1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 NXP Semiconductors
4 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5 */
6
7 #include <common.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <memalign.h>
12 #include <pci.h>
13 #include <time.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16
17 #define NVME_Q_DEPTH 2
18 #define NVME_AQ_DEPTH 2
19 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
21 #define ADMIN_TIMEOUT 60
22 #define IO_TIMEOUT 30
23 #define MAX_PRP_POOL 512
24
25 enum nvme_queue_id {
26 NVME_ADMIN_Q,
27 NVME_IO_Q,
28 NVME_Q_NUM,
29 };
30
31 /*
32 * An NVM Express queue. Each device has at least two (one for admin
33 * commands and one for I/O commands).
34 */
35 struct nvme_queue {
36 struct nvme_dev *dev;
37 struct nvme_command *sq_cmds;
38 struct nvme_completion *cqes;
39 wait_queue_head_t sq_full;
40 u32 __iomem *q_db;
41 u16 q_depth;
42 s16 cq_vector;
43 u16 sq_head;
44 u16 sq_tail;
45 u16 cq_head;
46 u16 qid;
47 u8 cq_phase;
48 u8 cqe_seen;
49 unsigned long cmdid_data[];
50 };
51
nvme_wait_ready(struct nvme_dev * dev,bool enabled)52 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
53 {
54 u32 bit = enabled ? NVME_CSTS_RDY : 0;
55 int timeout;
56 ulong start;
57
58 /* Timeout field in the CAP register is in 500 millisecond units */
59 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
60
61 start = get_timer(0);
62 while (get_timer(start) < timeout) {
63 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
64 return 0;
65 }
66
67 return -ETIME;
68 }
69
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)70 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
71 int total_len, u64 dma_addr)
72 {
73 u32 page_size = dev->page_size;
74 int offset = dma_addr & (page_size - 1);
75 u64 *prp_pool;
76 int length = total_len;
77 int i, nprps;
78 u32 prps_per_page = (page_size >> 3) - 1;
79 u32 num_pages;
80
81 length -= (page_size - offset);
82
83 if (length <= 0) {
84 *prp2 = 0;
85 return 0;
86 }
87
88 if (length)
89 dma_addr += (page_size - offset);
90
91 if (length <= page_size) {
92 *prp2 = dma_addr;
93 return 0;
94 }
95
96 nprps = DIV_ROUND_UP(length, page_size);
97 num_pages = DIV_ROUND_UP(nprps, prps_per_page);
98
99 if (nprps > dev->prp_entry_num) {
100 free(dev->prp_pool);
101 /*
102 * Always increase in increments of pages. It doesn't waste
103 * much memory and reduces the number of allocations.
104 */
105 dev->prp_pool = memalign(page_size, num_pages * page_size);
106 if (!dev->prp_pool) {
107 printf("Error: malloc prp_pool fail\n");
108 return -ENOMEM;
109 }
110 dev->prp_entry_num = prps_per_page * num_pages;
111 }
112
113 prp_pool = dev->prp_pool;
114 i = 0;
115 while (nprps) {
116 if (i == ((page_size >> 3) - 1)) {
117 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
118 page_size);
119 i = 0;
120 prp_pool += page_size;
121 }
122 *(prp_pool + i++) = cpu_to_le64(dma_addr);
123 dma_addr += page_size;
124 nprps--;
125 }
126 *prp2 = (ulong)dev->prp_pool;
127
128 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
129 dev->prp_entry_num * sizeof(u64));
130
131 return 0;
132 }
133
nvme_get_cmd_id(void)134 static __le16 nvme_get_cmd_id(void)
135 {
136 static unsigned short cmdid;
137
138 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
139 }
140
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)141 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
142 {
143 u64 start = (ulong)&nvmeq->cqes[index];
144 u64 stop = start + sizeof(struct nvme_completion);
145
146 invalidate_dcache_range(start, stop);
147
148 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
149 }
150
151 /**
152 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
153 *
154 * @nvmeq: The queue to use
155 * @cmd: The command to send
156 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)157 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
158 {
159 u16 tail = nvmeq->sq_tail;
160
161 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
162 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
163 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
164
165 if (++tail == nvmeq->q_depth)
166 tail = 0;
167 writel(tail, nvmeq->q_db);
168 nvmeq->sq_tail = tail;
169 }
170
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)171 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
172 struct nvme_command *cmd,
173 u32 *result, unsigned timeout)
174 {
175 u16 head = nvmeq->cq_head;
176 u16 phase = nvmeq->cq_phase;
177 u16 status;
178 ulong start_time;
179 ulong timeout_us = timeout * 100000;
180
181 cmd->common.command_id = nvme_get_cmd_id();
182 nvme_submit_cmd(nvmeq, cmd);
183
184 start_time = timer_get_us();
185
186 for (;;) {
187 status = nvme_read_completion_status(nvmeq, head);
188 if ((status & 0x01) == phase)
189 break;
190 if (timeout_us > 0 && (timer_get_us() - start_time)
191 >= timeout_us)
192 return -ETIMEDOUT;
193 }
194
195 status >>= 1;
196 if (status) {
197 printf("ERROR: status = %x, phase = %d, head = %d\n",
198 status, phase, head);
199 status = 0;
200 if (++head == nvmeq->q_depth) {
201 head = 0;
202 phase = !phase;
203 }
204 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
205 nvmeq->cq_head = head;
206 nvmeq->cq_phase = phase;
207
208 return -EIO;
209 }
210
211 if (result)
212 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
213
214 if (++head == nvmeq->q_depth) {
215 head = 0;
216 phase = !phase;
217 }
218 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
219 nvmeq->cq_head = head;
220 nvmeq->cq_phase = phase;
221
222 return status;
223 }
224
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)225 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
226 u32 *result)
227 {
228 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
229 result, ADMIN_TIMEOUT);
230 }
231
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)232 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
233 int qid, int depth)
234 {
235 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
236 if (!nvmeq)
237 return NULL;
238 memset(nvmeq, 0, sizeof(*nvmeq));
239
240 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
241 if (!nvmeq->cqes)
242 goto free_nvmeq;
243 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
244
245 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
246 if (!nvmeq->sq_cmds)
247 goto free_queue;
248 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
249
250 nvmeq->dev = dev;
251
252 nvmeq->cq_head = 0;
253 nvmeq->cq_phase = 1;
254 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
255 nvmeq->q_depth = depth;
256 nvmeq->qid = qid;
257 dev->queue_count++;
258 dev->queues[qid] = nvmeq;
259
260 return nvmeq;
261
262 free_queue:
263 free((void *)nvmeq->cqes);
264 free_nvmeq:
265 free(nvmeq);
266
267 return NULL;
268 }
269
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
271 {
272 struct nvme_command c;
273
274 memset(&c, 0, sizeof(c));
275 c.delete_queue.opcode = opcode;
276 c.delete_queue.qid = cpu_to_le16(id);
277
278 return nvme_submit_admin_cmd(dev, &c, NULL);
279 }
280
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
282 {
283 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
284 }
285
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
287 {
288 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
289 }
290
nvme_enable_ctrl(struct nvme_dev * dev)291 static int nvme_enable_ctrl(struct nvme_dev *dev)
292 {
293 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294 dev->ctrl_config |= NVME_CC_ENABLE;
295 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
296
297 return nvme_wait_ready(dev, true);
298 }
299
nvme_disable_ctrl(struct nvme_dev * dev)300 static int nvme_disable_ctrl(struct nvme_dev *dev)
301 {
302 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 dev->ctrl_config &= ~NVME_CC_ENABLE;
304 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
305
306 return nvme_wait_ready(dev, false);
307 }
308
nvme_free_queue(struct nvme_queue * nvmeq)309 static void nvme_free_queue(struct nvme_queue *nvmeq)
310 {
311 free((void *)nvmeq->cqes);
312 free(nvmeq->sq_cmds);
313 free(nvmeq);
314 }
315
nvme_free_queues(struct nvme_dev * dev,int lowest)316 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
317 {
318 int i;
319
320 for (i = dev->queue_count - 1; i >= lowest; i--) {
321 struct nvme_queue *nvmeq = dev->queues[i];
322 dev->queue_count--;
323 dev->queues[i] = NULL;
324 nvme_free_queue(nvmeq);
325 }
326 }
327
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)328 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
329 {
330 struct nvme_dev *dev = nvmeq->dev;
331
332 nvmeq->sq_tail = 0;
333 nvmeq->cq_head = 0;
334 nvmeq->cq_phase = 1;
335 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
336 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
337 flush_dcache_range((ulong)nvmeq->cqes,
338 (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
339 dev->online_queues++;
340 }
341
nvme_configure_admin_queue(struct nvme_dev * dev)342 static int nvme_configure_admin_queue(struct nvme_dev *dev)
343 {
344 int result;
345 u32 aqa;
346 u64 cap = dev->cap;
347 struct nvme_queue *nvmeq;
348 /* most architectures use 4KB as the page size */
349 unsigned page_shift = 12;
350 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
351 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
352
353 if (page_shift < dev_page_min) {
354 debug("Device minimum page size (%u) too large for host (%u)\n",
355 1 << dev_page_min, 1 << page_shift);
356 return -ENODEV;
357 }
358
359 if (page_shift > dev_page_max) {
360 debug("Device maximum page size (%u) smaller than host (%u)\n",
361 1 << dev_page_max, 1 << page_shift);
362 page_shift = dev_page_max;
363 }
364
365 result = nvme_disable_ctrl(dev);
366 if (result < 0)
367 return result;
368
369 nvmeq = dev->queues[NVME_ADMIN_Q];
370 if (!nvmeq) {
371 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
372 if (!nvmeq)
373 return -ENOMEM;
374 }
375
376 aqa = nvmeq->q_depth - 1;
377 aqa |= aqa << 16;
378 aqa |= aqa << 16;
379
380 dev->page_size = 1 << page_shift;
381
382 dev->ctrl_config = NVME_CC_CSS_NVM;
383 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
384 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
385 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
386
387 writel(aqa, &dev->bar->aqa);
388 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
389 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
390
391 result = nvme_enable_ctrl(dev);
392 if (result)
393 goto free_nvmeq;
394
395 nvmeq->cq_vector = 0;
396
397 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
398
399 return result;
400
401 free_nvmeq:
402 nvme_free_queues(dev, 0);
403
404 return result;
405 }
406
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)407 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
408 struct nvme_queue *nvmeq)
409 {
410 struct nvme_command c;
411 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
412
413 memset(&c, 0, sizeof(c));
414 c.create_cq.opcode = nvme_admin_create_cq;
415 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
416 c.create_cq.cqid = cpu_to_le16(qid);
417 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
418 c.create_cq.cq_flags = cpu_to_le16(flags);
419 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
420
421 return nvme_submit_admin_cmd(dev, &c, NULL);
422 }
423
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)424 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
425 struct nvme_queue *nvmeq)
426 {
427 struct nvme_command c;
428 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
429
430 memset(&c, 0, sizeof(c));
431 c.create_sq.opcode = nvme_admin_create_sq;
432 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
433 c.create_sq.sqid = cpu_to_le16(qid);
434 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
435 c.create_sq.sq_flags = cpu_to_le16(flags);
436 c.create_sq.cqid = cpu_to_le16(qid);
437
438 return nvme_submit_admin_cmd(dev, &c, NULL);
439 }
440
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)441 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
442 unsigned cns, dma_addr_t dma_addr)
443 {
444 struct nvme_command c;
445 u32 page_size = dev->page_size;
446 int offset = dma_addr & (page_size - 1);
447 int length = sizeof(struct nvme_id_ctrl);
448 int ret;
449
450 memset(&c, 0, sizeof(c));
451 c.identify.opcode = nvme_admin_identify;
452 c.identify.nsid = cpu_to_le32(nsid);
453 c.identify.prp1 = cpu_to_le64(dma_addr);
454
455 length -= (page_size - offset);
456 if (length <= 0) {
457 c.identify.prp2 = 0;
458 } else {
459 dma_addr += (page_size - offset);
460 c.identify.prp2 = cpu_to_le64(dma_addr);
461 }
462
463 c.identify.cns = cpu_to_le32(cns);
464
465 ret = nvme_submit_admin_cmd(dev, &c, NULL);
466 if (!ret)
467 invalidate_dcache_range(dma_addr,
468 dma_addr + sizeof(struct nvme_id_ctrl));
469
470 return ret;
471 }
472
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)473 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
474 dma_addr_t dma_addr, u32 *result)
475 {
476 struct nvme_command c;
477
478 memset(&c, 0, sizeof(c));
479 c.features.opcode = nvme_admin_get_features;
480 c.features.nsid = cpu_to_le32(nsid);
481 c.features.prp1 = cpu_to_le64(dma_addr);
482 c.features.fid = cpu_to_le32(fid);
483
484 /*
485 * TODO: add cache invalidate operation when the size of
486 * the DMA buffer is known
487 */
488
489 return nvme_submit_admin_cmd(dev, &c, result);
490 }
491
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)492 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
493 dma_addr_t dma_addr, u32 *result)
494 {
495 struct nvme_command c;
496
497 memset(&c, 0, sizeof(c));
498 c.features.opcode = nvme_admin_set_features;
499 c.features.prp1 = cpu_to_le64(dma_addr);
500 c.features.fid = cpu_to_le32(fid);
501 c.features.dword11 = cpu_to_le32(dword11);
502
503 /*
504 * TODO: add cache flush operation when the size of
505 * the DMA buffer is known
506 */
507
508 return nvme_submit_admin_cmd(dev, &c, result);
509 }
510
nvme_create_queue(struct nvme_queue * nvmeq,int qid)511 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
512 {
513 struct nvme_dev *dev = nvmeq->dev;
514 int result;
515
516 nvmeq->cq_vector = qid - 1;
517 result = nvme_alloc_cq(dev, qid, nvmeq);
518 if (result < 0)
519 goto release_cq;
520
521 result = nvme_alloc_sq(dev, qid, nvmeq);
522 if (result < 0)
523 goto release_sq;
524
525 nvme_init_queue(nvmeq, qid);
526
527 return result;
528
529 release_sq:
530 nvme_delete_sq(dev, qid);
531 release_cq:
532 nvme_delete_cq(dev, qid);
533
534 return result;
535 }
536
nvme_set_queue_count(struct nvme_dev * dev,int count)537 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
538 {
539 int status;
540 u32 result;
541 u32 q_count = (count - 1) | ((count - 1) << 16);
542
543 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
544 q_count, 0, &result);
545
546 if (status < 0)
547 return status;
548 if (status > 1)
549 return 0;
550
551 return min(result & 0xffff, result >> 16) + 1;
552 }
553
nvme_create_io_queues(struct nvme_dev * dev)554 static void nvme_create_io_queues(struct nvme_dev *dev)
555 {
556 unsigned int i;
557
558 for (i = dev->queue_count; i <= dev->max_qid; i++)
559 if (!nvme_alloc_queue(dev, i, dev->q_depth))
560 break;
561
562 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
563 if (nvme_create_queue(dev->queues[i], i))
564 break;
565 }
566
nvme_setup_io_queues(struct nvme_dev * dev)567 static int nvme_setup_io_queues(struct nvme_dev *dev)
568 {
569 int nr_io_queues;
570 int result;
571
572 nr_io_queues = 1;
573 result = nvme_set_queue_count(dev, nr_io_queues);
574 if (result <= 0)
575 return result;
576
577 dev->max_qid = nr_io_queues;
578
579 /* Free previously allocated queues */
580 nvme_free_queues(dev, nr_io_queues + 1);
581 nvme_create_io_queues(dev);
582
583 return 0;
584 }
585
nvme_get_info_from_identify(struct nvme_dev * dev)586 static int nvme_get_info_from_identify(struct nvme_dev *dev)
587 {
588 struct nvme_id_ctrl *ctrl;
589 int ret;
590 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
591
592 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
593 if (!ctrl)
594 return -ENOMEM;
595
596 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
597 if (ret) {
598 free(ctrl);
599 return -EIO;
600 }
601
602 dev->nn = le32_to_cpu(ctrl->nn);
603 dev->vwc = ctrl->vwc;
604 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
605 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
606 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
607 if (ctrl->mdts)
608 dev->max_transfer_shift = (ctrl->mdts + shift);
609 else {
610 /*
611 * Maximum Data Transfer Size (MDTS) field indicates the maximum
612 * data transfer size between the host and the controller. The
613 * host should not submit a command that exceeds this transfer
614 * size. The value is in units of the minimum memory page size
615 * and is reported as a power of two (2^n).
616 *
617 * The spec also says: a value of 0h indicates no restrictions
618 * on transfer size. But in nvme_blk_read/write() below we have
619 * the following algorithm for maximum number of logic blocks
620 * per transfer:
621 *
622 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
623 *
624 * In order for lbas not to overflow, the maximum number is 15
625 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
626 * Let's use 20 which provides 1MB size.
627 */
628 dev->max_transfer_shift = 20;
629 }
630
631 free(ctrl);
632 return 0;
633 }
634
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)635 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
636 {
637 struct nvme_ns *ns = dev_get_priv(udev);
638
639 if (ns_id)
640 *ns_id = ns->ns_id;
641 if (eui64)
642 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
643
644 return 0;
645 }
646
nvme_scan_namespace(void)647 int nvme_scan_namespace(void)
648 {
649 struct uclass *uc;
650 struct udevice *dev;
651 int ret;
652
653 ret = uclass_get(UCLASS_NVME, &uc);
654 if (ret)
655 return ret;
656
657 uclass_foreach_dev(dev, uc) {
658 ret = device_probe(dev);
659 if (ret)
660 return ret;
661 }
662
663 return 0;
664 }
665
nvme_blk_probe(struct udevice * udev)666 static int nvme_blk_probe(struct udevice *udev)
667 {
668 struct nvme_dev *ndev = dev_get_priv(udev->parent);
669 struct blk_desc *desc = dev_get_uclass_platdata(udev);
670 struct nvme_ns *ns = dev_get_priv(udev);
671 u8 flbas;
672 struct pci_child_platdata *pplat;
673 struct nvme_id_ns *id;
674
675 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
676 if (!id)
677 return -ENOMEM;
678
679 memset(ns, 0, sizeof(*ns));
680 ns->dev = ndev;
681 /* extract the namespace id from the block device name */
682 ns->ns_id = trailing_strtol(udev->name) + 1;
683 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
684 free(id);
685 return -EIO;
686 }
687
688 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
689 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
690 ns->flbas = flbas;
691 ns->lba_shift = id->lbaf[flbas].ds;
692 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
693 ns->mode_select_block_len = 1 << ns->lba_shift;
694 list_add(&ns->list, &ndev->namespaces);
695
696 desc->lba = ns->mode_select_num_blocks;
697 desc->log2blksz = ns->lba_shift;
698 desc->blksz = 1 << ns->lba_shift;
699 desc->bdev = udev;
700 pplat = dev_get_parent_platdata(udev->parent);
701 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
702 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
703 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
704
705 free(id);
706 return 0;
707 }
708
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)709 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
710 lbaint_t blkcnt, void *buffer, bool read)
711 {
712 struct nvme_ns *ns = dev_get_priv(udev);
713 struct nvme_dev *dev = ns->dev;
714 struct nvme_command c;
715 struct blk_desc *desc = dev_get_uclass_platdata(udev);
716 int status;
717 u64 prp2;
718 u64 total_len = blkcnt << desc->log2blksz;
719 u64 temp_len = total_len;
720
721 u64 slba = blknr;
722 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
723 u64 total_lbas = blkcnt;
724
725 flush_dcache_range((unsigned long)buffer,
726 (unsigned long)buffer + total_len);
727
728 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
729 c.rw.flags = 0;
730 c.rw.nsid = cpu_to_le32(ns->ns_id);
731 c.rw.control = 0;
732 c.rw.dsmgmt = 0;
733 c.rw.reftag = 0;
734 c.rw.apptag = 0;
735 c.rw.appmask = 0;
736 c.rw.metadata = 0;
737
738 while (total_lbas) {
739 if (total_lbas < lbas) {
740 lbas = (u16)total_lbas;
741 total_lbas = 0;
742 } else {
743 total_lbas -= lbas;
744 }
745
746 if (nvme_setup_prps(dev, &prp2,
747 lbas << ns->lba_shift, (ulong)buffer))
748 return -EIO;
749 c.rw.slba = cpu_to_le64(slba);
750 slba += lbas;
751 c.rw.length = cpu_to_le16(lbas - 1);
752 c.rw.prp1 = cpu_to_le64((ulong)buffer);
753 c.rw.prp2 = cpu_to_le64(prp2);
754 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
755 &c, NULL, IO_TIMEOUT);
756 if (status)
757 break;
758 temp_len -= (u32)lbas << ns->lba_shift;
759 buffer += lbas << ns->lba_shift;
760 }
761
762 if (read)
763 invalidate_dcache_range((unsigned long)buffer,
764 (unsigned long)buffer + total_len);
765
766 return (total_len - temp_len) >> desc->log2blksz;
767 }
768
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)769 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
770 lbaint_t blkcnt, void *buffer)
771 {
772 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
773 }
774
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)775 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
776 lbaint_t blkcnt, const void *buffer)
777 {
778 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
779 }
780
781 static const struct blk_ops nvme_blk_ops = {
782 .read = nvme_blk_read,
783 .write = nvme_blk_write,
784 };
785
786 U_BOOT_DRIVER(nvme_blk) = {
787 .name = "nvme-blk",
788 .id = UCLASS_BLK,
789 .probe = nvme_blk_probe,
790 .ops = &nvme_blk_ops,
791 .priv_auto_alloc_size = sizeof(struct nvme_ns),
792 };
793
nvme_bind(struct udevice * udev)794 static int nvme_bind(struct udevice *udev)
795 {
796 static int ndev_num;
797 char name[20];
798
799 sprintf(name, "nvme#%d", ndev_num++);
800
801 return device_set_name(udev, name);
802 }
803
nvme_probe(struct udevice * udev)804 static int nvme_probe(struct udevice *udev)
805 {
806 int ret;
807 struct nvme_dev *ndev = dev_get_priv(udev);
808
809 ndev->instance = trailing_strtol(udev->name);
810
811 INIT_LIST_HEAD(&ndev->namespaces);
812 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
813 PCI_REGION_MEM);
814 if (readl(&ndev->bar->csts) == -1) {
815 ret = -ENODEV;
816 printf("Error: %s: Out of memory!\n", udev->name);
817 goto free_nvme;
818 }
819
820 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
821 if (!ndev->queues) {
822 ret = -ENOMEM;
823 printf("Error: %s: Out of memory!\n", udev->name);
824 goto free_nvme;
825 }
826 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
827
828 ndev->cap = nvme_readq(&ndev->bar->cap);
829 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
830 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
831 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
832
833 ret = nvme_configure_admin_queue(ndev);
834 if (ret)
835 goto free_queue;
836
837 /* Allocate after the page size is known */
838 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
839 if (!ndev->prp_pool) {
840 ret = -ENOMEM;
841 printf("Error: %s: Out of memory!\n", udev->name);
842 goto free_nvme;
843 }
844 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
845
846 ret = nvme_setup_io_queues(ndev);
847 if (ret)
848 goto free_queue;
849
850 nvme_get_info_from_identify(ndev);
851
852 return 0;
853
854 free_queue:
855 free((void *)ndev->queues);
856 free_nvme:
857 return ret;
858 }
859
860 U_BOOT_DRIVER(nvme) = {
861 .name = "nvme",
862 .id = UCLASS_NVME,
863 .bind = nvme_bind,
864 .probe = nvme_probe,
865 .priv_auto_alloc_size = sizeof(struct nvme_dev),
866 };
867
868 struct pci_device_id nvme_supported[] = {
869 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
870 {}
871 };
872
873 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
874