• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #ifndef __UBOOT__
77 #include <linux/crc32.h>
78 #include <linux/err.h>
79 #include <linux/slab.h>
80 #include <u-boot/crc.h>
81 #else
82 #include <hexdump.h>
83 #include <ubi_uboot.h>
84 #endif
85 
86 #include "ubi.h"
87 
88 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
89 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
90 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
91 			     const struct ubi_ec_hdr *ec_hdr);
92 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
93 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
94 			      const struct ubi_vid_hdr *vid_hdr);
95 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
96 			    int offset, int len);
97 
98 /**
99  * ubi_io_read - read data from a physical eraseblock.
100  * @ubi: UBI device description object
101  * @buf: buffer where to store the read data
102  * @pnum: physical eraseblock number to read from
103  * @offset: offset within the physical eraseblock from where to read
104  * @len: how many bytes to read
105  *
106  * This function reads data from offset @offset of physical eraseblock @pnum
107  * and stores the read data in the @buf buffer. The following return codes are
108  * possible:
109  *
110  * o %0 if all the requested data were successfully read;
111  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
112  *   correctable bit-flips were detected; this is harmless but may indicate
113  *   that this eraseblock may become bad soon (but do not have to);
114  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
115  *   example it can be an ECC error in case of NAND; this most probably means
116  *   that the data is corrupted;
117  * o %-EIO if some I/O error occurred;
118  * o other negative error codes in case of other errors.
119  */
ubi_io_read(const struct ubi_device * ubi,void * buf,int pnum,int offset,int len)120 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
121 		int len)
122 {
123 	int err, retries = 0;
124 	size_t read;
125 	loff_t addr;
126 
127 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
128 
129 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
130 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
131 	ubi_assert(len > 0);
132 
133 	err = self_check_not_bad(ubi, pnum);
134 	if (err)
135 		return err;
136 
137 	/*
138 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
139 	 * do not do this, the following may happen:
140 	 * 1. The buffer contains data from previous operation, e.g., read from
141 	 *    another PEB previously. The data looks like expected, e.g., if we
142 	 *    just do not read anything and return - the caller would not
143 	 *    notice this. E.g., if we are reading a VID header, the buffer may
144 	 *    contain a valid VID header from another PEB.
145 	 * 2. The driver is buggy and returns us success or -EBADMSG or
146 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
147 	 *
148 	 * This may confuse UBI or upper layers - they may think the buffer
149 	 * contains valid data while in fact it is just old data. This is
150 	 * especially possible because UBI (and UBIFS) relies on CRC, and
151 	 * treats data as correct even in case of ECC errors if the CRC is
152 	 * correct.
153 	 *
154 	 * Try to prevent this situation by changing the first byte of the
155 	 * buffer.
156 	 */
157 	*((uint8_t *)buf) ^= 0xFF;
158 
159 	addr = (loff_t)pnum * ubi->peb_size + offset;
160 retry:
161 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
162 	if (err) {
163 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
164 
165 		if (mtd_is_bitflip(err)) {
166 			/*
167 			 * -EUCLEAN is reported if there was a bit-flip which
168 			 * was corrected, so this is harmless.
169 			 *
170 			 * We do not report about it here unless debugging is
171 			 * enabled. A corresponding message will be printed
172 			 * later, when it is has been scrubbed.
173 			 */
174 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
175 				pnum);
176 			ubi_assert(len == read);
177 			return UBI_IO_BITFLIPS;
178 		}
179 
180 		if (retries++ < UBI_IO_RETRIES) {
181 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
182 				 err, errstr, len, pnum, offset, read);
183 			yield();
184 			goto retry;
185 		}
186 
187 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
188 			err, errstr, len, pnum, offset, read);
189 		dump_stack();
190 
191 		/*
192 		 * The driver should never return -EBADMSG if it failed to read
193 		 * all the requested data. But some buggy drivers might do
194 		 * this, so we change it to -EIO.
195 		 */
196 		if (read != len && mtd_is_eccerr(err)) {
197 			ubi_assert(0);
198 			err = -EIO;
199 		}
200 	} else {
201 		ubi_assert(len == read);
202 
203 		if (ubi_dbg_is_bitflip(ubi)) {
204 			dbg_gen("bit-flip (emulated)");
205 			err = UBI_IO_BITFLIPS;
206 		}
207 	}
208 
209 	return err;
210 }
211 
212 /**
213  * ubi_io_write - write data to a physical eraseblock.
214  * @ubi: UBI device description object
215  * @buf: buffer with the data to write
216  * @pnum: physical eraseblock number to write to
217  * @offset: offset within the physical eraseblock where to write
218  * @len: how many bytes to write
219  *
220  * This function writes @len bytes of data from buffer @buf to offset @offset
221  * of physical eraseblock @pnum. If all the data were successfully written,
222  * zero is returned. If an error occurred, this function returns a negative
223  * error code. If %-EIO is returned, the physical eraseblock most probably went
224  * bad.
225  *
226  * Note, in case of an error, it is possible that something was still written
227  * to the flash media, but may be some garbage.
228  */
ubi_io_write(struct ubi_device * ubi,const void * buf,int pnum,int offset,int len)229 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
230 		 int len)
231 {
232 	int err;
233 	size_t written;
234 	loff_t addr;
235 
236 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
237 
238 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
239 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
240 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
241 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
242 
243 	if (ubi->ro_mode) {
244 		ubi_err(ubi, "read-only mode");
245 		return -EROFS;
246 	}
247 
248 	err = self_check_not_bad(ubi, pnum);
249 	if (err)
250 		return err;
251 
252 	/* The area we are writing to has to contain all 0xFF bytes */
253 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
254 	if (err)
255 		return err;
256 
257 	if (offset >= ubi->leb_start) {
258 		/*
259 		 * We write to the data area of the physical eraseblock. Make
260 		 * sure it has valid EC and VID headers.
261 		 */
262 		err = self_check_peb_ec_hdr(ubi, pnum);
263 		if (err)
264 			return err;
265 		err = self_check_peb_vid_hdr(ubi, pnum);
266 		if (err)
267 			return err;
268 	}
269 
270 	if (ubi_dbg_is_write_failure(ubi)) {
271 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
272 			len, pnum, offset);
273 		dump_stack();
274 		return -EIO;
275 	}
276 
277 	addr = (loff_t)pnum * ubi->peb_size + offset;
278 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
279 	if (err) {
280 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
281 			err, len, pnum, offset, written);
282 		dump_stack();
283 		ubi_dump_flash(ubi, pnum, offset, len);
284 	} else
285 		ubi_assert(written == len);
286 
287 	if (!err) {
288 		err = self_check_write(ubi, buf, pnum, offset, len);
289 		if (err)
290 			return err;
291 
292 		/*
293 		 * Since we always write sequentially, the rest of the PEB has
294 		 * to contain only 0xFF bytes.
295 		 */
296 		offset += len;
297 		len = ubi->peb_size - offset;
298 		if (len)
299 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
300 	}
301 
302 	return err;
303 }
304 
305 /**
306  * erase_callback - MTD erasure call-back.
307  * @ei: MTD erase information object.
308  *
309  * Note, even though MTD erase interface is asynchronous, all the current
310  * implementations are synchronous anyway.
311  */
erase_callback(struct erase_info * ei)312 static void erase_callback(struct erase_info *ei)
313 {
314 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
315 }
316 
317 /**
318  * do_sync_erase - synchronously erase a physical eraseblock.
319  * @ubi: UBI device description object
320  * @pnum: the physical eraseblock number to erase
321  *
322  * This function synchronously erases physical eraseblock @pnum and returns
323  * zero in case of success and a negative error code in case of failure. If
324  * %-EIO is returned, the physical eraseblock most probably went bad.
325  */
do_sync_erase(struct ubi_device * ubi,int pnum)326 static int do_sync_erase(struct ubi_device *ubi, int pnum)
327 {
328 	int err, retries = 0;
329 	struct erase_info ei;
330 	wait_queue_head_t wq;
331 
332 	dbg_io("erase PEB %d", pnum);
333 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
334 
335 	if (ubi->ro_mode) {
336 		ubi_err(ubi, "read-only mode");
337 		return -EROFS;
338 	}
339 
340 retry:
341 	init_waitqueue_head(&wq);
342 	memset(&ei, 0, sizeof(struct erase_info));
343 
344 	ei.mtd      = ubi->mtd;
345 	ei.addr     = (loff_t)pnum * ubi->peb_size;
346 	ei.len      = ubi->peb_size;
347 	ei.callback = erase_callback;
348 	ei.priv     = (unsigned long)&wq;
349 
350 	err = mtd_erase(ubi->mtd, &ei);
351 	if (err) {
352 		if (retries++ < UBI_IO_RETRIES) {
353 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
354 				 err, pnum);
355 			yield();
356 			goto retry;
357 		}
358 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
359 		dump_stack();
360 		return err;
361 	}
362 
363 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
364 					   ei.state == MTD_ERASE_FAILED);
365 	if (err) {
366 		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
367 		return -EINTR;
368 	}
369 
370 	if (ei.state == MTD_ERASE_FAILED) {
371 		if (retries++ < UBI_IO_RETRIES) {
372 			ubi_warn(ubi, "error while erasing PEB %d, retry",
373 				 pnum);
374 			yield();
375 			goto retry;
376 		}
377 		ubi_err(ubi, "cannot erase PEB %d", pnum);
378 		dump_stack();
379 		return -EIO;
380 	}
381 
382 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
383 	if (err)
384 		return err;
385 
386 	if (ubi_dbg_is_erase_failure(ubi)) {
387 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
388 		return -EIO;
389 	}
390 
391 	return 0;
392 }
393 
394 /* Patterns to write to a physical eraseblock when torturing it */
395 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
396 
397 /**
398  * torture_peb - test a supposedly bad physical eraseblock.
399  * @ubi: UBI device description object
400  * @pnum: the physical eraseblock number to test
401  *
402  * This function returns %-EIO if the physical eraseblock did not pass the
403  * test, a positive number of erase operations done if the test was
404  * successfully passed, and other negative error codes in case of other errors.
405  */
torture_peb(struct ubi_device * ubi,int pnum)406 static int torture_peb(struct ubi_device *ubi, int pnum)
407 {
408 	int err, i, patt_count;
409 
410 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
411 	patt_count = ARRAY_SIZE(patterns);
412 	ubi_assert(patt_count > 0);
413 
414 	mutex_lock(&ubi->buf_mutex);
415 	for (i = 0; i < patt_count; i++) {
416 		err = do_sync_erase(ubi, pnum);
417 		if (err)
418 			goto out;
419 
420 		/* Make sure the PEB contains only 0xFF bytes */
421 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
422 		if (err)
423 			goto out;
424 
425 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
426 		if (err == 0) {
427 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
428 				pnum);
429 			err = -EIO;
430 			goto out;
431 		}
432 
433 		/* Write a pattern and check it */
434 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
435 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
436 		if (err)
437 			goto out;
438 
439 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
440 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
441 		if (err)
442 			goto out;
443 
444 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
445 					ubi->peb_size);
446 		if (err == 0) {
447 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
448 				patterns[i], pnum);
449 			err = -EIO;
450 			goto out;
451 		}
452 	}
453 
454 	err = patt_count;
455 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
456 
457 out:
458 	mutex_unlock(&ubi->buf_mutex);
459 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
460 		/*
461 		 * If a bit-flip or data integrity error was detected, the test
462 		 * has not passed because it happened on a freshly erased
463 		 * physical eraseblock which means something is wrong with it.
464 		 */
465 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
466 			pnum);
467 		err = -EIO;
468 	}
469 	return err;
470 }
471 
472 /**
473  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
474  * @ubi: UBI device description object
475  * @pnum: physical eraseblock number to prepare
476  *
477  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
478  * algorithm: the PEB is first filled with zeroes, then it is erased. And
479  * filling with zeroes starts from the end of the PEB. This was observed with
480  * Spansion S29GL512N NOR flash.
481  *
482  * This means that in case of a power cut we may end up with intact data at the
483  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
484  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
485  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
486  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
487  *
488  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
489  * magic numbers in order to invalidate them and prevent the failures. Returns
490  * zero in case of success and a negative error code in case of failure.
491  */
nor_erase_prepare(struct ubi_device * ubi,int pnum)492 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
493 {
494 	int err;
495 	size_t written;
496 	loff_t addr;
497 	uint32_t data = 0;
498 	struct ubi_ec_hdr ec_hdr;
499 
500 	/*
501 	 * Note, we cannot generally define VID header buffers on stack,
502 	 * because of the way we deal with these buffers (see the header
503 	 * comment in this file). But we know this is a NOR-specific piece of
504 	 * code, so we can do this. But yes, this is error-prone and we should
505 	 * (pre-)allocate VID header buffer instead.
506 	 */
507 	struct ubi_vid_hdr vid_hdr;
508 
509 	/*
510 	 * If VID or EC is valid, we have to corrupt them before erasing.
511 	 * It is important to first invalidate the EC header, and then the VID
512 	 * header. Otherwise a power cut may lead to valid EC header and
513 	 * invalid VID header, in which case UBI will treat this PEB as
514 	 * corrupted and will try to preserve it, and print scary warnings.
515 	 */
516 	addr = (loff_t)pnum * ubi->peb_size;
517 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
518 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
519 	    err != UBI_IO_FF){
520 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
521 		if(err)
522 			goto error;
523 	}
524 
525 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
526 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
527 	    err != UBI_IO_FF){
528 		addr += ubi->vid_hdr_aloffset;
529 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
530 		if (err)
531 			goto error;
532 	}
533 	return 0;
534 
535 error:
536 	/*
537 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
538 	 * it. Supposedly the flash media or the driver is screwed up, so
539 	 * return an error.
540 	 */
541 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
542 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
543 	return -EIO;
544 }
545 
546 /**
547  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
548  * @ubi: UBI device description object
549  * @pnum: physical eraseblock number to erase
550  * @torture: if this physical eraseblock has to be tortured
551  *
552  * This function synchronously erases physical eraseblock @pnum. If @torture
553  * flag is not zero, the physical eraseblock is checked by means of writing
554  * different patterns to it and reading them back. If the torturing is enabled,
555  * the physical eraseblock is erased more than once.
556  *
557  * This function returns the number of erasures made in case of success, %-EIO
558  * if the erasure failed or the torturing test failed, and other negative error
559  * codes in case of other errors. Note, %-EIO means that the physical
560  * eraseblock is bad.
561  */
ubi_io_sync_erase(struct ubi_device * ubi,int pnum,int torture)562 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
563 {
564 	int err, ret = 0;
565 
566 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
567 
568 	err = self_check_not_bad(ubi, pnum);
569 	if (err != 0)
570 		return err;
571 
572 	if (ubi->ro_mode) {
573 		ubi_err(ubi, "read-only mode");
574 		return -EROFS;
575 	}
576 
577 	if (ubi->nor_flash) {
578 		err = nor_erase_prepare(ubi, pnum);
579 		if (err)
580 			return err;
581 	}
582 
583 	if (torture) {
584 		ret = torture_peb(ubi, pnum);
585 		if (ret < 0)
586 			return ret;
587 	}
588 
589 	err = do_sync_erase(ubi, pnum);
590 	if (err)
591 		return err;
592 
593 	return ret + 1;
594 }
595 
596 /**
597  * ubi_io_is_bad - check if a physical eraseblock is bad.
598  * @ubi: UBI device description object
599  * @pnum: the physical eraseblock number to check
600  *
601  * This function returns a positive number if the physical eraseblock is bad,
602  * zero if not, and a negative error code if an error occurred.
603  */
ubi_io_is_bad(const struct ubi_device * ubi,int pnum)604 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
605 {
606 	struct mtd_info *mtd = ubi->mtd;
607 
608 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
609 
610 	if (ubi->bad_allowed) {
611 		int ret;
612 
613 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
614 		if (ret < 0)
615 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
616 				ret, pnum);
617 		else if (ret)
618 			dbg_io("PEB %d is bad", pnum);
619 		return ret;
620 	}
621 
622 	return 0;
623 }
624 
625 /**
626  * ubi_io_mark_bad - mark a physical eraseblock as bad.
627  * @ubi: UBI device description object
628  * @pnum: the physical eraseblock number to mark
629  *
630  * This function returns zero in case of success and a negative error code in
631  * case of failure.
632  */
ubi_io_mark_bad(const struct ubi_device * ubi,int pnum)633 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
634 {
635 	int err;
636 	struct mtd_info *mtd = ubi->mtd;
637 
638 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
639 
640 	if (ubi->ro_mode) {
641 		ubi_err(ubi, "read-only mode");
642 		return -EROFS;
643 	}
644 
645 	if (!ubi->bad_allowed)
646 		return 0;
647 
648 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
649 	if (err)
650 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
651 	return err;
652 }
653 
654 /**
655  * validate_ec_hdr - validate an erase counter header.
656  * @ubi: UBI device description object
657  * @ec_hdr: the erase counter header to check
658  *
659  * This function returns zero if the erase counter header is OK, and %1 if
660  * not.
661  */
validate_ec_hdr(const struct ubi_device * ubi,const struct ubi_ec_hdr * ec_hdr)662 static int validate_ec_hdr(const struct ubi_device *ubi,
663 			   const struct ubi_ec_hdr *ec_hdr)
664 {
665 	long long ec;
666 	int vid_hdr_offset, leb_start;
667 
668 	ec = be64_to_cpu(ec_hdr->ec);
669 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
670 	leb_start = be32_to_cpu(ec_hdr->data_offset);
671 
672 	if (ec_hdr->version != UBI_VERSION) {
673 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
674 			UBI_VERSION, (int)ec_hdr->version);
675 		goto bad;
676 	}
677 
678 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
679 		ubi_err(ubi, "bad VID header offset %d, expected %d",
680 			vid_hdr_offset, ubi->vid_hdr_offset);
681 		goto bad;
682 	}
683 
684 	if (leb_start != ubi->leb_start) {
685 		ubi_err(ubi, "bad data offset %d, expected %d",
686 			leb_start, ubi->leb_start);
687 		goto bad;
688 	}
689 
690 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
691 		ubi_err(ubi, "bad erase counter %lld", ec);
692 		goto bad;
693 	}
694 
695 	return 0;
696 
697 bad:
698 	ubi_err(ubi, "bad EC header");
699 	ubi_dump_ec_hdr(ec_hdr);
700 	dump_stack();
701 	return 1;
702 }
703 
704 /**
705  * ubi_io_read_ec_hdr - read and check an erase counter header.
706  * @ubi: UBI device description object
707  * @pnum: physical eraseblock to read from
708  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
709  * header
710  * @verbose: be verbose if the header is corrupted or was not found
711  *
712  * This function reads erase counter header from physical eraseblock @pnum and
713  * stores it in @ec_hdr. This function also checks CRC checksum of the read
714  * erase counter header. The following codes may be returned:
715  *
716  * o %0 if the CRC checksum is correct and the header was successfully read;
717  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
718  *   and corrected by the flash driver; this is harmless but may indicate that
719  *   this eraseblock may become bad soon (but may be not);
720  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
721  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
722  *   a data integrity error (uncorrectable ECC error in case of NAND);
723  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
724  * o a negative error code in case of failure.
725  */
ubi_io_read_ec_hdr(struct ubi_device * ubi,int pnum,struct ubi_ec_hdr * ec_hdr,int verbose)726 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
727 		       struct ubi_ec_hdr *ec_hdr, int verbose)
728 {
729 	int err, read_err;
730 	uint32_t crc, magic, hdr_crc;
731 
732 	dbg_io("read EC header from PEB %d", pnum);
733 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
734 
735 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
736 	if (read_err) {
737 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
738 			return read_err;
739 
740 		/*
741 		 * We read all the data, but either a correctable bit-flip
742 		 * occurred, or MTD reported a data integrity error
743 		 * (uncorrectable ECC error in case of NAND). The former is
744 		 * harmless, the later may mean that the read data is
745 		 * corrupted. But we have a CRC check-sum and we will detect
746 		 * this. If the EC header is still OK, we just report this as
747 		 * there was a bit-flip, to force scrubbing.
748 		 */
749 	}
750 
751 	magic = be32_to_cpu(ec_hdr->magic);
752 	if (magic != UBI_EC_HDR_MAGIC) {
753 		if (mtd_is_eccerr(read_err))
754 			return UBI_IO_BAD_HDR_EBADMSG;
755 
756 		/*
757 		 * The magic field is wrong. Let's check if we have read all
758 		 * 0xFF. If yes, this physical eraseblock is assumed to be
759 		 * empty.
760 		 */
761 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
762 			/* The physical eraseblock is supposedly empty */
763 			if (verbose)
764 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
765 					 pnum);
766 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
767 				pnum);
768 			if (!read_err)
769 				return UBI_IO_FF;
770 			else
771 				return UBI_IO_FF_BITFLIPS;
772 		}
773 
774 		/*
775 		 * This is not a valid erase counter header, and these are not
776 		 * 0xFF bytes. Report that the header is corrupted.
777 		 */
778 		if (verbose) {
779 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
780 				 pnum, magic, UBI_EC_HDR_MAGIC);
781 			ubi_dump_ec_hdr(ec_hdr);
782 		}
783 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
784 			pnum, magic, UBI_EC_HDR_MAGIC);
785 		return UBI_IO_BAD_HDR;
786 	}
787 
788 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
789 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
790 
791 	if (hdr_crc != crc) {
792 		if (verbose) {
793 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
794 				 pnum, crc, hdr_crc);
795 			ubi_dump_ec_hdr(ec_hdr);
796 		}
797 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
798 			pnum, crc, hdr_crc);
799 
800 		if (!read_err)
801 			return UBI_IO_BAD_HDR;
802 		else
803 			return UBI_IO_BAD_HDR_EBADMSG;
804 	}
805 
806 	/* And of course validate what has just been read from the media */
807 	err = validate_ec_hdr(ubi, ec_hdr);
808 	if (err) {
809 		ubi_err(ubi, "validation failed for PEB %d", pnum);
810 		return -EINVAL;
811 	}
812 
813 	/*
814 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
815 	 * a bit-flip to force scrubbing on this PEB.
816 	 */
817 	return read_err ? UBI_IO_BITFLIPS : 0;
818 }
819 
820 /**
821  * ubi_io_write_ec_hdr - write an erase counter header.
822  * @ubi: UBI device description object
823  * @pnum: physical eraseblock to write to
824  * @ec_hdr: the erase counter header to write
825  *
826  * This function writes erase counter header described by @ec_hdr to physical
827  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
828  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
829  * field.
830  *
831  * This function returns zero in case of success and a negative error code in
832  * case of failure. If %-EIO is returned, the physical eraseblock most probably
833  * went bad.
834  */
ubi_io_write_ec_hdr(struct ubi_device * ubi,int pnum,struct ubi_ec_hdr * ec_hdr)835 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
836 			struct ubi_ec_hdr *ec_hdr)
837 {
838 	int err;
839 	uint32_t crc;
840 
841 	dbg_io("write EC header to PEB %d", pnum);
842 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
843 
844 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
845 	ec_hdr->version = UBI_VERSION;
846 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
847 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
848 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
849 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
850 	ec_hdr->hdr_crc = cpu_to_be32(crc);
851 
852 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
853 	if (err)
854 		return err;
855 
856 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
857 		return -EROFS;
858 
859 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
860 	return err;
861 }
862 
863 /**
864  * validate_vid_hdr - validate a volume identifier header.
865  * @ubi: UBI device description object
866  * @vid_hdr: the volume identifier header to check
867  *
868  * This function checks that data stored in the volume identifier header
869  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
870  */
validate_vid_hdr(const struct ubi_device * ubi,const struct ubi_vid_hdr * vid_hdr)871 static int validate_vid_hdr(const struct ubi_device *ubi,
872 			    const struct ubi_vid_hdr *vid_hdr)
873 {
874 	int vol_type = vid_hdr->vol_type;
875 	int copy_flag = vid_hdr->copy_flag;
876 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
877 	int lnum = be32_to_cpu(vid_hdr->lnum);
878 	int compat = vid_hdr->compat;
879 	int data_size = be32_to_cpu(vid_hdr->data_size);
880 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
881 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
882 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
883 	int usable_leb_size = ubi->leb_size - data_pad;
884 
885 	if (copy_flag != 0 && copy_flag != 1) {
886 		ubi_err(ubi, "bad copy_flag");
887 		goto bad;
888 	}
889 
890 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
891 	    data_pad < 0) {
892 		ubi_err(ubi, "negative values");
893 		goto bad;
894 	}
895 
896 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
897 		ubi_err(ubi, "bad vol_id");
898 		goto bad;
899 	}
900 
901 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
902 		ubi_err(ubi, "bad compat");
903 		goto bad;
904 	}
905 
906 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
907 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
908 	    compat != UBI_COMPAT_REJECT) {
909 		ubi_err(ubi, "bad compat");
910 		goto bad;
911 	}
912 
913 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
914 		ubi_err(ubi, "bad vol_type");
915 		goto bad;
916 	}
917 
918 	if (data_pad >= ubi->leb_size / 2) {
919 		ubi_err(ubi, "bad data_pad");
920 		goto bad;
921 	}
922 
923 	if (vol_type == UBI_VID_STATIC) {
924 		/*
925 		 * Although from high-level point of view static volumes may
926 		 * contain zero bytes of data, but no VID headers can contain
927 		 * zero at these fields, because they empty volumes do not have
928 		 * mapped logical eraseblocks.
929 		 */
930 		if (used_ebs == 0) {
931 			ubi_err(ubi, "zero used_ebs");
932 			goto bad;
933 		}
934 		if (data_size == 0) {
935 			ubi_err(ubi, "zero data_size");
936 			goto bad;
937 		}
938 		if (lnum < used_ebs - 1) {
939 			if (data_size != usable_leb_size) {
940 				ubi_err(ubi, "bad data_size");
941 				goto bad;
942 			}
943 		} else if (lnum == used_ebs - 1) {
944 			if (data_size == 0) {
945 				ubi_err(ubi, "bad data_size at last LEB");
946 				goto bad;
947 			}
948 		} else {
949 			ubi_err(ubi, "too high lnum");
950 			goto bad;
951 		}
952 	} else {
953 		if (copy_flag == 0) {
954 			if (data_crc != 0) {
955 				ubi_err(ubi, "non-zero data CRC");
956 				goto bad;
957 			}
958 			if (data_size != 0) {
959 				ubi_err(ubi, "non-zero data_size");
960 				goto bad;
961 			}
962 		} else {
963 			if (data_size == 0) {
964 				ubi_err(ubi, "zero data_size of copy");
965 				goto bad;
966 			}
967 		}
968 		if (used_ebs != 0) {
969 			ubi_err(ubi, "bad used_ebs");
970 			goto bad;
971 		}
972 	}
973 
974 	return 0;
975 
976 bad:
977 	ubi_err(ubi, "bad VID header");
978 	ubi_dump_vid_hdr(vid_hdr);
979 	dump_stack();
980 	return 1;
981 }
982 
983 /**
984  * ubi_io_read_vid_hdr - read and check a volume identifier header.
985  * @ubi: UBI device description object
986  * @pnum: physical eraseblock number to read from
987  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
988  * identifier header
989  * @verbose: be verbose if the header is corrupted or wasn't found
990  *
991  * This function reads the volume identifier header from physical eraseblock
992  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
993  * volume identifier header. The error codes are the same as in
994  * 'ubi_io_read_ec_hdr()'.
995  *
996  * Note, the implementation of this function is also very similar to
997  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
998  */
ubi_io_read_vid_hdr(struct ubi_device * ubi,int pnum,struct ubi_vid_hdr * vid_hdr,int verbose)999 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1000 			struct ubi_vid_hdr *vid_hdr, int verbose)
1001 {
1002 	int err, read_err;
1003 	uint32_t crc, magic, hdr_crc;
1004 	void *p;
1005 
1006 	dbg_io("read VID header from PEB %d", pnum);
1007 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1008 
1009 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1010 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1011 			  ubi->vid_hdr_alsize);
1012 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1013 		return read_err;
1014 
1015 	magic = be32_to_cpu(vid_hdr->magic);
1016 	if (magic != UBI_VID_HDR_MAGIC) {
1017 		if (mtd_is_eccerr(read_err))
1018 			return UBI_IO_BAD_HDR_EBADMSG;
1019 
1020 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1021 			if (verbose)
1022 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1023 					 pnum);
1024 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1025 				pnum);
1026 			if (!read_err)
1027 				return UBI_IO_FF;
1028 			else
1029 				return UBI_IO_FF_BITFLIPS;
1030 		}
1031 
1032 		if (verbose) {
1033 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1034 				 pnum, magic, UBI_VID_HDR_MAGIC);
1035 			ubi_dump_vid_hdr(vid_hdr);
1036 		}
1037 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1038 			pnum, magic, UBI_VID_HDR_MAGIC);
1039 		return UBI_IO_BAD_HDR;
1040 	}
1041 
1042 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1043 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1044 
1045 	if (hdr_crc != crc) {
1046 		if (verbose) {
1047 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1048 				 pnum, crc, hdr_crc);
1049 			ubi_dump_vid_hdr(vid_hdr);
1050 		}
1051 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1052 			pnum, crc, hdr_crc);
1053 		if (!read_err)
1054 			return UBI_IO_BAD_HDR;
1055 		else
1056 			return UBI_IO_BAD_HDR_EBADMSG;
1057 	}
1058 
1059 	err = validate_vid_hdr(ubi, vid_hdr);
1060 	if (err) {
1061 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1062 		return -EINVAL;
1063 	}
1064 
1065 	return read_err ? UBI_IO_BITFLIPS : 0;
1066 }
1067 
1068 /**
1069  * ubi_io_write_vid_hdr - write a volume identifier header.
1070  * @ubi: UBI device description object
1071  * @pnum: the physical eraseblock number to write to
1072  * @vid_hdr: the volume identifier header to write
1073  *
1074  * This function writes the volume identifier header described by @vid_hdr to
1075  * physical eraseblock @pnum. This function automatically fills the
1076  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1077  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1078  *
1079  * This function returns zero in case of success and a negative error code in
1080  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1081  * bad.
1082  */
ubi_io_write_vid_hdr(struct ubi_device * ubi,int pnum,struct ubi_vid_hdr * vid_hdr)1083 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1084 			 struct ubi_vid_hdr *vid_hdr)
1085 {
1086 	int err;
1087 	uint32_t crc;
1088 	void *p;
1089 
1090 	dbg_io("write VID header to PEB %d", pnum);
1091 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1092 
1093 	err = self_check_peb_ec_hdr(ubi, pnum);
1094 	if (err)
1095 		return err;
1096 
1097 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1098 	vid_hdr->version = UBI_VERSION;
1099 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1100 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1101 
1102 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1103 	if (err)
1104 		return err;
1105 
1106 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1107 		return -EROFS;
1108 
1109 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1110 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1111 			   ubi->vid_hdr_alsize);
1112 	return err;
1113 }
1114 
1115 /**
1116  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1117  * @ubi: UBI device description object
1118  * @pnum: physical eraseblock number to check
1119  *
1120  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1121  * it is bad and a negative error code if an error occurred.
1122  */
self_check_not_bad(const struct ubi_device * ubi,int pnum)1123 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1124 {
1125 	int err;
1126 
1127 	if (!ubi_dbg_chk_io(ubi))
1128 		return 0;
1129 
1130 	err = ubi_io_is_bad(ubi, pnum);
1131 	if (!err)
1132 		return err;
1133 
1134 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1135 	dump_stack();
1136 	return err > 0 ? -EINVAL : err;
1137 }
1138 
1139 /**
1140  * self_check_ec_hdr - check if an erase counter header is all right.
1141  * @ubi: UBI device description object
1142  * @pnum: physical eraseblock number the erase counter header belongs to
1143  * @ec_hdr: the erase counter header to check
1144  *
1145  * This function returns zero if the erase counter header contains valid
1146  * values, and %-EINVAL if not.
1147  */
self_check_ec_hdr(const struct ubi_device * ubi,int pnum,const struct ubi_ec_hdr * ec_hdr)1148 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1149 			     const struct ubi_ec_hdr *ec_hdr)
1150 {
1151 	int err;
1152 	uint32_t magic;
1153 
1154 	if (!ubi_dbg_chk_io(ubi))
1155 		return 0;
1156 
1157 	magic = be32_to_cpu(ec_hdr->magic);
1158 	if (magic != UBI_EC_HDR_MAGIC) {
1159 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1160 			magic, UBI_EC_HDR_MAGIC);
1161 		goto fail;
1162 	}
1163 
1164 	err = validate_ec_hdr(ubi, ec_hdr);
1165 	if (err) {
1166 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1167 		goto fail;
1168 	}
1169 
1170 	return 0;
1171 
1172 fail:
1173 	ubi_dump_ec_hdr(ec_hdr);
1174 	dump_stack();
1175 	return -EINVAL;
1176 }
1177 
1178 /**
1179  * self_check_peb_ec_hdr - check erase counter header.
1180  * @ubi: UBI device description object
1181  * @pnum: the physical eraseblock number to check
1182  *
1183  * This function returns zero if the erase counter header is all right and and
1184  * a negative error code if not or if an error occurred.
1185  */
self_check_peb_ec_hdr(const struct ubi_device * ubi,int pnum)1186 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1187 {
1188 	int err;
1189 	uint32_t crc, hdr_crc;
1190 	struct ubi_ec_hdr *ec_hdr;
1191 
1192 	if (!ubi_dbg_chk_io(ubi))
1193 		return 0;
1194 
1195 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1196 	if (!ec_hdr)
1197 		return -ENOMEM;
1198 
1199 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1200 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1201 		goto exit;
1202 
1203 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1204 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1205 	if (hdr_crc != crc) {
1206 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1207 			crc, hdr_crc);
1208 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1209 		ubi_dump_ec_hdr(ec_hdr);
1210 		dump_stack();
1211 		err = -EINVAL;
1212 		goto exit;
1213 	}
1214 
1215 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1216 
1217 exit:
1218 	kfree(ec_hdr);
1219 	return err;
1220 }
1221 
1222 /**
1223  * self_check_vid_hdr - check that a volume identifier header is all right.
1224  * @ubi: UBI device description object
1225  * @pnum: physical eraseblock number the volume identifier header belongs to
1226  * @vid_hdr: the volume identifier header to check
1227  *
1228  * This function returns zero if the volume identifier header is all right, and
1229  * %-EINVAL if not.
1230  */
self_check_vid_hdr(const struct ubi_device * ubi,int pnum,const struct ubi_vid_hdr * vid_hdr)1231 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1232 			      const struct ubi_vid_hdr *vid_hdr)
1233 {
1234 	int err;
1235 	uint32_t magic;
1236 
1237 	if (!ubi_dbg_chk_io(ubi))
1238 		return 0;
1239 
1240 	magic = be32_to_cpu(vid_hdr->magic);
1241 	if (magic != UBI_VID_HDR_MAGIC) {
1242 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1243 			magic, pnum, UBI_VID_HDR_MAGIC);
1244 		goto fail;
1245 	}
1246 
1247 	err = validate_vid_hdr(ubi, vid_hdr);
1248 	if (err) {
1249 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1250 		goto fail;
1251 	}
1252 
1253 	return err;
1254 
1255 fail:
1256 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1257 	ubi_dump_vid_hdr(vid_hdr);
1258 	dump_stack();
1259 	return -EINVAL;
1260 
1261 }
1262 
1263 /**
1264  * self_check_peb_vid_hdr - check volume identifier header.
1265  * @ubi: UBI device description object
1266  * @pnum: the physical eraseblock number to check
1267  *
1268  * This function returns zero if the volume identifier header is all right,
1269  * and a negative error code if not or if an error occurred.
1270  */
self_check_peb_vid_hdr(const struct ubi_device * ubi,int pnum)1271 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1272 {
1273 	int err;
1274 	uint32_t crc, hdr_crc;
1275 	struct ubi_vid_hdr *vid_hdr;
1276 	void *p;
1277 
1278 	if (!ubi_dbg_chk_io(ubi))
1279 		return 0;
1280 
1281 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1282 	if (!vid_hdr)
1283 		return -ENOMEM;
1284 
1285 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1286 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1287 			  ubi->vid_hdr_alsize);
1288 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1289 		goto exit;
1290 
1291 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1292 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1293 	if (hdr_crc != crc) {
1294 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1295 			pnum, crc, hdr_crc);
1296 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1297 		ubi_dump_vid_hdr(vid_hdr);
1298 		dump_stack();
1299 		err = -EINVAL;
1300 		goto exit;
1301 	}
1302 
1303 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1304 
1305 exit:
1306 	ubi_free_vid_hdr(ubi, vid_hdr);
1307 	return err;
1308 }
1309 
1310 /**
1311  * self_check_write - make sure write succeeded.
1312  * @ubi: UBI device description object
1313  * @buf: buffer with data which were written
1314  * @pnum: physical eraseblock number the data were written to
1315  * @offset: offset within the physical eraseblock the data were written to
1316  * @len: how many bytes were written
1317  *
1318  * This functions reads data which were recently written and compares it with
1319  * the original data buffer - the data have to match. Returns zero if the data
1320  * match and a negative error code if not or in case of failure.
1321  */
self_check_write(struct ubi_device * ubi,const void * buf,int pnum,int offset,int len)1322 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1323 			    int offset, int len)
1324 {
1325 	int err, i;
1326 	size_t read;
1327 	void *buf1;
1328 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1329 
1330 	if (!ubi_dbg_chk_io(ubi))
1331 		return 0;
1332 
1333 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1334 	if (!buf1) {
1335 		ubi_err(ubi, "cannot allocate memory to check writes");
1336 		return 0;
1337 	}
1338 
1339 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1340 	if (err && !mtd_is_bitflip(err))
1341 		goto out_free;
1342 
1343 	for (i = 0; i < len; i++) {
1344 		uint8_t c = ((uint8_t *)buf)[i];
1345 		uint8_t c1 = ((uint8_t *)buf1)[i];
1346 #if !defined(CONFIG_UBI_SILENCE_MSG)
1347 		int dump_len = max_t(int, 128, len - i);
1348 #endif
1349 
1350 		if (c == c1)
1351 			continue;
1352 
1353 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1354 			pnum, offset, len);
1355 #if !defined(CONFIG_UBI_SILENCE_MSG)
1356 		ubi_msg(ubi, "data differ at position %d", i);
1357 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1358 			i, i + dump_len);
1359 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
1360 			       buf + i, dump_len, 1);
1361 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1362 			i, i + dump_len);
1363 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
1364 			       buf1 + i, dump_len, 1);
1365 #endif
1366 		dump_stack();
1367 		err = -EINVAL;
1368 		goto out_free;
1369 	}
1370 
1371 	vfree(buf1);
1372 	return 0;
1373 
1374 out_free:
1375 	vfree(buf1);
1376 	return err;
1377 }
1378 
1379 /**
1380  * ubi_self_check_all_ff - check that a region of flash is empty.
1381  * @ubi: UBI device description object
1382  * @pnum: the physical eraseblock number to check
1383  * @offset: the starting offset within the physical eraseblock to check
1384  * @len: the length of the region to check
1385  *
1386  * This function returns zero if only 0xFF bytes are present at offset
1387  * @offset of the physical eraseblock @pnum, and a negative error code if not
1388  * or if an error occurred.
1389  */
ubi_self_check_all_ff(struct ubi_device * ubi,int pnum,int offset,int len)1390 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1391 {
1392 	size_t read;
1393 	int err;
1394 	void *buf;
1395 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1396 
1397 	if (!ubi_dbg_chk_io(ubi))
1398 		return 0;
1399 
1400 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1401 	if (!buf) {
1402 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1403 		return 0;
1404 	}
1405 
1406 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1407 	if (err && !mtd_is_bitflip(err)) {
1408 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1409 			err, len, pnum, offset, read);
1410 		goto error;
1411 	}
1412 
1413 	err = ubi_check_pattern(buf, 0xFF, len);
1414 	if (err == 0) {
1415 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1416 			pnum, offset, len);
1417 		goto fail;
1418 	}
1419 
1420 	vfree(buf);
1421 	return 0;
1422 
1423 fail:
1424 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1425 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1426 	print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1427 	err = -EINVAL;
1428 error:
1429 	dump_stack();
1430 	vfree(buf);
1431 	return err;
1432 }
1433