• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6 
7 #include <common.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <memalign.h>
12 #include <pci.h>
13 #include <time.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16 
17 #define NVME_Q_DEPTH		2
18 #define NVME_AQ_DEPTH		2
19 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
21 #define ADMIN_TIMEOUT		60
22 #define IO_TIMEOUT		30
23 #define MAX_PRP_POOL		512
24 
25 enum nvme_queue_id {
26 	NVME_ADMIN_Q,
27 	NVME_IO_Q,
28 	NVME_Q_NUM,
29 };
30 
31 /*
32  * An NVM Express queue. Each device has at least two (one for admin
33  * commands and one for I/O commands).
34  */
35 struct nvme_queue {
36 	struct nvme_dev *dev;
37 	struct nvme_command *sq_cmds;
38 	struct nvme_completion *cqes;
39 	wait_queue_head_t sq_full;
40 	u32 __iomem *q_db;
41 	u16 q_depth;
42 	s16 cq_vector;
43 	u16 sq_head;
44 	u16 sq_tail;
45 	u16 cq_head;
46 	u16 qid;
47 	u8 cq_phase;
48 	u8 cqe_seen;
49 	unsigned long cmdid_data[];
50 };
51 
nvme_wait_ready(struct nvme_dev * dev,bool enabled)52 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
53 {
54 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
55 	int timeout;
56 	ulong start;
57 
58 	/* Timeout field in the CAP register is in 500 millisecond units */
59 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
60 
61 	start = get_timer(0);
62 	while (get_timer(start) < timeout) {
63 		if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
64 			return 0;
65 	}
66 
67 	return -ETIME;
68 }
69 
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)70 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
71 			   int total_len, u64 dma_addr)
72 {
73 	u32 page_size = dev->page_size;
74 	int offset = dma_addr & (page_size - 1);
75 	u64 *prp_pool;
76 	int length = total_len;
77 	int i, nprps;
78 	u32 prps_per_page = (page_size >> 3) - 1;
79 	u32 num_pages;
80 
81 	length -= (page_size - offset);
82 
83 	if (length <= 0) {
84 		*prp2 = 0;
85 		return 0;
86 	}
87 
88 	if (length)
89 		dma_addr += (page_size - offset);
90 
91 	if (length <= page_size) {
92 		*prp2 = dma_addr;
93 		return 0;
94 	}
95 
96 	nprps = DIV_ROUND_UP(length, page_size);
97 	num_pages = DIV_ROUND_UP(nprps, prps_per_page);
98 
99 	if (nprps > dev->prp_entry_num) {
100 		free(dev->prp_pool);
101 		/*
102 		 * Always increase in increments of pages.  It doesn't waste
103 		 * much memory and reduces the number of allocations.
104 		 */
105 		dev->prp_pool = memalign(page_size, num_pages * page_size);
106 		if (!dev->prp_pool) {
107 			printf("Error: malloc prp_pool fail\n");
108 			return -ENOMEM;
109 		}
110 		dev->prp_entry_num = prps_per_page * num_pages;
111 	}
112 
113 	prp_pool = dev->prp_pool;
114 	i = 0;
115 	while (nprps) {
116 		if (i == ((page_size >> 3) - 1)) {
117 			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
118 					page_size);
119 			i = 0;
120 			prp_pool += page_size;
121 		}
122 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
123 		dma_addr += page_size;
124 		nprps--;
125 	}
126 	*prp2 = (ulong)dev->prp_pool;
127 
128 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
129 			   dev->prp_entry_num * sizeof(u64));
130 
131 	return 0;
132 }
133 
nvme_get_cmd_id(void)134 static __le16 nvme_get_cmd_id(void)
135 {
136 	static unsigned short cmdid;
137 
138 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
139 }
140 
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)141 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
142 {
143 	u64 start = (ulong)&nvmeq->cqes[index];
144 	u64 stop = start + sizeof(struct nvme_completion);
145 
146 	invalidate_dcache_range(start, stop);
147 
148 	return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
149 }
150 
151 /**
152  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
153  *
154  * @nvmeq:	The queue to use
155  * @cmd:	The command to send
156  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)157 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
158 {
159 	u16 tail = nvmeq->sq_tail;
160 
161 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
162 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
163 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
164 
165 	if (++tail == nvmeq->q_depth)
166 		tail = 0;
167 	writel(tail, nvmeq->q_db);
168 	nvmeq->sq_tail = tail;
169 }
170 
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)171 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
172 				struct nvme_command *cmd,
173 				u32 *result, unsigned timeout)
174 {
175 	u16 head = nvmeq->cq_head;
176 	u16 phase = nvmeq->cq_phase;
177 	u16 status;
178 	ulong start_time;
179 	ulong timeout_us = timeout * 100000;
180 
181 	cmd->common.command_id = nvme_get_cmd_id();
182 	nvme_submit_cmd(nvmeq, cmd);
183 
184 	start_time = timer_get_us();
185 
186 	for (;;) {
187 		status = nvme_read_completion_status(nvmeq, head);
188 		if ((status & 0x01) == phase)
189 			break;
190 		if (timeout_us > 0 && (timer_get_us() - start_time)
191 		    >= timeout_us)
192 			return -ETIMEDOUT;
193 	}
194 
195 	status >>= 1;
196 	if (status) {
197 		printf("ERROR: status = %x, phase = %d, head = %d\n",
198 		       status, phase, head);
199 		status = 0;
200 		if (++head == nvmeq->q_depth) {
201 			head = 0;
202 			phase = !phase;
203 		}
204 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
205 		nvmeq->cq_head = head;
206 		nvmeq->cq_phase = phase;
207 
208 		return -EIO;
209 	}
210 
211 	if (result)
212 		*result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
213 
214 	if (++head == nvmeq->q_depth) {
215 		head = 0;
216 		phase = !phase;
217 	}
218 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
219 	nvmeq->cq_head = head;
220 	nvmeq->cq_phase = phase;
221 
222 	return status;
223 }
224 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)225 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
226 				 u32 *result)
227 {
228 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
229 				    result, ADMIN_TIMEOUT);
230 }
231 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)232 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
233 					   int qid, int depth)
234 {
235 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
236 	if (!nvmeq)
237 		return NULL;
238 	memset(nvmeq, 0, sizeof(*nvmeq));
239 
240 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
241 	if (!nvmeq->cqes)
242 		goto free_nvmeq;
243 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
244 
245 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
246 	if (!nvmeq->sq_cmds)
247 		goto free_queue;
248 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
249 
250 	nvmeq->dev = dev;
251 
252 	nvmeq->cq_head = 0;
253 	nvmeq->cq_phase = 1;
254 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
255 	nvmeq->q_depth = depth;
256 	nvmeq->qid = qid;
257 	dev->queue_count++;
258 	dev->queues[qid] = nvmeq;
259 
260 	return nvmeq;
261 
262  free_queue:
263 	free((void *)nvmeq->cqes);
264  free_nvmeq:
265 	free(nvmeq);
266 
267 	return NULL;
268 }
269 
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
271 {
272 	struct nvme_command c;
273 
274 	memset(&c, 0, sizeof(c));
275 	c.delete_queue.opcode = opcode;
276 	c.delete_queue.qid = cpu_to_le16(id);
277 
278 	return nvme_submit_admin_cmd(dev, &c, NULL);
279 }
280 
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
282 {
283 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
284 }
285 
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
287 {
288 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
289 }
290 
nvme_enable_ctrl(struct nvme_dev * dev)291 static int nvme_enable_ctrl(struct nvme_dev *dev)
292 {
293 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294 	dev->ctrl_config |= NVME_CC_ENABLE;
295 	writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
296 
297 	return nvme_wait_ready(dev, true);
298 }
299 
nvme_disable_ctrl(struct nvme_dev * dev)300 static int nvme_disable_ctrl(struct nvme_dev *dev)
301 {
302 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 	dev->ctrl_config &= ~NVME_CC_ENABLE;
304 	writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
305 
306 	return nvme_wait_ready(dev, false);
307 }
308 
nvme_free_queue(struct nvme_queue * nvmeq)309 static void nvme_free_queue(struct nvme_queue *nvmeq)
310 {
311 	free((void *)nvmeq->cqes);
312 	free(nvmeq->sq_cmds);
313 	free(nvmeq);
314 }
315 
nvme_free_queues(struct nvme_dev * dev,int lowest)316 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
317 {
318 	int i;
319 
320 	for (i = dev->queue_count - 1; i >= lowest; i--) {
321 		struct nvme_queue *nvmeq = dev->queues[i];
322 		dev->queue_count--;
323 		dev->queues[i] = NULL;
324 		nvme_free_queue(nvmeq);
325 	}
326 }
327 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)328 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
329 {
330 	struct nvme_dev *dev = nvmeq->dev;
331 
332 	nvmeq->sq_tail = 0;
333 	nvmeq->cq_head = 0;
334 	nvmeq->cq_phase = 1;
335 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
336 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
337 	flush_dcache_range((ulong)nvmeq->cqes,
338 			   (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
339 	dev->online_queues++;
340 }
341 
nvme_configure_admin_queue(struct nvme_dev * dev)342 static int nvme_configure_admin_queue(struct nvme_dev *dev)
343 {
344 	int result;
345 	u32 aqa;
346 	u64 cap = dev->cap;
347 	struct nvme_queue *nvmeq;
348 	/* most architectures use 4KB as the page size */
349 	unsigned page_shift = 12;
350 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
351 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
352 
353 	if (page_shift < dev_page_min) {
354 		debug("Device minimum page size (%u) too large for host (%u)\n",
355 		      1 << dev_page_min, 1 << page_shift);
356 		return -ENODEV;
357 	}
358 
359 	if (page_shift > dev_page_max) {
360 		debug("Device maximum page size (%u) smaller than host (%u)\n",
361 		      1 << dev_page_max, 1 << page_shift);
362 		page_shift = dev_page_max;
363 	}
364 
365 	result = nvme_disable_ctrl(dev);
366 	if (result < 0)
367 		return result;
368 
369 	nvmeq = dev->queues[NVME_ADMIN_Q];
370 	if (!nvmeq) {
371 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
372 		if (!nvmeq)
373 			return -ENOMEM;
374 	}
375 
376 	aqa = nvmeq->q_depth - 1;
377 	aqa |= aqa << 16;
378 	aqa |= aqa << 16;
379 
380 	dev->page_size = 1 << page_shift;
381 
382 	dev->ctrl_config = NVME_CC_CSS_NVM;
383 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
384 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
385 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
386 
387 	writel(aqa, &dev->bar->aqa);
388 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
389 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
390 
391 	result = nvme_enable_ctrl(dev);
392 	if (result)
393 		goto free_nvmeq;
394 
395 	nvmeq->cq_vector = 0;
396 
397 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
398 
399 	return result;
400 
401  free_nvmeq:
402 	nvme_free_queues(dev, 0);
403 
404 	return result;
405 }
406 
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)407 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
408 			    struct nvme_queue *nvmeq)
409 {
410 	struct nvme_command c;
411 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
412 
413 	memset(&c, 0, sizeof(c));
414 	c.create_cq.opcode = nvme_admin_create_cq;
415 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
416 	c.create_cq.cqid = cpu_to_le16(qid);
417 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
418 	c.create_cq.cq_flags = cpu_to_le16(flags);
419 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
420 
421 	return nvme_submit_admin_cmd(dev, &c, NULL);
422 }
423 
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)424 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
425 			    struct nvme_queue *nvmeq)
426 {
427 	struct nvme_command c;
428 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
429 
430 	memset(&c, 0, sizeof(c));
431 	c.create_sq.opcode = nvme_admin_create_sq;
432 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
433 	c.create_sq.sqid = cpu_to_le16(qid);
434 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
435 	c.create_sq.sq_flags = cpu_to_le16(flags);
436 	c.create_sq.cqid = cpu_to_le16(qid);
437 
438 	return nvme_submit_admin_cmd(dev, &c, NULL);
439 }
440 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)441 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
442 		  unsigned cns, dma_addr_t dma_addr)
443 {
444 	struct nvme_command c;
445 	u32 page_size = dev->page_size;
446 	int offset = dma_addr & (page_size - 1);
447 	int length = sizeof(struct nvme_id_ctrl);
448 	int ret;
449 
450 	memset(&c, 0, sizeof(c));
451 	c.identify.opcode = nvme_admin_identify;
452 	c.identify.nsid = cpu_to_le32(nsid);
453 	c.identify.prp1 = cpu_to_le64(dma_addr);
454 
455 	length -= (page_size - offset);
456 	if (length <= 0) {
457 		c.identify.prp2 = 0;
458 	} else {
459 		dma_addr += (page_size - offset);
460 		c.identify.prp2 = cpu_to_le64(dma_addr);
461 	}
462 
463 	c.identify.cns = cpu_to_le32(cns);
464 
465 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
466 	if (!ret)
467 		invalidate_dcache_range(dma_addr,
468 					dma_addr + sizeof(struct nvme_id_ctrl));
469 
470 	return ret;
471 }
472 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)473 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
474 		      dma_addr_t dma_addr, u32 *result)
475 {
476 	struct nvme_command c;
477 
478 	memset(&c, 0, sizeof(c));
479 	c.features.opcode = nvme_admin_get_features;
480 	c.features.nsid = cpu_to_le32(nsid);
481 	c.features.prp1 = cpu_to_le64(dma_addr);
482 	c.features.fid = cpu_to_le32(fid);
483 
484 	/*
485 	 * TODO: add cache invalidate operation when the size of
486 	 * the DMA buffer is known
487 	 */
488 
489 	return nvme_submit_admin_cmd(dev, &c, result);
490 }
491 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)492 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
493 		      dma_addr_t dma_addr, u32 *result)
494 {
495 	struct nvme_command c;
496 
497 	memset(&c, 0, sizeof(c));
498 	c.features.opcode = nvme_admin_set_features;
499 	c.features.prp1 = cpu_to_le64(dma_addr);
500 	c.features.fid = cpu_to_le32(fid);
501 	c.features.dword11 = cpu_to_le32(dword11);
502 
503 	/*
504 	 * TODO: add cache flush operation when the size of
505 	 * the DMA buffer is known
506 	 */
507 
508 	return nvme_submit_admin_cmd(dev, &c, result);
509 }
510 
nvme_create_queue(struct nvme_queue * nvmeq,int qid)511 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
512 {
513 	struct nvme_dev *dev = nvmeq->dev;
514 	int result;
515 
516 	nvmeq->cq_vector = qid - 1;
517 	result = nvme_alloc_cq(dev, qid, nvmeq);
518 	if (result < 0)
519 		goto release_cq;
520 
521 	result = nvme_alloc_sq(dev, qid, nvmeq);
522 	if (result < 0)
523 		goto release_sq;
524 
525 	nvme_init_queue(nvmeq, qid);
526 
527 	return result;
528 
529  release_sq:
530 	nvme_delete_sq(dev, qid);
531  release_cq:
532 	nvme_delete_cq(dev, qid);
533 
534 	return result;
535 }
536 
nvme_set_queue_count(struct nvme_dev * dev,int count)537 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
538 {
539 	int status;
540 	u32 result;
541 	u32 q_count = (count - 1) | ((count - 1) << 16);
542 
543 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
544 			q_count, 0, &result);
545 
546 	if (status < 0)
547 		return status;
548 	if (status > 1)
549 		return 0;
550 
551 	return min(result & 0xffff, result >> 16) + 1;
552 }
553 
nvme_create_io_queues(struct nvme_dev * dev)554 static void nvme_create_io_queues(struct nvme_dev *dev)
555 {
556 	unsigned int i;
557 
558 	for (i = dev->queue_count; i <= dev->max_qid; i++)
559 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
560 			break;
561 
562 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
563 		if (nvme_create_queue(dev->queues[i], i))
564 			break;
565 }
566 
nvme_setup_io_queues(struct nvme_dev * dev)567 static int nvme_setup_io_queues(struct nvme_dev *dev)
568 {
569 	int nr_io_queues;
570 	int result;
571 
572 	nr_io_queues = 1;
573 	result = nvme_set_queue_count(dev, nr_io_queues);
574 	if (result <= 0)
575 		return result;
576 
577 	dev->max_qid = nr_io_queues;
578 
579 	/* Free previously allocated queues */
580 	nvme_free_queues(dev, nr_io_queues + 1);
581 	nvme_create_io_queues(dev);
582 
583 	return 0;
584 }
585 
nvme_get_info_from_identify(struct nvme_dev * dev)586 static int nvme_get_info_from_identify(struct nvme_dev *dev)
587 {
588 	struct nvme_id_ctrl *ctrl;
589 	int ret;
590 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
591 
592 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
593 	if (!ctrl)
594 		return -ENOMEM;
595 
596 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
597 	if (ret) {
598 		free(ctrl);
599 		return -EIO;
600 	}
601 
602 	dev->nn = le32_to_cpu(ctrl->nn);
603 	dev->vwc = ctrl->vwc;
604 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
605 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
606 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
607 	if (ctrl->mdts)
608 		dev->max_transfer_shift = (ctrl->mdts + shift);
609 	else {
610 		/*
611 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
612 		 * data transfer size between the host and the controller. The
613 		 * host should not submit a command that exceeds this transfer
614 		 * size. The value is in units of the minimum memory page size
615 		 * and is reported as a power of two (2^n).
616 		 *
617 		 * The spec also says: a value of 0h indicates no restrictions
618 		 * on transfer size. But in nvme_blk_read/write() below we have
619 		 * the following algorithm for maximum number of logic blocks
620 		 * per transfer:
621 		 *
622 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
623 		 *
624 		 * In order for lbas not to overflow, the maximum number is 15
625 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
626 		 * Let's use 20 which provides 1MB size.
627 		 */
628 		dev->max_transfer_shift = 20;
629 	}
630 
631 	free(ctrl);
632 	return 0;
633 }
634 
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)635 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
636 {
637 	struct nvme_ns *ns = dev_get_priv(udev);
638 
639 	if (ns_id)
640 		*ns_id = ns->ns_id;
641 	if (eui64)
642 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
643 
644 	return 0;
645 }
646 
nvme_scan_namespace(void)647 int nvme_scan_namespace(void)
648 {
649 	struct uclass *uc;
650 	struct udevice *dev;
651 	int ret;
652 
653 	ret = uclass_get(UCLASS_NVME, &uc);
654 	if (ret)
655 		return ret;
656 
657 	uclass_foreach_dev(dev, uc) {
658 		ret = device_probe(dev);
659 		if (ret)
660 			return ret;
661 	}
662 
663 	return 0;
664 }
665 
nvme_blk_probe(struct udevice * udev)666 static int nvme_blk_probe(struct udevice *udev)
667 {
668 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
669 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
670 	struct nvme_ns *ns = dev_get_priv(udev);
671 	u8 flbas;
672 	struct pci_child_platdata *pplat;
673 	struct nvme_id_ns *id;
674 
675 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
676 	if (!id)
677 		return -ENOMEM;
678 
679 	memset(ns, 0, sizeof(*ns));
680 	ns->dev = ndev;
681 	/* extract the namespace id from the block device name */
682 	ns->ns_id = trailing_strtol(udev->name) + 1;
683 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
684 		free(id);
685 		return -EIO;
686 	}
687 
688 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
689 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
690 	ns->flbas = flbas;
691 	ns->lba_shift = id->lbaf[flbas].ds;
692 	ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
693 	ns->mode_select_block_len = 1 << ns->lba_shift;
694 	list_add(&ns->list, &ndev->namespaces);
695 
696 	desc->lba = ns->mode_select_num_blocks;
697 	desc->log2blksz = ns->lba_shift;
698 	desc->blksz = 1 << ns->lba_shift;
699 	desc->bdev = udev;
700 	pplat = dev_get_parent_platdata(udev->parent);
701 	sprintf(desc->vendor, "0x%.4x", pplat->vendor);
702 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
703 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
704 
705 	free(id);
706 	return 0;
707 }
708 
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)709 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
710 			 lbaint_t blkcnt, void *buffer, bool read)
711 {
712 	struct nvme_ns *ns = dev_get_priv(udev);
713 	struct nvme_dev *dev = ns->dev;
714 	struct nvme_command c;
715 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
716 	int status;
717 	u64 prp2;
718 	u64 total_len = blkcnt << desc->log2blksz;
719 	u64 temp_len = total_len;
720 
721 	u64 slba = blknr;
722 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
723 	u64 total_lbas = blkcnt;
724 
725 	flush_dcache_range((unsigned long)buffer,
726 			   (unsigned long)buffer + total_len);
727 
728 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
729 	c.rw.flags = 0;
730 	c.rw.nsid = cpu_to_le32(ns->ns_id);
731 	c.rw.control = 0;
732 	c.rw.dsmgmt = 0;
733 	c.rw.reftag = 0;
734 	c.rw.apptag = 0;
735 	c.rw.appmask = 0;
736 	c.rw.metadata = 0;
737 
738 	while (total_lbas) {
739 		if (total_lbas < lbas) {
740 			lbas = (u16)total_lbas;
741 			total_lbas = 0;
742 		} else {
743 			total_lbas -= lbas;
744 		}
745 
746 		if (nvme_setup_prps(dev, &prp2,
747 				    lbas << ns->lba_shift, (ulong)buffer))
748 			return -EIO;
749 		c.rw.slba = cpu_to_le64(slba);
750 		slba += lbas;
751 		c.rw.length = cpu_to_le16(lbas - 1);
752 		c.rw.prp1 = cpu_to_le64((ulong)buffer);
753 		c.rw.prp2 = cpu_to_le64(prp2);
754 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
755 				&c, NULL, IO_TIMEOUT);
756 		if (status)
757 			break;
758 		temp_len -= (u32)lbas << ns->lba_shift;
759 		buffer += lbas << ns->lba_shift;
760 	}
761 
762 	if (read)
763 		invalidate_dcache_range((unsigned long)buffer,
764 					(unsigned long)buffer + total_len);
765 
766 	return (total_len - temp_len) >> desc->log2blksz;
767 }
768 
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)769 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
770 			   lbaint_t blkcnt, void *buffer)
771 {
772 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
773 }
774 
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)775 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
776 			    lbaint_t blkcnt, const void *buffer)
777 {
778 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
779 }
780 
781 static const struct blk_ops nvme_blk_ops = {
782 	.read	= nvme_blk_read,
783 	.write	= nvme_blk_write,
784 };
785 
786 U_BOOT_DRIVER(nvme_blk) = {
787 	.name	= "nvme-blk",
788 	.id	= UCLASS_BLK,
789 	.probe	= nvme_blk_probe,
790 	.ops	= &nvme_blk_ops,
791 	.priv_auto_alloc_size = sizeof(struct nvme_ns),
792 };
793 
nvme_bind(struct udevice * udev)794 static int nvme_bind(struct udevice *udev)
795 {
796 	static int ndev_num;
797 	char name[20];
798 
799 	sprintf(name, "nvme#%d", ndev_num++);
800 
801 	return device_set_name(udev, name);
802 }
803 
nvme_probe(struct udevice * udev)804 static int nvme_probe(struct udevice *udev)
805 {
806 	int ret;
807 	struct nvme_dev *ndev = dev_get_priv(udev);
808 
809 	ndev->instance = trailing_strtol(udev->name);
810 
811 	INIT_LIST_HEAD(&ndev->namespaces);
812 	ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
813 			PCI_REGION_MEM);
814 	if (readl(&ndev->bar->csts) == -1) {
815 		ret = -ENODEV;
816 		printf("Error: %s: Out of memory!\n", udev->name);
817 		goto free_nvme;
818 	}
819 
820 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
821 	if (!ndev->queues) {
822 		ret = -ENOMEM;
823 		printf("Error: %s: Out of memory!\n", udev->name);
824 		goto free_nvme;
825 	}
826 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
827 
828 	ndev->cap = nvme_readq(&ndev->bar->cap);
829 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
830 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
831 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
832 
833 	ret = nvme_configure_admin_queue(ndev);
834 	if (ret)
835 		goto free_queue;
836 
837 	/* Allocate after the page size is known */
838 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
839 	if (!ndev->prp_pool) {
840 		ret = -ENOMEM;
841 		printf("Error: %s: Out of memory!\n", udev->name);
842 		goto free_nvme;
843 	}
844 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
845 
846 	ret = nvme_setup_io_queues(ndev);
847 	if (ret)
848 		goto free_queue;
849 
850 	nvme_get_info_from_identify(ndev);
851 
852 	return 0;
853 
854 free_queue:
855 	free((void *)ndev->queues);
856 free_nvme:
857 	return ret;
858 }
859 
860 U_BOOT_DRIVER(nvme) = {
861 	.name	= "nvme",
862 	.id	= UCLASS_NVME,
863 	.bind	= nvme_bind,
864 	.probe	= nvme_probe,
865 	.priv_auto_alloc_size = sizeof(struct nvme_dev),
866 };
867 
868 struct pci_device_id nvme_supported[] = {
869 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
870 	{}
871 };
872 
873 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
874