• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 
9 #ifndef __UBOOT__
10 #include <linux/dmaengine.h>
11 #include <linux/pm_runtime.h>
12 #include "internals.h"
13 #else
14 #include <spi.h>
15 #include <spi-mem.h>
16 #endif
17 
18 #ifndef __UBOOT__
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 #endif /* __UBOOT__ */
104 
spi_check_buswidth_req(struct spi_slave * slave,u8 buswidth,bool tx)105 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
106 {
107 	u32 mode = slave->mode;
108 
109 	switch (buswidth) {
110 	case 1:
111 		return 0;
112 
113 	case 2:
114 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
115 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
116 			return 0;
117 
118 		break;
119 
120 	case 4:
121 		if ((tx && (mode & SPI_TX_QUAD)) ||
122 		    (!tx && (mode & SPI_RX_QUAD)))
123 			return 0;
124 
125 		break;
126 
127 	default:
128 		break;
129 	}
130 
131 	return -ENOTSUPP;
132 }
133 
spi_mem_default_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)134 bool spi_mem_default_supports_op(struct spi_slave *slave,
135 				 const struct spi_mem_op *op)
136 {
137 	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
138 		return false;
139 
140 	if (op->addr.nbytes &&
141 	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
142 		return false;
143 
144 	if (op->dummy.nbytes &&
145 	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
146 		return false;
147 
148 	if (op->data.nbytes &&
149 	    spi_check_buswidth_req(slave, op->data.buswidth,
150 				   op->data.dir == SPI_MEM_DATA_OUT))
151 		return false;
152 
153 	return true;
154 }
155 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
156 
157 /**
158  * spi_mem_supports_op() - Check if a memory device and the controller it is
159  *			   connected to support a specific memory operation
160  * @slave: the SPI device
161  * @op: the memory operation to check
162  *
163  * Some controllers are only supporting Single or Dual IOs, others might only
164  * support specific opcodes, or it can even be that the controller and device
165  * both support Quad IOs but the hardware prevents you from using it because
166  * only 2 IO lines are connected.
167  *
168  * This function checks whether a specific operation is supported.
169  *
170  * Return: true if @op is supported, false otherwise.
171  */
spi_mem_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)172 bool spi_mem_supports_op(struct spi_slave *slave,
173 			 const struct spi_mem_op *op)
174 {
175 	struct udevice *bus = slave->dev->parent;
176 	struct dm_spi_ops *ops = spi_get_ops(bus);
177 
178 	if (ops->mem_ops && ops->mem_ops->supports_op)
179 		return ops->mem_ops->supports_op(slave, op);
180 
181 	return spi_mem_default_supports_op(slave, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
184 
185 /**
186  * spi_mem_exec_op() - Execute a memory operation
187  * @slave: the SPI device
188  * @op: the memory operation to execute
189  *
190  * Executes a memory operation.
191  *
192  * This function first checks that @op is supported and then tries to execute
193  * it.
194  *
195  * Return: 0 in case of success, a negative error code otherwise.
196  */
spi_mem_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)197 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
198 {
199 	struct udevice *bus = slave->dev->parent;
200 	struct dm_spi_ops *ops = spi_get_ops(bus);
201 	unsigned int pos = 0;
202 	const u8 *tx_buf = NULL;
203 	u8 *rx_buf = NULL;
204 	int op_len;
205 	u32 flag;
206 	int ret;
207 	int i;
208 
209 	if (!spi_mem_supports_op(slave, op))
210 		return -ENOTSUPP;
211 
212 	ret = spi_claim_bus(slave);
213 	if (ret < 0)
214 		return ret;
215 
216 	if (ops->mem_ops && ops->mem_ops->exec_op) {
217 #ifndef __UBOOT__
218 		/*
219 		 * Flush the message queue before executing our SPI memory
220 		 * operation to prevent preemption of regular SPI transfers.
221 		 */
222 		spi_flush_queue(ctlr);
223 
224 		if (ctlr->auto_runtime_pm) {
225 			ret = pm_runtime_get_sync(ctlr->dev.parent);
226 			if (ret < 0) {
227 				dev_err(&ctlr->dev,
228 					"Failed to power device: %d\n",
229 					ret);
230 				return ret;
231 			}
232 		}
233 
234 		mutex_lock(&ctlr->bus_lock_mutex);
235 		mutex_lock(&ctlr->io_mutex);
236 #endif
237 		ret = ops->mem_ops->exec_op(slave, op);
238 
239 #ifndef __UBOOT__
240 		mutex_unlock(&ctlr->io_mutex);
241 		mutex_unlock(&ctlr->bus_lock_mutex);
242 
243 		if (ctlr->auto_runtime_pm)
244 			pm_runtime_put(ctlr->dev.parent);
245 #endif
246 
247 		/*
248 		 * Some controllers only optimize specific paths (typically the
249 		 * read path) and expect the core to use the regular SPI
250 		 * interface in other cases.
251 		 */
252 		if (!ret || ret != -ENOTSUPP) {
253 			spi_release_bus(slave);
254 			return ret;
255 		}
256 	}
257 
258 #ifndef __UBOOT__
259 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
260 		     op->dummy.nbytes;
261 
262 	/*
263 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
264 	 * we're guaranteed that this buffer is DMA-able, as required by the
265 	 * SPI layer.
266 	 */
267 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
268 	if (!tmpbuf)
269 		return -ENOMEM;
270 
271 	spi_message_init(&msg);
272 
273 	tmpbuf[0] = op->cmd.opcode;
274 	xfers[xferpos].tx_buf = tmpbuf;
275 	xfers[xferpos].len = sizeof(op->cmd.opcode);
276 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
277 	spi_message_add_tail(&xfers[xferpos], &msg);
278 	xferpos++;
279 	totalxferlen++;
280 
281 	if (op->addr.nbytes) {
282 		int i;
283 
284 		for (i = 0; i < op->addr.nbytes; i++)
285 			tmpbuf[i + 1] = op->addr.val >>
286 					(8 * (op->addr.nbytes - i - 1));
287 
288 		xfers[xferpos].tx_buf = tmpbuf + 1;
289 		xfers[xferpos].len = op->addr.nbytes;
290 		xfers[xferpos].tx_nbits = op->addr.buswidth;
291 		spi_message_add_tail(&xfers[xferpos], &msg);
292 		xferpos++;
293 		totalxferlen += op->addr.nbytes;
294 	}
295 
296 	if (op->dummy.nbytes) {
297 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
298 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
299 		xfers[xferpos].len = op->dummy.nbytes;
300 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
301 		spi_message_add_tail(&xfers[xferpos], &msg);
302 		xferpos++;
303 		totalxferlen += op->dummy.nbytes;
304 	}
305 
306 	if (op->data.nbytes) {
307 		if (op->data.dir == SPI_MEM_DATA_IN) {
308 			xfers[xferpos].rx_buf = op->data.buf.in;
309 			xfers[xferpos].rx_nbits = op->data.buswidth;
310 		} else {
311 			xfers[xferpos].tx_buf = op->data.buf.out;
312 			xfers[xferpos].tx_nbits = op->data.buswidth;
313 		}
314 
315 		xfers[xferpos].len = op->data.nbytes;
316 		spi_message_add_tail(&xfers[xferpos], &msg);
317 		xferpos++;
318 		totalxferlen += op->data.nbytes;
319 	}
320 
321 	ret = spi_sync(slave, &msg);
322 
323 	kfree(tmpbuf);
324 
325 	if (ret)
326 		return ret;
327 
328 	if (msg.actual_length != totalxferlen)
329 		return -EIO;
330 #else
331 
332 	if (op->data.nbytes) {
333 		if (op->data.dir == SPI_MEM_DATA_IN)
334 			rx_buf = op->data.buf.in;
335 		else
336 			tx_buf = op->data.buf.out;
337 	}
338 
339 	op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
340 
341 	/*
342 	 * Avoid using malloc() here so that we can use this code in SPL where
343 	 * simple malloc may be used. That implementation does not allow free()
344 	 * so repeated calls to this code can exhaust the space.
345 	 *
346 	 * The value of op_len is small, since it does not include the actual
347 	 * data being sent, only the op-code and address. In fact, it should be
348 	 * possible to just use a small fixed value here instead of op_len.
349 	 */
350 	u8 op_buf[op_len];
351 
352 	op_buf[pos++] = op->cmd.opcode;
353 
354 	if (op->addr.nbytes) {
355 		for (i = 0; i < op->addr.nbytes; i++)
356 			op_buf[pos + i] = op->addr.val >>
357 				(8 * (op->addr.nbytes - i - 1));
358 
359 		pos += op->addr.nbytes;
360 	}
361 
362 	if (op->dummy.nbytes)
363 		memset(op_buf + pos, 0xff, op->dummy.nbytes);
364 
365 	/* 1st transfer: opcode + address + dummy cycles */
366 	flag = SPI_XFER_BEGIN;
367 	/* Make sure to set END bit if no tx or rx data messages follow */
368 	if (!tx_buf && !rx_buf)
369 		flag |= SPI_XFER_END;
370 
371 	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
372 	if (ret)
373 		return ret;
374 
375 	/* 2nd transfer: rx or tx data path */
376 	if (tx_buf || rx_buf) {
377 		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
378 			       rx_buf, SPI_XFER_END);
379 		if (ret)
380 			return ret;
381 	}
382 
383 	spi_release_bus(slave);
384 
385 	for (i = 0; i < pos; i++)
386 		debug("%02x ", op_buf[i]);
387 	debug("| [%dB %s] ",
388 	      tx_buf || rx_buf ? op->data.nbytes : 0,
389 	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
390 	for (i = 0; i < op->data.nbytes; i++)
391 		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
392 	debug("[ret %d]\n", ret);
393 
394 	if (ret < 0)
395 		return ret;
396 #endif /* __UBOOT__ */
397 
398 	return 0;
399 }
400 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
401 
402 /**
403  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
404  *				 match controller limitations
405  * @slave: the SPI device
406  * @op: the operation to adjust
407  *
408  * Some controllers have FIFO limitations and must split a data transfer
409  * operation into multiple ones, others require a specific alignment for
410  * optimized accesses. This function allows SPI mem drivers to split a single
411  * operation into multiple sub-operations when required.
412  *
413  * Return: a negative error code if the controller can't properly adjust @op,
414  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
415  *	   can't be handled in a single step.
416  */
spi_mem_adjust_op_size(struct spi_slave * slave,struct spi_mem_op * op)417 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
418 {
419 	struct udevice *bus = slave->dev->parent;
420 	struct dm_spi_ops *ops = spi_get_ops(bus);
421 
422 	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
423 		return ops->mem_ops->adjust_op_size(slave, op);
424 
425 	if (!ops->mem_ops || !ops->mem_ops->exec_op) {
426 		unsigned int len;
427 
428 		len = sizeof(op->cmd.opcode) + op->addr.nbytes +
429 			op->dummy.nbytes;
430 		if (slave->max_write_size && len > slave->max_write_size)
431 			return -EINVAL;
432 
433 		if (op->data.dir == SPI_MEM_DATA_IN) {
434 			if (slave->max_read_size)
435 				op->data.nbytes = min(op->data.nbytes,
436 					      slave->max_read_size);
437 		} else if (slave->max_write_size) {
438 			op->data.nbytes = min(op->data.nbytes,
439 					      slave->max_write_size - len);
440 		}
441 
442 		if (!op->data.nbytes)
443 			return -EINVAL;
444 	}
445 
446 	return 0;
447 }
448 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
449 
450 #ifndef __UBOOT__
to_spi_mem_drv(struct device_driver * drv)451 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
452 {
453 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
454 }
455 
spi_mem_probe(struct spi_device * spi)456 static int spi_mem_probe(struct spi_device *spi)
457 {
458 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
459 	struct spi_mem *mem;
460 
461 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
462 	if (!mem)
463 		return -ENOMEM;
464 
465 	mem->spi = spi;
466 	spi_set_drvdata(spi, mem);
467 
468 	return memdrv->probe(mem);
469 }
470 
spi_mem_remove(struct spi_device * spi)471 static int spi_mem_remove(struct spi_device *spi)
472 {
473 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
474 	struct spi_mem *mem = spi_get_drvdata(spi);
475 
476 	if (memdrv->remove)
477 		return memdrv->remove(mem);
478 
479 	return 0;
480 }
481 
spi_mem_shutdown(struct spi_device * spi)482 static void spi_mem_shutdown(struct spi_device *spi)
483 {
484 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
485 	struct spi_mem *mem = spi_get_drvdata(spi);
486 
487 	if (memdrv->shutdown)
488 		memdrv->shutdown(mem);
489 }
490 
491 /**
492  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
493  * @memdrv: the SPI memory driver to register
494  * @owner: the owner of this driver
495  *
496  * Registers a SPI memory driver.
497  *
498  * Return: 0 in case of success, a negative error core otherwise.
499  */
500 
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)501 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
502 				       struct module *owner)
503 {
504 	memdrv->spidrv.probe = spi_mem_probe;
505 	memdrv->spidrv.remove = spi_mem_remove;
506 	memdrv->spidrv.shutdown = spi_mem_shutdown;
507 
508 	return __spi_register_driver(owner, &memdrv->spidrv);
509 }
510 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
511 
512 /**
513  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
514  * @memdrv: the SPI memory driver to unregister
515  *
516  * Unregisters a SPI memory driver.
517  */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)518 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
519 {
520 	spi_unregister_driver(&memdrv->spidrv);
521 }
522 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
523 #endif /* __UBOOT__ */
524