC_CMD_SPI_READ_OCR:
325 cmd->response[0] = resp40[4];
326 cmd->response[0] |= (uint)resp40[3] << 8;
327 cmd->response[0] |= (uint)resp40[2] << 16;
328 cmd->response[0] |= (uint)resp40[1] << 24;
329 break;
330 case MMC_CMD_SEND_STATUS:
331 cmd->response[0] = (resp8 & 0xff) ?
332 MMC_STATUS_ERROR : MMC_STATUS_RDY_FOR_DATA;
333 break;
334 case MMC_CMD_SEND_CID:
335 case MMC_CMD_SEND_CSD:
336 ret = mmc_spi_readdata(dev, cmd->response, 1, 16);
337 if (ret)
338 return ret;
339 for (i = 0; i < 4; i++)
340 cmd->response[i] =
341 cpu_to_be32(cmd->response[i]);
342 break;
343 default:
344 cmd->response[0] = resp8;
345 break;
346 }
347
348 debug("%s: cmd%d resp0=0x%x resp1=0x%x resp2=0x%x resp3=0x%x\n",
349 __func__, cmd->cmdidx, cmd->response[0], cmd->response[1],
350 cmd->response[2], cmd->response[3]);
351
352 if (data) {
353 debug("%s: data flags=0x%x blocks=%d block_size=%d\n",
354 __func__, data->flags, data->blocks, data->blocksize);
355 multi = (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK);
356 if (data->flags == MMC_DATA_READ)
357 ret = mmc_spi_readdata(dev, data->dest,
358 data->blocks, data->blocksize);
359 else if (data->flags == MMC_DATA_WRITE)
360 ret = mmc_spi_writedata(dev, data->src,
361 data->blocks, data->blocksize,
362 multi);
363 }
364
365 done:
366 dm_spi_xfer(dev, 0, NULL, NULL, SPI_XFER_END);
367
368 dm_spi_release_bus(dev);
369
370 return ret;
371 }
372
mmc_spi_probe(struct udevice * dev)373 static int mmc_spi_probe(struct udevice *dev)
374 {
375 struct mmc_spi_priv *priv = dev_get_priv(dev);
376 struct mmc_spi_plat *plat = dev_get_platdata(dev);
377 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
378 char *name;
379
380 priv->spi = dev_get_parent_priv(dev);
381 if (!priv->spi->max_hz)
382 priv->spi->max_hz = MMC_SPI_MAX_CLOCK;
383 priv->spi->speed = 0;
384 priv->spi->mode = SPI_MODE_0;
385 priv->spi->wordlen = 8;
386
387 name = malloc(strlen(dev->parent->name) + strlen(dev->name) + 4);
388 if (!name)
389 return -ENOMEM;
390 sprintf(name, "%s:%s", dev->parent->name, dev->name);
391
392 plat->cfg.name = name;
393 plat->cfg.host_caps = MMC_MODE_SPI;
394 plat->cfg.voltages = MMC_SPI_VOLTAGE;
395 plat->cfg.f_min = MMC_SPI_MIN_CLOCK;
396 plat->cfg.f_max = priv->spi->max_hz;
397 plat->cfg.part_type = PART_TYPE_DOS;
398 plat->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
399
400 plat->mmc.cfg = &plat->cfg;
401 plat->mmc.priv = priv;
402 plat->mmc.dev = dev;
403
404 upriv->mmc = &plat->mmc;
405
406 return 0;
407 }
408
mmc_spi_bind(struct udevice * dev)409 static int mmc_spi_bind(struct udevice *dev)
410 {
411 struct mmc_spi_plat *plat = dev_get_platdata(dev);
412
413 return mmc_bind(dev, &plat->mmc, &plat->cfg);
414 }
415
416 static const struct dm_mmc_ops mmc_spi_ops = {
417 .send_cmd = dm_mmc_spi_request,
418 .set_ios = dm_mmc_spi_set_ios,
419 };
420
421 static const struct udevice_id dm_mmc_spi_match[] = {
422 { .compatible = "mmc-spi-slot" },
423 { /* sentinel */ }
424 };
425
426 U_BOOT_DRIVER(mmc_spi) = {
427 .name = "mmc_spi",
428 .id = UCLASS_MMC,
429 .of_match = dm_mmc_spi_match,
430 .ops = &mmc_spi_ops,
431 .probe = mmc_spi_probe,
432 .bind = mmc_spi_bind,
433 .platdata_auto_alloc_size = sizeof(struct mmc_spi_plat),
434 .priv_auto_alloc_size = sizeof(struct mmc_spi_priv),
435 };
436