• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4  * Code was from the public domain, copyright abandoned.  Code was
5  * subsequently included in the kernel, thus was re-licensed under the
6  * GNU GPL v2.
7  *
8  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9  * Same crc32 function was used in 5 other places in the kernel.
10  * I made one version, and deleted the others.
11  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12  * Some xor at the end with ~0.  The generic crc32() function takes
13  * seed as an argument, and doesn't xor at the end.  Then individual
14  * users can do whatever they need.
15  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18  *
19  * This source code is licensed under the GNU General Public License,
20  * Version 2.  See the file COPYING for more details.
21  */
22 
23 #ifndef __UBOOT__
24 #include <linux/crc32.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/compiler.h>
28 #include <u-boot/crc.h>
29 #endif
30 #include <linux/types.h>
31 
32 #include <asm/byteorder.h>
33 
34 #ifndef __UBOOT__
35 #include <linux/slab.h>
36 #include <linux/init.h>
37 #include <asm/atomic.h>
38 #endif
39 #include "crc32defs.h"
40 #define CRC_LE_BITS 8
41 
42 #if CRC_LE_BITS == 8
43 #define tole(x) cpu_to_le32(x)
44 #define tobe(x) cpu_to_be32(x)
45 #else
46 #define tole(x) (x)
47 #define tobe(x) (x)
48 #endif
49 #include "crc32table.h"
50 #ifndef __UBOOT__
51 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
52 MODULE_DESCRIPTION("Ethernet CRC32 calculations");
53 MODULE_LICENSE("GPL");
54 #endif
55 /**
56  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
57  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
58  *	other uses, or the previous crc32 value if computing incrementally.
59  * @p: pointer to buffer over which CRC is run
60  * @len: length of buffer @p
61  */
62 u32  crc32_le(u32 crc, unsigned char const *p, size_t len);
63 
64 #if CRC_LE_BITS == 1
65 /*
66  * In fact, the table-based code will work in this case, but it can be
67  * simplified by inlining the table in ?: form.
68  */
69 
crc32_le(u32 crc,unsigned char const * p,size_t len)70 u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
71 {
72 	int i;
73 	while (len--) {
74 		crc ^= *p++;
75 		for (i = 0; i < 8; i++)
76 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
77 	}
78 	return crc;
79 }
80 #else				/* Table-based approach */
81 
crc32_le(u32 crc,unsigned char const * p,size_t len)82 u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
83 {
84 # if CRC_LE_BITS == 8
85 	const u32      *b =(u32 *)p;
86 	const u32      *tab = crc32table_le;
87 
88 # ifdef __LITTLE_ENDIAN
89 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
90 # else
91 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
92 # endif
93 	/* printf("Crc32_le crc=%x\n",crc); */
94 	crc = __cpu_to_le32(crc);
95 	/* Align it */
96 	if((((long)b)&3 && len)){
97 		do {
98 			u8 *p = (u8 *)b;
99 			DO_CRC(*p++);
100 			b = (void *)p;
101 		} while ((--len) && ((long)b)&3 );
102 	}
103 	if((len >= 4)){
104 		/* load data 32 bits wide, xor data 32 bits wide. */
105 		size_t save_len = len & 3;
106 		len = len >> 2;
107 		--b; /* use pre increment below(*++b) for speed */
108 		do {
109 			crc ^= *++b;
110 			DO_CRC(0);
111 			DO_CRC(0);
112 			DO_CRC(0);
113 			DO_CRC(0);
114 		} while (--len);
115 		b++; /* point to next byte(s) */
116 		len = save_len;
117 	}
118 	/* And the last few bytes */
119 	if(len){
120 		do {
121 			u8 *p = (u8 *)b;
122 			DO_CRC(*p++);
123 			b = (void *)p;
124 		} while (--len);
125 	}
126 
127 	return __le32_to_cpu(crc);
128 #undef ENDIAN_SHIFT
129 #undef DO_CRC
130 
131 # elif CRC_LE_BITS == 4
132 	while (len--) {
133 		crc ^= *p++;
134 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
135 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
136 	}
137 	return crc;
138 # elif CRC_LE_BITS == 2
139 	while (len--) {
140 		crc ^= *p++;
141 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
142 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
143 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
144 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
145 	}
146 	return crc;
147 # endif
148 }
149 #endif
150 #ifndef __UBOOT__
151 /**
152  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
153  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
154  *	other uses, or the previous crc32 value if computing incrementally.
155  * @p: pointer to buffer over which CRC is run
156  * @len: length of buffer @p
157  */
158 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
159 
160 #if CRC_BE_BITS == 1
161 /*
162  * In fact, the table-based code will work in this case, but it can be
163  * simplified by inlining the table in ?: form.
164  */
165 
crc32_be(u32 crc,unsigned char const * p,size_t len)166 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
167 {
168 	int i;
169 	while (len--) {
170 		crc ^= *p++ << 24;
171 		for (i = 0; i < 8; i++)
172 			crc =
173 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
174 					  0);
175 	}
176 	return crc;
177 }
178 
179 #else				/* Table-based approach */
crc32_be(u32 crc,unsigned char const * p,size_t len)180 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
181 {
182 # if CRC_BE_BITS == 8
183 	const u32      *b =(u32 *)p;
184 	const u32      *tab = crc32table_be;
185 
186 # ifdef __LITTLE_ENDIAN
187 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
188 # else
189 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
190 # endif
191 
192 	crc = __cpu_to_be32(crc);
193 	/* Align it */
194 	if(unlikely(((long)b)&3 && len)){
195 		do {
196 			u8 *p = (u8 *)b;
197 			DO_CRC(*p++);
198 			b = (u32 *)p;
199 		} while ((--len) && ((long)b)&3 );
200 	}
201 	if(likely(len >= 4)){
202 		/* load data 32 bits wide, xor data 32 bits wide. */
203 		size_t save_len = len & 3;
204 		len = len >> 2;
205 		--b; /* use pre increment below(*++b) for speed */
206 		do {
207 			crc ^= *++b;
208 			DO_CRC(0);
209 			DO_CRC(0);
210 			DO_CRC(0);
211 			DO_CRC(0);
212 		} while (--len);
213 		b++; /* point to next byte(s) */
214 		len = save_len;
215 	}
216 	/* And the last few bytes */
217 	if(len){
218 		do {
219 			u8 *p = (u8 *)b;
220 			DO_CRC(*p++);
221 			b = (void *)p;
222 		} while (--len);
223 	}
224 	return __be32_to_cpu(crc);
225 #undef ENDIAN_SHIFT
226 #undef DO_CRC
227 
228 # elif CRC_BE_BITS == 4
229 	while (len--) {
230 		crc ^= *p++ << 24;
231 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
232 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
233 	}
234 	return crc;
235 # elif CRC_BE_BITS == 2
236 	while (len--) {
237 		crc ^= *p++ << 24;
238 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
239 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
240 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
241 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
242 	}
243 	return crc;
244 # endif
245 }
246 #endif
247 
248 EXPORT_SYMBOL(crc32_le);
249 EXPORT_SYMBOL(crc32_be);
250 #endif
251 /*
252  * A brief CRC tutorial.
253  *
254  * A CRC is a long-division remainder.  You add the CRC to the message,
255  * and the whole thing (message+CRC) is a multiple of the given
256  * CRC polynomial.  To check the CRC, you can either check that the
257  * CRC matches the recomputed value, *or* you can check that the
258  * remainder computed on the message+CRC is 0.  This latter approach
259  * is used by a lot of hardware implementations, and is why so many
260  * protocols put the end-of-frame flag after the CRC.
261  *
262  * It's actually the same long division you learned in school, except that
263  * - We're working in binary, so the digits are only 0 and 1, and
264  * - When dividing polynomials, there are no carries.  Rather than add and
265  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
266  *   the difference between adding and subtracting.
267  *
268  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
269  * 33 bits long, bit 32 is always going to be set, so usually the CRC
270  * is written in hex with the most significant bit omitted.  (If you're
271  * familiar with the IEEE 754 floating-point format, it's the same idea.)
272  *
273  * Note that a CRC is computed over a string of *bits*, so you have
274  * to decide on the endianness of the bits within each byte.  To get
275  * the best error-detecting properties, this should correspond to the
276  * order they're actually sent.  For example, standard RS-232 serial is
277  * little-endian; the most significant bit (sometimes used for parity)
278  * is sent last.  And when appending a CRC word to a message, you should
279  * do it in the right order, matching the endianness.
280  *
281  * Just like with ordinary division, the remainder is always smaller than
282  * the divisor (the CRC polynomial) you're dividing by.  Each step of the
283  * division, you take one more digit (bit) of the dividend and append it
284  * to the current remainder.  Then you figure out the appropriate multiple
285  * of the divisor to subtract to being the remainder back into range.
286  * In binary, it's easy - it has to be either 0 or 1, and to make the
287  * XOR cancel, it's just a copy of bit 32 of the remainder.
288  *
289  * When computing a CRC, we don't care about the quotient, so we can
290  * throw the quotient bit away, but subtract the appropriate multiple of
291  * the polynomial from the remainder and we're back to where we started,
292  * ready to process the next bit.
293  *
294  * A big-endian CRC written this way would be coded like:
295  * for (i = 0; i < input_bits; i++) {
296  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
297  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
298  * }
299  * Notice how, to get at bit 32 of the shifted remainder, we look
300  * at bit 31 of the remainder *before* shifting it.
301  *
302  * But also notice how the next_input_bit() bits we're shifting into
303  * the remainder don't actually affect any decision-making until
304  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
305  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
306  * the end, so we have to add 32 extra cycles shifting in zeros at the
307  * end of every message,
308  *
309  * So the standard trick is to rearrage merging in the next_input_bit()
310  * until the moment it's needed.  Then the first 32 cycles can be precomputed,
311  * and merging in the final 32 zero bits to make room for the CRC can be
312  * skipped entirely.
313  * This changes the code to:
314  * for (i = 0; i < input_bits; i++) {
315  *      remainder ^= next_input_bit() << 31;
316  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
317  * 	remainder = (remainder << 1) ^ multiple;
318  * }
319  * With this optimization, the little-endian code is simpler:
320  * for (i = 0; i < input_bits; i++) {
321  *      remainder ^= next_input_bit();
322  * 	multiple = (remainder & 1) ? CRCPOLY : 0;
323  * 	remainder = (remainder >> 1) ^ multiple;
324  * }
325  *
326  * Note that the other details of endianness have been hidden in CRCPOLY
327  * (which must be bit-reversed) and next_input_bit().
328  *
329  * However, as long as next_input_bit is returning the bits in a sensible
330  * order, we can actually do the merging 8 or more bits at a time rather
331  * than one bit at a time:
332  * for (i = 0; i < input_bytes; i++) {
333  * 	remainder ^= next_input_byte() << 24;
334  * 	for (j = 0; j < 8; j++) {
335  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
336  * 		remainder = (remainder << 1) ^ multiple;
337  * 	}
338  * }
339  * Or in little-endian:
340  * for (i = 0; i < input_bytes; i++) {
341  * 	remainder ^= next_input_byte();
342  * 	for (j = 0; j < 8; j++) {
343  * 		multiple = (remainder & 1) ? CRCPOLY : 0;
344  * 		remainder = (remainder << 1) ^ multiple;
345  * 	}
346  * }
347  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
348  * word at a time and increase the inner loop count to 32.
349  *
350  * You can also mix and match the two loop styles, for example doing the
351  * bulk of a message byte-at-a-time and adding bit-at-a-time processing
352  * for any fractional bytes at the end.
353  *
354  * The only remaining optimization is to the byte-at-a-time table method.
355  * Here, rather than just shifting one bit of the remainder to decide
356  * in the correct multiple to subtract, we can shift a byte at a time.
357  * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
358  * but again the multiple of the polynomial to subtract depends only on
359  * the high bits, the high 8 bits in this case.
360  *
361  * The multile we need in that case is the low 32 bits of a 40-bit
362  * value whose high 8 bits are given, and which is a multiple of the
363  * generator polynomial.  This is simply the CRC-32 of the given
364  * one-byte message.
365  *
366  * Two more details: normally, appending zero bits to a message which
367  * is already a multiple of a polynomial produces a larger multiple of that
368  * polynomial.  To enable a CRC to detect this condition, it's common to
369  * invert the CRC before appending it.  This makes the remainder of the
370  * message+crc come out not as zero, but some fixed non-zero value.
371  *
372  * The same problem applies to zero bits prepended to the message, and
373  * a similar solution is used.  Instead of starting with a remainder of
374  * 0, an initial remainder of all ones is used.  As long as you start
375  * the same way on decoding, it doesn't make a difference.
376  */
377 
378 #ifdef UNITTEST
379 
380 #include <stdlib.h>
381 #include <stdio.h>
382 
383 #ifndef __UBOOT__
384 static void
buf_dump(char const * prefix,unsigned char const * buf,size_t len)385 buf_dump(char const *prefix, unsigned char const *buf, size_t len)
386 {
387 	fputs(prefix, stdout);
388 	while (len--)
389 		printf(" %02x", *buf++);
390 	putchar('\n');
391 
392 }
393 #endif
394 
bytereverse(unsigned char * buf,size_t len)395 static void bytereverse(unsigned char *buf, size_t len)
396 {
397 	while (len--) {
398 		unsigned char x = bitrev8(*buf);
399 		*buf++ = x;
400 	}
401 }
402 
random_garbage(unsigned char * buf,size_t len)403 static void random_garbage(unsigned char *buf, size_t len)
404 {
405 	while (len--)
406 		*buf++ = (unsigned char) random();
407 }
408 
409 #ifndef __UBOOT__
store_le(u32 x,unsigned char * buf)410 static void store_le(u32 x, unsigned char *buf)
411 {
412 	buf[0] = (unsigned char) x;
413 	buf[1] = (unsigned char) (x >> 8);
414 	buf[2] = (unsigned char) (x >> 16);
415 	buf[3] = (unsigned char) (x >> 24);
416 }
417 #endif
418 
store_be(u32 x,unsigned char * buf)419 static void store_be(u32 x, unsigned char *buf)
420 {
421 	buf[0] = (unsigned char) (x >> 24);
422 	buf[1] = (unsigned char) (x >> 16);
423 	buf[2] = (unsigned char) (x >> 8);
424 	buf[3] = (unsigned char) x;
425 }
426 
427 /*
428  * This checks that CRC(buf + CRC(buf)) = 0, and that
429  * CRC commutes with bit-reversal.  This has the side effect
430  * of bytewise bit-reversing the input buffer, and returns
431  * the CRC of the reversed buffer.
432  */
test_step(u32 init,unsigned char * buf,size_t len)433 static u32 test_step(u32 init, unsigned char *buf, size_t len)
434 {
435 	u32 crc1, crc2;
436 	size_t i;
437 
438 	crc1 = crc32_be(init, buf, len);
439 	store_be(crc1, buf + len);
440 	crc2 = crc32_be(init, buf, len + 4);
441 	if (crc2)
442 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
443 		       crc2);
444 
445 	for (i = 0; i <= len + 4; i++) {
446 		crc2 = crc32_be(init, buf, i);
447 		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
448 		if (crc2)
449 			printf("\nCRC split fail: 0x%08x\n", crc2);
450 	}
451 
452 	/* Now swap it around for the other test */
453 
454 	bytereverse(buf, len + 4);
455 	init = bitrev32(init);
456 	crc2 = bitrev32(crc1);
457 	if (crc1 != bitrev32(crc2))
458 		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
459 		       crc1, crc2, bitrev32(crc2));
460 	crc1 = crc32_le(init, buf, len);
461 	if (crc1 != crc2)
462 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
463 		       crc2);
464 	crc2 = crc32_le(init, buf, len + 4);
465 	if (crc2)
466 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
467 		       crc2);
468 
469 	for (i = 0; i <= len + 4; i++) {
470 		crc2 = crc32_le(init, buf, i);
471 		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
472 		if (crc2)
473 			printf("\nCRC split fail: 0x%08x\n", crc2);
474 	}
475 
476 	return crc1;
477 }
478 
479 #define SIZE 64
480 #define INIT1 0
481 #define INIT2 0
482 
main(void)483 int main(void)
484 {
485 	unsigned char buf1[SIZE + 4];
486 	unsigned char buf2[SIZE + 4];
487 	unsigned char buf3[SIZE + 4];
488 	int i, j;
489 	u32 crc1, crc2, crc3;
490 
491 	for (i = 0; i <= SIZE; i++) {
492 		printf("\rTesting length %d...", i);
493 		fflush(stdout);
494 		random_garbage(buf1, i);
495 		random_garbage(buf2, i);
496 		for (j = 0; j < i; j++)
497 			buf3[j] = buf1[j] ^ buf2[j];
498 
499 		crc1 = test_step(INIT1, buf1, i);
500 		crc2 = test_step(INIT2, buf2, i);
501 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
502 		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
503 		if (crc3 != (crc1 ^ crc2))
504 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
505 			       crc3, crc1, crc2);
506 	}
507 	printf("\nAll test complete.  No failures expected.\n");
508 	return 0;
509 }
510 
511 #endif				/* UNITTEST */
512